Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T10:29:19.218Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2015

Paul J. Ponganis
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakhus, T. & Johansen, K. 1964. Angiocardiography of the duck during submersion asphyxia. Acta Physiologica Scandinavica, 62, 1017.CrossRefGoogle ScholarPubMed
Aaronson, P. I., Robertson, T. P., Knock, G. A., et al. 2006. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. Journal of Physiology, 570, 5358.CrossRefGoogle ScholarPubMed
Adachi, H., Strauss, W., Ochi, H., & Wagner, H. N. 1976. The effect of hypoxia on the regional distribution of cardiac output in the dog. Circulation Research, 39, 314319.CrossRefGoogle ScholarPubMed
Adachi, T., Maresh, J. L., Robinson, P. W., et al. 2014. The foraging benefits of being fat in a highly migratory marine mammal. Proceedings Royal Society B, 281, DOI: 10.1098/rspb.2014.2120.Google Scholar
Aguilar De Soto, N., Johnson, M. P., Madsen, P. T., et al. 2008. Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). Journal of Animal Ecology, 77, 936947.CrossRefGoogle Scholar
Aguilar, J. S., Benvenuti, S., Dall'antonia, L., McMinn-Grive, M., & Mayol-Serra, J. 2003. Preliminary results on the foraging ecology of Balearic shearwaters (Puffinus mauretanicus) from bird-borne data loggers. Scientia Marina, 67, 129134.CrossRefGoogle Scholar
Ainley, D. G., Strong, C., Penniman, T., & Boekelheide, T. 1990. The feeding ecology of Farallon seabirds. In: Ainley, D. G. & Boekelheide, R. J. (eds.) Seabirds of the Farallon Islands: Ecology, Dynamics, and Structure of an Upwelling-System Community. Stanford, CA: Stanford University Press.Google Scholar
Akamatsu, T., Wang, D., Wang, K., Li, S., & Dong, S. 2010. Scanning sonar of rolling porpoises during prey capture dives. Journal of Experimental Biology, 213, 146152.CrossRefGoogle ScholarPubMed
Alexander, R. S. 1963. The peripheral venous system. In: Hamilton, W. F. & Dow, P. (eds.) Handbook of Physiology: Circulation. Washington, DC: American Physiological Society.Google Scholar
Alves, F., Dinis, A., Cascão, I., & Freitas, L. 2010. Bryde's whale (Balaenoptera brydei) stable associations and dive profiles: New insights into foraging behavior. Marine Mammal Science, 26, 202212.CrossRefGoogle Scholar
Ancel, A., Starke, L. N., Ponganis, P. J., Van Dam, R., & Kooyman, G. L. 2000. Energetics of surface swimming in Brandt's cormorants (Phalacrorax penicillatus Brandt). Journal of Experimental Physiology, 203, 37273731.Google ScholarPubMed
Andersen, H. T. 1959. A note on the composition of alveolar air in the diving duck. Acta Physiologica Scandinavica, 46, 240243.CrossRefGoogle ScholarPubMed
Andersen, H. T. 1963. The reflex nature of the physiological adjustments and their afferent pathway. Acta Physiologica Scandanavica, 58, 263273.CrossRefGoogle ScholarPubMed
Andersen, H. T. 1966. Physiological adaptations in diving vertebrates. Physiological Reviews, 40, 212243.CrossRefGoogle Scholar
Andersson, J. P. A., Biasoletto-Tjellstr, O. M., & Schagatay, E. K. A. 2008. Pulmonary gas exchange is reduced by the cardiovascular diving response in resting humans. Respiratory Physiology and Neurobiology, 160, 320324.CrossRefGoogle ScholarPubMed
Andersson, J. P. A. & Evaggelidis, L. 2009. Arterial oxygen saturation and diving response during dynamic apneas in breath-hold divers. Scandinavian Journal of Medicine & Science in Sports, 19, 8791.CrossRefGoogle ScholarPubMed
Andersson, J. P. A., Liner, M. H., & Jonsson, H. 2009a. Asystole and increased serum myoglobin levels associated with “packing blackout” in a competitive breath-hold diver. Clinical Physiology and Functional Imaging, 29, 458461.CrossRefGoogle Scholar
Andersson, J. P. A., Liner, M. H., & Jonsson, H. 2009b. Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations. Journal of Applied Physiology, 107, 809815.CrossRefGoogle Scholar
Andersson, J. P. A., Liner, M. H., Runow, E., & Schagatay, E. K. A. 2002. Diving responses and arterial oxygen saturation during apnea and exercise in breathhold divers. Journal of Applied Physiology, 93, 882886.CrossRefGoogle ScholarPubMed
Andrews, R. D., Costa, D. P., Le Boeuf, B. J., & Jones, D. R. 2000. Breathing frequencies of northern elephant seals at sea and on land revealed by heart rate spectral analysis. Respiration Physiology, 123, 7185.CrossRefGoogle ScholarPubMed
Andrews, R. D., Jones, D. R., Williams, J. D., et al. 1997. Heart rates of northern elephant seals diving at sea and resting on the beach. Journal of Experimental Biology, 200, 20832095.CrossRefGoogle ScholarPubMed
Andrews, R. D., Pitman, R. L., & Ballance, L. T. 2008. Satellite tracking reveals distinct movement patterns for Type B killer whales in the southern Ross Sea, Antarctica. Polar Biology, 31, 14611468.CrossRefGoogle Scholar
Angell-James, J. E., De Burgh Daly, M., & Elsner, R. 1978. Arterial baroreceptor reflexes in the seal and their modification during experimental dives. American Journal of Physiology: Heart and Circulatory Physiology, 234, H730H739.Google ScholarPubMed
Angell-James, J. E., Elsner, R., & De Burgh Daly, M. 1981. Lung inflation: effects on heart rate, respiration, and vagal afferent activity in seals. American Journal of Physiology: Heart and Circulatory Physiology, 240, H190H198.Google ScholarPubMed
Antonini, E. 1965. Interrelationship between structure and function in hemoglobin and myoglobin. Physiological Reviews, 45, 123170.CrossRefGoogle ScholarPubMed
Arad, Z., Midtgard, U., & Bernstein, M. H. 1989. Thermoregulation in turkey vultures: vascular anatomy, arteriovenous heat exchange, and behavior. Condor, 91, 505514.CrossRefGoogle Scholar
Arai, A. E., Grauer, S. E., Anselone, C. G., Pantely, G. A., & Bristow, J. D. 1995. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation, 92, 244252.CrossRefGoogle ScholarPubMed
Arai, A. E., Pantely, G. A., Anselone, C. G., Bristow, J., & Bristow, J. D. 1991. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circulation Research, 69, 14581469.CrossRefGoogle ScholarPubMed
Armstrong, R. B., Delp, M. D., Goljan, G. F., & Laughlin, M. H. 1987. Distribution of blood flow in muscles of miniature swine during exercise. Journal of Applied Physiology, 62, 12851298.CrossRefGoogle ScholarPubMed
Armstrong, R. B., Essen-Gustavsson, B., Hoppeler, H., et al. 1992. O2 delivery at VO2max and oxidative capacity in muscles of Standardbred horses. Journal of Applied Physiology, 73, 22742282.CrossRefGoogle ScholarPubMed
Armstrong, R. B. & Laughlin, M. H. 1984. Exercise blood flow patterns within and among rat muscles after training. American Journal of Physiology: Heart and Circulatory Physiology, 246, H59H68.Google ScholarPubMed
Arnould, J. P. & Hindell, M. 2001. Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Canadian Journal of Zoology, 79, 3548.CrossRefGoogle Scholar
Arsham, A. M., Howell, J. J., & Simon, M. C. 2003. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. Journal of Biological Chemistry, 278, 2965529660.CrossRefGoogle ScholarPubMed
Aschoff, S. & Pohl, H. 1970. Rhythmic variation in energy metabolism. Federation Proceedings, Federation of American Societies for Experimental Biology, 29, 15411552.Google ScholarPubMed
Austin, D., Bowen, W. D., McMillan, J. I., & Boness, D. J. 2006. Stomach temperature telemetry reveals temporal patterns of foraging success in a free-ranging marine mammal. Journal of Animal Ecology, 75, 408420.CrossRefGoogle Scholar
Bagge, L. E., Koopman, H. N., Rommel, S. A., Mclellan, W. A., & Pabst, D. A. 2012. Lipid class and depth-specific thermal properties in the blubber of the short-finned pilot whale and the pygmy sperm whale. Journal of Experimental Biology, 215, 43304339.Google ScholarPubMed
Bagnoli, P., Cozzi, B., Zaffora, A., et al. 2011. Experimental and computational biomechanical characterisation of the tracheo-bronchial tree of the bottlenose dolphin (Tursiops truncatus) during diving. Journal of Biomechanics, 44, 10401045.CrossRefGoogle ScholarPubMed
Baird, R. W. 1998. Studying diving behavior of whales and dolphins uising suction-cup attached tags. Whale Watcher, Spring/Summer, 3–6.Google Scholar
Baird, R. W., Borsani, J. F., Hanson, M. B., & Tyack, P. L. 2002. Diving and night-time behavior of long-finned pilot whales in the Ligurian Sea. Marine Ecology Progress Series, 237, 301305.CrossRefGoogle Scholar
Baird, R. W., Hanson, M. B., & Dill, L. M. 2006a. Factors influencing the diving behaviour of fish-eating killer whales: sex differences and diel and interannual variation in diving rates. Canadian Journal of Zoology, 83 257267.CrossRefGoogle Scholar
Baird, R. W., Ligon, A. D., Hooker, S. K., & Gorgone, A. M. 2001. Subsurface and nighttime behaviour of pantropical spotted dolphins in Hawaii. Canadian Journal of Zoology, 79, 988996.CrossRefGoogle Scholar
Baird, R. W., Webster, D. L., Mcsweeney, D. J., et al. 2006b. Diving behavior of Cuvier's (Ziphius cavirostris) and Blaineville's (Mesoplodon densirostris) beaked whales in Hawaii. Canadian Journal of Zoology, 84, 11201128.CrossRefGoogle Scholar
Baird, R. W., Webster, D. L., Schorr, G. S., Mcsweeney, D. J., & Barlow, J. 2008. Diel variation in beaked whale diving behavior. Marine Mammal Science, 24, 630642.CrossRefGoogle Scholar
Baker, D. A. & Gough, D. A. 1995. A continuous, implantable lactate sensor. Analytical Chemistry, 67, 15361540.CrossRefGoogle Scholar
Baker, J., Yost, C. S., & Niemann, C. U. 2005. Organ transplantation. In: Miller, R. D. (ed.) Miller's Anesthesia. 6th ed. Philadelphia, PA: Elsevier.Google Scholar
Baldwin, J. 1988. Prediciting the swimming and diving behavior of penguins from muscle biochemistry. Hydrobiologia, 165, 255261.CrossRefGoogle Scholar
Baldwin, J., Jardel, J.-P., Montague, T., & Tomkin, R. 1984. Energy metabolism in penguin swimming muscles. Molecular Physiology, 6, 3342.Google Scholar
Balmer, B. C., Wells, R. S., Howle, L. E., et al. 2014. Advances in cetacean telemetry: a review of single-pin transmitter attachment techniques on small cetaceans and development of a new satellite-linked transmitter design. Marine Mammal Science, 30, 656673.CrossRefGoogle Scholar
Barer, G. R. & Shaw, J. W. 1971. Pulmonary vasodilatory and vasoconstrictor actions of carbon dioxide. Journal of Physiology, 213, 633645.CrossRefGoogle Scholar
Barnas, G. M., Mather, F. B., & Fedde, M. R. 1978. Response of avian intrapulmonary smooth muscle to changes in carbon dioxide concentration. Poultry Science, 57, 14001407.CrossRefGoogle ScholarPubMed
Barre, H. & Roussel, B. 1986. Thermal and metabolic adaptation to first cold-water immersion in juvenile penguins. American Journal of Physiology, 251, R456R462.Google ScholarPubMed
Bartholomew, G. A. 1954. Body temperature and respiratory and heart rates in the northern elephant seal. Journal of Mammalogy, 35, 211218.CrossRefGoogle Scholar
Bashir, T., Khan, A., Behera, S. K., & Gautam, P. 2013. Time dependent activity pattern of Ganges River dolphin Platanista gangetica gangetica and its response to human presence in Upper Ganges River, India. Mammal Study, 38, 917.CrossRefGoogle Scholar
Batulis, J. C. & Bongiorno, S. F. 1972. Effect of water depth on diving times in the American coot (Fulica americana). The Auk, 89, 665667.Google Scholar
Baudinette, R., Loveridge, J., Wilson, K., Mills, C., & Schmidt-Nielsen, K. 1976. Heat loss from feet of herring gulls at rest and during flight. American Journal of Physiology: Legacy Content, 230, 920924.CrossRefGoogle ScholarPubMed
Baudinette, R. V. & Gill, P. 1985. The energetics of “flying” and “paddling” in water: locomotion in penguins and ducks. Journal of Comparative Physiology B, 155, 373380.CrossRefGoogle Scholar
Baumgartner, M. F. & Mate, B. R. 2003. Summertime foraging ecology of North Atlantic right whales. Marine Ecology Progress Series, 264, 123135.CrossRefGoogle Scholar
Bayly, W. M., Hodgson, D. R., Schulz, D. A., Dempsey, J. A., & Gollnick, P. D. 1989. Exercise-induced hypercapnia in the horse. Journal of Applied Physiology, 67, 19581966.CrossRefGoogle ScholarPubMed
Bech, C. & Praesteng, K. E. 2004. Thermoregulatory use of heat increment of feeding in the tawny owl (Strix aluco). Journal of Thermal Biology, 29, 649654.CrossRefGoogle Scholar
Beck, C. A., Bowen, W. D., McMillan, J. I., & Iverson, S. J. 2003. Sex differences in the diving behaviour of a size-dimorphic capital breeder: the grey seal. Animal Behaviour, 66, 777789.CrossRefGoogle Scholar
Behrman, R. E. & Lees, M. H. 1971. Organ blood flows of the fetal, newborn and adult rhesus monkey. Neonatology, 18, 330340.CrossRefGoogle ScholarPubMed
Belanger, L. F. 1940. A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. American Journal of Anatomy, 67, 437461.CrossRefGoogle Scholar
Bello, M. A., Roy, R. R., Martin, T. P., Goforth, H. W., & Edgerton, V. R. 1985. Axial musculature in the dolphin (Tursiops truncatus): some architectural and histochemical characteristics. Marine Mammal Science, 1, 324336.CrossRefGoogle Scholar
Bengtson, J. L., Croll, D. A., & Goebel, M. E. 1993. Diving behavior of chinstrap penguins at Seal Island. Antarctic Science, 5, 915.CrossRefGoogle Scholar
Bennett, A. F. 1984. Thermal dependence of muscle function. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 247, R217R229.Google ScholarPubMed
Bennett, J. B. & Rostain, J. C. 2003. High pressure nervous syndrome. In: Brubakk, A. O. & Neuman, T. S. (eds.) Bennett and Elliott's Physiology and Medicine of Diving. Cornwall: Saunders.Google Scholar
Bennett, K., Mcconnell, B., & Fedak, M. A. 2001. Diurnal and seasonal variations in the duration and depth of the longest dives in Southern Elephant seals (Mirounga leonina): possible physiological and behavioural constraints. Journal of Experimental Biology, 204, 649662.CrossRefGoogle ScholarPubMed
Benoit-Bird, K. J., Würsig, B., & Mfadden, C. J. 2004. Dusky dolphin (Lagenorhynchus obscurus) foraging in two different habitats: active acoustic detection of dolphins and their prey. Marine Mammal Science, 20, 215231.CrossRefGoogle Scholar
Benvenuti, S., Dall'antonia, L., & Lyngs, P. 2001. Foraging behaviour and time allocation of chick-rearing Razorbills Alca torda at Graesholmen, central Baltic Sea. Ibis, 143, 402412.CrossRefGoogle Scholar
Bernaldo De Quirós, Y., González-Díaz, Ó., Arbelo, M., et al. 2012. Decompression vs. decomposition: distribution, amount and gas composition of bubbles in stranded marine mammals. Frontiers in Physiology. DOI: 10.3389/fphys.2012.00177.CrossRefGoogle Scholar
Bernaldo De Quirós, Y., González-Díaz, Ó., Saavedra, P., et al. 2011. Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans. Scientific Reports. DOI: 10.1038/srep00193.CrossRefGoogle Scholar
Bernard, S. A., Gray, T. W., Buist, M. D., et al. 2002. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New England Journal of Medicine, 346, 557563.CrossRefGoogle ScholarPubMed
Berne, R. M. & Levy, M. N. 1998. Physiology, St. Louis, MO: Mosby.Google Scholar
Bernhard, W., Gebert, A., Vieten, G., et al. 2001. Pulmonary surfactant in birds: coping with surface tension in a tubular lung. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 281, R327R337.Google Scholar
Bernhard, W., Haslam, P. L., & Floros, J. 2004. From birds to humans: new concepts on airways relative to alveolar surfactant. American Journal of Respiratory Cell and Molecular Biology, 30, 611.CrossRefGoogle ScholarPubMed
Bernstein, M. H., Curtis, M. B., & Hudson, D. M. 1979. Independence of brain and body temperatures in flying American kestrels, Falco sparverius. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 237, R58R62.Google ScholarPubMed
Bernstein, M. H., Duran, H. L., & Pinshow, B. 1984. Extrapulmonary gas exchange enhances brain oxygen in pigeons. Science, 226, 564566.CrossRefGoogle ScholarPubMed
Bert, P. 1870. Lecons Sur la Physiologie Comparee de la Respiration. Paris: Bailliere.Google Scholar
Berta, A., Sumich, J. L., & Kovacs, K. M. 2006. Marine Mammals Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Bethge, P., Munks, S., Otley, H., & Nicol, S. 2003. Diving behaviour, dive cycles and aerobic dive limit in the platypus Ornithorhynchus anatinus. Comparative Biochemistry and Physiology Part A 136, 799809.CrossRefGoogle ScholarPubMed
Bethge, P., Nicol, S., Culik, B. M., & Wilson, R. P. 1997. Diving behaviour and energetics in breeding little penguins (Eudyptula minor). Journal of Zoology, London, 242, 483502.CrossRefGoogle Scholar
Bethke, R. W. & Thomas, V. G. 1988. Differences in flight and heart muscle mass among geese, dabbling ducks, and diving ducks relative to habitat use. Canadian Journal of Zoology, 66, 20242028.CrossRefGoogle Scholar
Bevan, R., Speakman, J. R., & Butler, P. 1995a. Daily energy expenditure of tufted ducks: a comparison between indirect calorimetry, doubly labelled water and heart rate. Functional Ecology, 9, 4047.CrossRefGoogle Scholar
Bevan, R. M., Boyd, I. L., Butler, P. J., et al. 1997. Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. Journal of Experimental Biology, 200, 661675.CrossRefGoogle ScholarPubMed
Bevan, R. M. & Butler, P. J. 1992a. Cardiac output and blood flow distribution during swimming and voluntary diving of the tufted duck (Aythya fuligula). Journal of Experimental Biology, 1668, 199217.CrossRefGoogle Scholar
Bevan, R. M. & Butler, P. J. 1992b. The effects of temperature on the oxygen consumption, heart rate and deep body temperature during diving in the tufted duck Aythya fuligula. Journal of Experimental Biology, 163, 139151.CrossRefGoogle Scholar
Bevan, R. M., Butler, P. J., Woakes, A. J., & Boyd, I. L. 2002. The energetics of gentoo penguins, Pygoscelis papua, during the breeding season. Functional Ecology, 16, 175190.CrossRefGoogle Scholar
Bevan, R. M., Keijer, E., & Butler, P. J. 1992. A method for controlling the feeding behaviour of aquatic birds: heart rate and oxgyen consumption during dives of different duration. Journal of Experimental Biology, 162, 91106.CrossRefGoogle Scholar
Bevan, R. M., Woakes, A. J., Butler, P. J., & Croxall, J. P. 1995b. Heart rate and oxygen consumption of exercising gentoo penguins. Physiological Zoology, 68, 855877.CrossRefGoogle Scholar
Bickler, P. E. & Buck, L. T. 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annual Review of Physiology, 69, 145170.CrossRefGoogle ScholarPubMed
Bicudo, J. E., Vianna, C. R., & Chaui-Berlinck, J. 2001. Thermogenesis in birds. Bioscience Reports, 21, 181188.CrossRefGoogle ScholarPubMed
Bisaillon, A., Martineau, D., & St-Pierre, M. A. 1987. Anatomy of the heart of the beluga whale (Delphinapterus leucas). Journal of Morphology, 191, 89100.CrossRefGoogle ScholarPubMed
Biuw, M., Mcconnell, B., Bradshaw, C. J. A., Burton, H., & Fedak, M. 2003. Blubber and buoyancy: monitoring the body condition of free-ranging seals using simple dive characteristics. Journal of Experimental Biology, 206, 34053423.CrossRefGoogle ScholarPubMed
Black, C. P. & Tenney, S. M. 1980. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respiration Physiology, 39, 217239.CrossRefGoogle ScholarPubMed
Blackstone, E., Morrison, M., & Roth, M. B. 2005. H2S induces a suspended animation-like state in mice. Science, 308, 518.CrossRefGoogle ScholarPubMed
Blackwell, S. B. & Le Boeuf, B. J. 1993. Developmental aspects of sleep apnea in northern elephant seals, Mirounga angustirostris. Journal of Zoology, London, 231, 437447.CrossRefGoogle Scholar
Blanchetot, A., Wilson, V., Wood, D., & Jeffreys, A. J. 1983. The seal myoglobin gene: an unusually long globin gene. Nature, 301, 732734.CrossRefGoogle ScholarPubMed
Blei, M. L., Conley, K. E., & Kushmerick, M. J. 1993. Separate measures of ATP utilization and recovery in human skeletal muscle. Journal of Physiology (Cambridge), 465, 203222.CrossRefGoogle ScholarPubMed
Blessing, M. H. 1972a. Myoglobin concentration in Platanista indi. Investigations of Cetacea, 4, 9192.Google Scholar
Blessing, M. H. 1972b. Studies on the concentration of myoglobin in the sea-cow and porpoise. Comparative Physiology and Biochemistry, 41A, 475480.CrossRefGoogle Scholar
Blix, A. S. 1971. Creatine in diving animals: a comparative study. Comparative Biochemistry and Physiology A, 40, 805807.CrossRefGoogle ScholarPubMed
Blix, A. S. 2011. The venous system of seals, with new ideas on the significance of the extradural intravertebral vein. Journal of Experimental Biology, 214, 35073510.CrossRefGoogle ScholarPubMed
Blix, A. S., Berg, T., & Fyhn, H. J. 1970. Lactate dehydrogenase in a diving mammal, the common seal (Phoca vitulina vitulina l.). International Journal of Biochemistry, 1, 292294.CrossRefGoogle Scholar
Blix, A. S., Elsner, R. W., & Kjekhus, J. K. 1983. Cardiac output and its distribution through capillaries and A–V shunts in diving seals. Acta Physiologica Scandanavica, 118, 109116.CrossRefGoogle Scholar
Blix, A. S. & Folkow, B. 1983. Cardiovascular adjustments to diving in mammals and birds. In: Handbook of Physiology: The Cardiovascular System. Peripheral Circulation and Organ Blood Flow. Bethesda, MD: American Physiology Society.Google Scholar
Blix, A. S. & Folkow, L. P. 1995. Daily energy expenditure in free living minke whales. Acta Physiologica Scandinavica, 153, 6166.CrossRefGoogle ScholarPubMed
Blix, A. S. & From, S. H. J. 1971. Lactate dehydrogenase in diving animals: a comparative study with special reference to the eider (Somateria mollissima). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 40, 579584.CrossRefGoogle Scholar
Blix, A. S., Gautvik, E. L., & Refsum, H. 1974. Aspects of the relative roles of peripheral vasoconstriction and vagal bradycardia in the establishment of the “diving reflex” in ducks. Acta Physiologica Scandinavica, 90, 289296.CrossRefGoogle Scholar
Blix, A. S., Grav, H. J., & Ronald, K. 1975. Brown adipose tissue and the significance of the venous plexuses in pinnipeds. Acta Physiologica Scandinavica, 94, 133135.CrossRefGoogle ScholarPubMed
Blix, A. S. & Hol, R. 1973. Ventricular dilatation in the diving seal. Acta Physiologica Scandinavica, 87, 431432.CrossRefGoogle ScholarPubMed
Blix, A. S. & Nordoy, E. S. 2007. Ross seal (Ommatophoca rossii) annual distribution, diving behaviour, breeding and moulting, off Queen Maud Land, Antarctica. Polar Biology, 30, 14491458.CrossRefGoogle Scholar
Blix, A. S., Walloe, L., & Messelt, E. 2013. On how whales avoid decompression sickness and why they sometimes strand. Journal of Experimental Biology, 216, 33853387.Google ScholarPubMed
Blix, A. S., Walloe, L., Messelt, E. B., & Folkow, L. P. 2010. Selective brain cooling and its vascular basis in diving seals. Journal of Experimental Biology, 213, 26102616.CrossRefGoogle ScholarPubMed
Bocher, P., Cherel, Y., & Hobson, K. A. 2000a. Complete trophic segregation between South Georgian and common diving petrels during breeding at Iles Kerguelen. Marine Ecology Progress Series, 208, 249264.CrossRefGoogle Scholar
Bocher, P., Labidoire, B., & Cherel, Y. 2000b. Maximum dive depths of common diving petrels (Pelecanoides urinatrix) during the annual cycle at Mayes Island, Kerguelen. Journal of Zoology, 251, 517524.CrossRefGoogle Scholar
Boersma, P. D. 1976. An ecological and behavioral study of the Galapagos penguin. Living Bird, 15, 4393.Google Scholar
Boggs, D. F. 1997. Coordinated control of respiratory pattern during locomotion in birds. American Zoologist, 37, 4153.CrossRefGoogle Scholar
Boggs, D. F., Baudinette, R. V., Frappell, P. B., & Butler, P. 2001. The influence of locomotion on air-sac pressures in little penguins. Journal of Experimental Biology, 204, 35813586.CrossRefGoogle ScholarPubMed
Bond, C. F. & Gilbert, P. W. 1958. Comparative study of blood volume in representative aquatic and nonaquatic birds. American Journal of Physiology: Legacy Content, 194, 519521.CrossRefGoogle ScholarPubMed
Born, E. W. & Knutsen, L. O. 1997. Haul-out and diving activity of male Atlantic walruses (Odobenus rosmarus) in NE Greenland. Journal of Zoology London, 243, 381396.CrossRefGoogle Scholar
Born, E. W., Teilmann, J., Acquarone, M., & Riget, F. F. 2004. Habitat use of ringed seals (Phoca hispida) in the North Water Area (North Baffin Bay). Arctic, 7, 147152.Google Scholar
Bostrom, B. L., Falhlman, A., & Jones, D. R. 2008. Tracheal compression delays alveolar collapse during deep diving in marine mammals. Respiration Physiology and Neurobiology, 161, 298305.CrossRefGoogle ScholarPubMed
Bouverot, P. 1978. Control of breathing in birds compared with mammals. Physiological Reviews, 58, 604655.CrossRefGoogle ScholarPubMed
Bowen, W. D., Boness, D. J., & Iverson, S. J. 1999. Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Canadian Journal of Zoology, 77, 978988.CrossRefGoogle Scholar
Boyd, I. L. 2000. Skin temperatures during free-ranging swimming and diving in Antarctic fur seals. Journal of Experimental Biology, 203, 19071914.CrossRefGoogle ScholarPubMed
Boyd, I. L., Bevan, R. M., Woakes, A. J., & Butler, P. J. 1999. Heart rate and behavior of fur seals: implications for measurement of field energetics. American Journal of Physiology, 276, H844H857.Google ScholarPubMed
Boyd, I. L. & Croxall, J. P. 1992. Diving behaviour of lactating Antarctic fur seals. Canadian Journal of Zoology, 70, 919928.CrossRefGoogle Scholar
Boyd, I. L. & Croxall, J. P. 1996. Dive durations in pinnipeds and seabirds. Canadian Journal of Zoology, 74, 16961705.CrossRefGoogle Scholar
Boyd, I. L., Woakes, A. J., Butler, P. J., Davis, R. W., & Williams, T. M. 1995. Validation of heart rate and doubly labelled water as measures of metabolic rate during swimming in California sea lions. Functional Ecology, 9, 151160.CrossRefGoogle Scholar
Braunwald, E. 1971. Control of myocardial oxygen consumption: physiological and clinical considerations. American Journal of Cardiology, 27, 416432.CrossRefGoogle ScholarPubMed
Bried, J. 2005. Diving ability of the Madeiran storm petrel. Waterbirds, 28, 162166.CrossRefGoogle Scholar
Brierley, A. S. & Fernandes, P. G. 2001. Diving depths of Northern gannets: acoustic observations of Sula bassana from an autonomous underwater vehicle. The Auk, 118, 529534.CrossRefGoogle Scholar
Bron, K. M., Murdaugh, J. H. V., Millen, J. E., et al. 1966. Arterial constrictor response in a diving mammal. Science, 152, 540543.CrossRefGoogle Scholar
Brown, R. G. B., Bourne, W. R. P., & Wahl, T. R. 1978. Diving by shearwaters. Condor, 80, 123125.CrossRefGoogle Scholar
Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W., & Karnovsky, N. J. 2012. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. Journal of Avian Biology, 43, 215226.CrossRefGoogle Scholar
Brubakk, A. O. & Neuman, T. S. 2003. Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Bryden, M. M. 1972. Body size and composition of elephant seals (Mirounga leonina): absolute measurements and estimates from bone dimensions. Journal of Zoology (London), 167, 265276.CrossRefGoogle Scholar
Bryden, M. M. & Erickson, A. W. 1976. Body size and composition of crabeater seals (Lobodon carcinophagus), with observations on tissue and organ size in Ross seals (Ommatophoca rossi). Journal of Zoology (London), 179, 235247.CrossRefGoogle Scholar
Bryden, M. M. & Felts, J. L. 1974. Quantitative anatomical observations on the skeletal and muscular systems of four species of Antarctic seals. Journal of Anatomy, 118, 589600.Google ScholarPubMed
Bryden, M. M. & Lim, G. H. K. 1969. Blood parameters of the southern elephant seal (Mirounga leonina) in relation to diving. Comparative Biochemistry and Physiology, 28, 139148.CrossRefGoogle Scholar
Bryden, M. M. & Molyneux, G. S. 1978. Arteriovenous anastomoses in the skin of seals II. The California sea lion (Zalopohus californianus) and the northern fur seal (Callorhinus ursinus) (Pinnipedia: Otariidae). Anatomical Record, 191, 253260.CrossRefGoogle ScholarPubMed
Burger, A. E. 2001. Diving depths of shearwaters. The Auk, 118, 755759.CrossRefGoogle Scholar
Burger, A. E. & Powell, D. W. 1990. Diving depths and diet of Cassin's Auklet at Reef Island, British Columbia. Canadian Journal of Zoology, 68, 15721577.CrossRefGoogle Scholar
Burger, A. E. & Simpson, M. 1986. Diving depths of Atlantic puffins and common murres. The Auk, 103, 828830.Google Scholar
Burger, A. E., Wilson, R. P., Garnier, D., & Wilson, M.-P. T. 1993. Diving depths, diet, and underwater foraging of Rhinoceros Auklets in British Columbia. Canadian Journal of Zoology, 71, 25282540.CrossRefGoogle Scholar
Burmester, T. & Hankeln, T. 2009. What is the function of neuroglobin? Journal of Experimental Biology, 212, 14231428.CrossRefGoogle ScholarPubMed
Burmester, T., Weich, B., Reinhardt, S., & Hankein, T. 2000. A vertebrate globin expressed in the brain. Nature, 407, 520523.CrossRefGoogle ScholarPubMed
Burns, J. M. 1999. The development of diving behavior in juvenile Weddell seals: pushing physiological limits in order to survive. Canadian Journal of Zoology, 77, 737747.CrossRefGoogle Scholar
Burns, J. M. & Castellini, M. A. 1996. Physiological and behavioral determinants of the aerobic dive limit in Weddell seal (Letonychotes weddellii) pups. Journal of Comparative Physiology B, 166, 473483.CrossRefGoogle Scholar
Burns, J. M., Costa, D. P., Fedak, M. A., et al. 2004. Winter habitat use and foraging behavior of crabeater seals along the Western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 22792303.CrossRefGoogle Scholar
Burns, J. M., Costa, D. P., Frost, K., & Harvey, J. T. 2005. Physiological development in juvenile harbor seals. Physiological and Biochemical Zoology, 78, 10571068.CrossRefGoogle Scholar
Burns, J. M., Lestyk, K. C., Hammill, M. O., Folkow, L. P., & Blix, A. S. 2007. Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. Journal of Comparative Physiology B, 177, 687700.CrossRefGoogle ScholarPubMed
Burns, J. M., Skomp, N., Bishop, N., Lestyk, K., & Hammill, M. 2010. Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals. Journal of Experimental Biology, 213, 740748.CrossRefGoogle ScholarPubMed
Butler, P. J. 1982. Respiratory and cardiovascular control during diving in birds and mammals. Journal of Experimental Biology, 100, 195221.CrossRefGoogle ScholarPubMed
Butler, P. J. 1991. Exercise in birds. Journal of Experimental Biology, 160, 233262.CrossRefGoogle Scholar
Butler, P. J. 1994. To what extent can heart rate be used as an indicator of metabolic rate in free-living marine mammals. In: Boyd, I. L. (ed.) Marine Mammals: Advances in Behavioural and Population Biology. London: Zoological Society of London.Google Scholar
Butler, P. J. 2000. Energetic costs of surface swimming and diving of birds. Physiolgical and Biochemical Zoology, 73, 699705.CrossRefGoogle ScholarPubMed
Butler, P. J. 2004. Metabolic regulation in diving birds and mammals. Respiratory Physiology and Neurobiology, 141, 297315.CrossRefGoogle ScholarPubMed
Butler, P. J. 2006. Aerobic dive limit. What is it and is it always used properly? Comparative Biochemistry and Physiology A, 145, 16.CrossRefGoogle Scholar
Butler, P. J. & Bishop, C. M. 2000. Flight. In: Whittow, G. C. (ed.) Sturkie's Avian Physiology. San Diego, CA: Academic Press.Google Scholar
Butler, P. J., Green, J. A., Boyd, I. L., & Speakman, J. R. 2004. Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Functional Ecology, 18, 168183.CrossRefGoogle Scholar
Butler, P. J. & Jones, D. R. 1968. Onset of and recovery from diving bradycardia in ducks. Journal of Physiology (London), 196, 255272.CrossRefGoogle ScholarPubMed
Butler, P. J. & Jones, D. R. 1997. The physiology of diving of birds and mammals. Physiological Reviews, 77, 837899.CrossRefGoogle ScholarPubMed
Butler, P. J. & Taylor, E. W. 1973. The effect of hypercapnic hypoxia, accompanied by different levels of lung ventilation, on heart rate in the duck. Respiration Physiology, 19, 176187.CrossRefGoogle ScholarPubMed
Butler, P. J. & Taylor, E. W. 1983. Factors affecting the respiratory and cardiovascular responses to hypercapnic hypoxia in mallard ducks. Respiration Physiology, 53, 109127.CrossRefGoogle ScholarPubMed
Butler, P. J., Turner, D. L., Al-Wassiaf, A., & Bevan, R. M. 1988. Regional distribution of blood flow during swimming in the tufted duck (Aythya fuligula). Journal of Experimental Biology, 135, 461472.CrossRefGoogle ScholarPubMed
Butler, P. J. & Woakes, A. J. 1979. Changes in heart rate and respiratory frequency during natural behaviour of ducks, with particular reference to diving. Journal of Experimental Biology, 79, 283300.CrossRefGoogle Scholar
Butler, P. J. & Woakes, A. J. 1982. Control of heart rate by carotid body chemoreceptors during diving in tufted ducks. Journal of Applied Physiology, 53, 14051410.CrossRefGoogle ScholarPubMed
Butler, P. J. & Woakes, A. J. 1984. Heart rate and aerobic metabolism in Humboldt penguins (Spheniscus humboldti) during voluntary dives. Journal of Experimental Biology, 108, 419428.CrossRefGoogle ScholarPubMed
Cabanac, A., Folkow, L. P., & Blix, A. S. 1997. Volume capacity and contraction control of the seal spleen. Journal of Applied Physiology, 82, 19891994.CrossRefGoogle ScholarPubMed
Cabanac, A. J. 2002. Contracted spleen in seals, estimates of dilated organs, and dive capacity. Polar Biology, 25, 14.Google Scholar
Cabanac, A. J., Messelt, E. B., Folkow, L. P., & Blix, A. S. 1999. The structure and blood-storing function of the spleen of the hooded seal (Cystophora cristata). Journal of Zoology, London, 248, 7581.CrossRefGoogle Scholar
Cabanac, A., Folkow, L. P., & Blix, A. S. 1998. Effects of adrenergic and cholinergic drugs on splenic arteries and veins from hooded seals. Comparative Biochemistry and Physiology A, 120, 277281.CrossRefGoogle ScholarPubMed
Camporesi, E. M. & Bosco, G. 2003. Ventilation, gas exchange and exercise under pressure. In: Brubakk, A. O. & Neuman, T. S. (eds.) Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Caruso, J. L. 2003. Pathology of diving accidents. In: Brubakk, A. O. & Neuman, T. S. (eds.) Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Carvajal, J. A., Germain, A. M., Huidobro-Toro, J. P., & Weiner, C. P. 2000. Molecular mechanism of cGMP-mediated smooth muscle relaxation. Journal of Cellular Physiology, 184, 409420.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Casadei, B. 2001. Vagal control of myocardial contractility in man. Experimental Physiology, 86.6, 817823.CrossRefGoogle Scholar
Casaux, R. 2004. Diving patterns in the Antarctic shag. Waterbirds, 27, 382387.CrossRefGoogle Scholar
Casaux, R. & Barrera-Oro, E. 2006. Shags in Antarctica: their feeding behaviour and ecological role in the marine food web. Antarctic Science, 18, 314.CrossRefGoogle Scholar
Casaux, R., Favero, M., Silva, P., & Baroni, A. 2001. Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. Journal of Field Ornithology, 72, 2229.CrossRefGoogle Scholar
Casey, D. P. & Joyner, M. J. 2011. Local control of skeletal muscle blood flow during exercise: influence of available oxygen. Journal of Applied Physiology, 111, 15271538.CrossRefGoogle ScholarPubMed
Casey, D. P., Madery, B. D., Curry, T. B., et al. 2010. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. Journal of Physiology, 588.2, 373385.CrossRefGoogle Scholar
Casler, C. L. 1973. The air-sac systems and buoyancy of the anhinga and double-crested cormorant. The Auk, 90, 324340.Google Scholar
Castellini, J. M. & Castellini, M. A. 1993. Estimation of splenic volume and its relationship to long-duration apnea in seals. Physiological Zoology, 66, 619627.CrossRefGoogle Scholar
Castellini, M. A. 1994. Apnea tolerance in the elephant seal during sleeping and diving: physiological mechanisms and correlations. In: Le Boeuf, B. J. & Laws, R. M. (eds.) Elephant Seals: Population Ecology, Behavior, and Physiology. Berkeley, CA: University of California Press.Google Scholar
Castellini, M. A., Baskurt, O. K., Castellini, J. M., & Meiselman, H. J. 2010. Blood rheology in marine mammals. Frontiers in Physiology [Online], 1:146.CrossRefGoogle ScholarPubMed
Castellini, M. A., Castellini, J. M., & Rivera, P. M. 2001. Adaptations to pressure in the RBC metabolism of diving mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 751757.CrossRefGoogle ScholarPubMed
Castellini, M. A., Costa, D. P., & Huntley, A. 1986. Hematocrit variation during sleep apnea in elephant seal pups. American Journal of Physiology, 251, R429R431.Google ScholarPubMed
Castellini, M. A., Costa, D. P., & Huntley, A. 1987. Fatty acid metabolism in fasting elephant seal pups. Journal of Comparative Physiology, 157B, 445448.CrossRefGoogle Scholar
Castellini, M. A., Davis, R. W., & Kooyman, G. L. 1988. Blood chemistry regulation during repetitive diving in Weddell seals. Physiological Zoology, 61, 379386.CrossRefGoogle Scholar
Castellini, M. A., Davis, R. W., & Kooyman, G. L. 1992a. Diving Behavior of the Weddell Seal: Annual Cycles, Berkeley, CA: University of California Press.Google Scholar
Castellini, M. A., Elsner, R., Baskurt, O. K., Wenby, R. A., & Meiselman, H. J. 2006. Blood rheology of Weddell seals and bowhead whales. Biorheology, 43, 5769.Google ScholarPubMed
Castellini, M. A., Kooyman, G. L., & Ponganis, P. J. 1992b. Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity, and diving duration. Journal of Experimental Biology, 165, 181194.CrossRefGoogle ScholarPubMed
Castellini, M. A. & Mellish, J. E. (eds.) 2015. Marine Mammal Physiology: Requisites for Ocean Living. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Castellini, M. A., Milsom, W. K., Berger, R. J., et al. 1994a. Patterns of respiration and heart rate during wakefulness and sleep in elephant seal pups. American Journal of Physiology, 266, R863R869.Google ScholarPubMed
Castellini, M. A., Murphy, B. J., Fedak, M. A., et al. 1985. Potentially conflicting demands of diving and exercise in seals. Journal of Applied Physiology, 58, 392399.CrossRefGoogle ScholarPubMed
Castellini, M. A., Rea, L. D., Sanders, J. L., Castellini, J. M., & Zenteno-Savin, T. 1994b. Developmental changes in cardiorespiratory patterns of sleep-associated apnea in northern elephant seals. American Journal of Physiology, 267, R1294R1301.Google ScholarPubMed
Castellini, M. A., Rivera, P. M., & Castellini, J. M. 2002. Biochemical aspects of pressure tolerance in marine mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133, 893899.CrossRefGoogle ScholarPubMed
Castellini, M. A. & Somero, G. N. 1981. Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. Journal of Comparative Physiology B, 143, 191198.CrossRefGoogle Scholar
Castellini, M. A., Somero, G. N., & Kooyman, G. L. 1981. Glycolytic enzyme activities in tissues of marine and terrestrial mammals. Physiological Zoology, 54, 242252.CrossRefGoogle Scholar
Chandler, A. C. 1916. A study of the structure of feathers with reference to their taxonomic significance. University of California Publications in Zoology, 13, 243446.Google Scholar
Chapla, M. E., Nowacek, D. P., Rommel, S. A., & Sadler, V. M. 2007. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones. Hearing Research, 228, 123135.CrossRefGoogle ScholarPubMed
Chappell, M. A., Shoemaker, V. A., Jones, D. N., & Maloney, S. K. 1993. Diving behavior during foraging in breeding Adelie penguins. Ecology, 74, 12041215.CrossRefGoogle Scholar
Charrassin, J.-B., Kato, A., Handrich, Y., et al. 2001. Feeding behaviour of free-ranging penguins determined by oesophageal temperature. Proceedings of the Royal Society London B, 268, 151157.CrossRefGoogle ScholarPubMed
Charrassin, J. B. & Bost, C.-A. 2001. Utilisation of the oceanic habitat by king penguins over the annual cycle. Marine Ecology Progress Series, 221, 285297.CrossRefGoogle Scholar
Chastel, O. 1994. Maximum diving depths of common diving petrels Pelecanoides urinatrix at Kerguelen Islands. Polar Biology, 14, 211213.CrossRefGoogle Scholar
Chastel, O. & Bried, J. 1996. Diving ability of blue petrels and thin-billed prions. The Condor, 98, 621629.CrossRefGoogle Scholar
Chen, C.-H., Sun, L., & Mochly-Rosen, D. 2010. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovascular Research, 88, 5157.CrossRefGoogle ScholarPubMed
Chen, C., Budas, G. R., Churchill, C. N., et al. 2008. Activation of aldehyde dehydrogenase-2 reduced ischemic damage to the heart. Science, 321, 14931495.CrossRefGoogle ScholarPubMed
Chen, L., Lu, X.-Y., Li, J., et al. 2006. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. American Journal of Physiology Cell Physiology, 290, C1221C1229.CrossRefGoogle ScholarPubMed
Cherel, Y., Bocher, P., Broyer, C. D., & Hobson, K. A. 2002. Food and feeding ecology of the sympatric thinbilled Pachyptila belcheri and Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean. Marine Ecology Progress Series, 228, 263281.CrossRefGoogle Scholar
Cherel, Y., Charassin, J.-B., & Handrich, Y. 1993. Comparison of body reserve buildup in prefasting chicks and adults of king penguins (Aptenodytes patagonicus). Physiological Zoology, 66, 750770.CrossRefGoogle Scholar
Cherel, Y., Tremblay, Y., Guinard, E., & Georges, J.-Y. 1999. Diving behaviour of female northern rockhopper penguins, Eudyptes chrysocome moseleyi, during the brooding period at Amsterdam Island (Southern Indian Ocean). Marine Biology, 134, 375385.CrossRefGoogle Scholar
Cherepanova, V., Neshumova, T. V., & Elsner, R. 1993. Muscle blood flow in diving mammals. Comparative Biochemistry and Physiology A, 106, 16.CrossRefGoogle ScholarPubMed
Chicco, A. J., Le, C. H., Schlater, A., et al. 2014. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. Journal of Experimental Biology, 217, 29472955.Google ScholarPubMed
Chilvers, B. L. 2008. New Zealand sea lions Phocarctos hookeri and squid trawl fisheries: bycatch problems and management options. Endangered Species Research, 5, 193204.CrossRefGoogle Scholar
Chilvers, B. L., Delean, S., Gales, N. J., et al. 2004. Diving behavior of dugongs, Dugong dugon. Journal of Experimental Marine Biology and Ecology, 304, 203224.CrossRefGoogle Scholar
Chilvers, B. L., Wilkinson, I. S., Duignan, P. J., & Gemmell, N. J. 2006. Diving to extremes: are New Zealand sea lions (Phocarctos hookeri) pushing their limits in a marginal habitat? Journal of Zoology, 269, 233240.CrossRefGoogle Scholar
Chin, E. R., Olson, E. N., Richardson, J. A., et al. 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes & Development, 12, 24992509.CrossRefGoogle ScholarPubMed
Clark, B. D. & Bemis, W. 1979. Kinematics of swimming of penguins at the Detroit Zoo. Journal of Zoology, 188, 411428.CrossRefGoogle Scholar
Clark, J. C., Wert, S. E., Bachurski, C. J., et al. 1995. Targeted disruption of the surfactant protein B disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proceedings of the National Academy of Sciences, 92, 77947798.CrossRefGoogle ScholarPubMed
Clarke, J. & Nicol, S. 1993. Blood viscosity of the little penguin, Eudyptula minor, and the Adélie penguin, Pygoscelis adeliae: effects of temperature and shear rate. Physiological Zoology, 66, 720731.CrossRefGoogle Scholar
Clowater, J. S. & Burger, A. E. 1994. The diving behaviour of pigeon guillemots (Cepphus columba) off southern Vancouver Island. Canadian Journal of Zoology, 72, 863872.CrossRefGoogle Scholar
Colin, P., Ghaleh, B., Monnet, X., et al. 2003. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. American Journal of Physiology: Heart and Circulatory Physiology, 284, H676H682.Google ScholarPubMed
Comellas, A. P., Dada, L. A., Lecuona, E., et al. 2006. Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circulation Research, 98, 13141322.CrossRefGoogle ScholarPubMed
Conde-Agudelo, A., Althabe, F., Belizán, J. M., & Kafury-Goeta, A. C. 1999. Cigarette smoking during pregnancy and risk of preeclampsia: a systematic review. American Journal of Obstetrics and Gynecology, 181, 10261035.CrossRefGoogle ScholarPubMed
Conroy, J. W. & Jenkins, D. 1986. Ecology of otters in northern Scotland: VI. Diving times and hunting success of otters (Lutra lutra) at Dinnet Lochs, Aberdeenshire and in Yell Sound, Shetland. Journal of Zoology London, 209, 341346.CrossRefGoogle Scholar
Cook, T. R., Kato, A., Tanaka, H., Ropert-Coudert, Y., & Bost, C.-A. 2010. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort. PloS ONE, 5, e9839.CrossRefGoogle Scholar
Cook, T. R., Lescroel, A., Tremblay, Y., & Bost, C.-A. 2008. To breathe or not to breathe? Optimal breathing, aerobic dive limit, and oxygen stores in deep-diving blue-eyed shags. Animal Behaviour, 76, 565576.CrossRefGoogle Scholar
Corsolini, M., Nigro, M., Olmastroni, S., Focardi, S., & Regoli, F. 2001. Susceptibility to oxidative stress in Adelie and emperor penguin. Polar Biology, 24, 365368.Google Scholar
Costa, D. P., Gales, N. J., & Crocker, D. E. 1998. Blood volume and diving ability of the New Zealand sea lion. Physiological Zoology, 71, 208213.CrossRefGoogle ScholarPubMed
Costa, D. P., Gales, N. J., & Goebel, M. E. 2001. Aerobic dive limit: how often does it occur in nature? Comparative Biochemistry and Physiology A, 129, 771783.CrossRefGoogle ScholarPubMed
Costa, D. P., Huckstadt, L. A., Crocker, D. E., et al. 2010. Approaches to studying climatic change and its role on the habitat selection of Antarctic pinnipeds. Integrative and Comparative Biology, 50, 10181030.CrossRefGoogle ScholarPubMed
Costa, D. P. & Kooyman, G. L. 1984. Contribution of specific dynamic action to heat balance and thermoregulation in the sea otter Enhydra lutris. Physiological Zoology, 57, 199203.CrossRefGoogle Scholar
Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A., & Arnould, J. P. Y. 2004. When does physiology limit the foraging behaviour of freely diving mammals? International Congress Series, 1275, 359366.CrossRefGoogle Scholar
Costidis, A. & Rommel, S. A. 2012. Vascularization of air sinuses and fat bodies in the head of the bottlenose dolphin (Tursiops truncatus): morphological implications on physiology. Frontiers in Physiology. DOI: 10.3389/fphys.2012.00243.CrossRefGoogle Scholar
Coulombe, H. N., Ridgway, S. H., & Evans, W. E. 1965. Respiratory water exchange in two species of porpoise. Science, 149, 8688.CrossRefGoogle ScholarPubMed
Cowan, D. F. & Curry, B. E. 2008. Histopathology of the alarm reaction in small odontocetes. Journal of Comparative Pathology, 139, 2433.CrossRefGoogle ScholarPubMed
Cox, T. M., Ragen, T. J., Read, A. J., et al. 2006. Understanding the impacts of anthropogenic sound on beaked whales. Journal of Cetacean Research Management, 7, 177187.CrossRefGoogle Scholar
Cozzi, B., Bagnoli, P., Acocella, F., & Costantino, M. L. 2005. Structure and biomechanical properties of the trachea of the striped dolphin Stenella coeruleoalba: evidence for evolutionary adaptations to diving. Anatomical Record, 284, 500510.CrossRefGoogle ScholarPubMed
Craig, A. B. Jr 1968. Depth limits of breath hold diving (an example of fennology). Respiration Physiology, 5, 1422.CrossRefGoogle ScholarPubMed
Craig, A. B. Jr & Påsche, A. 1980. Respiratory physiology of freely diving harbor seals (Phoca vitulina). Physiological Zoology, 53, 419432.CrossRefGoogle Scholar
Cranford, T. W., Amundin, M., & Norris, K. S. 1996. Functional morphology and homology in the odontocete nasal complex: implications for sound generation. Journal of Morphology, 228, 223285.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Cranford, T. W. & Krysl, P. 2015. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing. PloS ONE, 10, e0116222.CrossRefGoogle ScholarPubMed
Cranford, T. W., Krysl, P., & Amundin, M. 2010. A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex. PloS ONE, 5.8, e11927. DOI:10.371/journal.pone.0011927.CrossRefGoogle ScholarPubMed
Cranford, T. W., Mckenna, M. F., Soldevilla, M. S., et al. 2008. Anatomic geometry of sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris). Anatomical Record, 29, 353378.CrossRefGoogle Scholar
Cranford, T. W., Van Bonn, W. G., Chaplin, M. S., et al. 1997. Visualizing dolphin sonar signal generation using high-speed video endoscopy. Journal of the Acoustical Society of America, 102, 3123.CrossRefGoogle Scholar
Creed, J. C. 2004. Capybara (Hydrochaeris hydrochaeris Rodentia: Hydrochaeridae): a mammalian seagrass herbivore. Estuaries, 27, 197200.CrossRefGoogle Scholar
Crespo, F. A. & Lauria De Cidre, L. 2005. Functional significance of bronchial sphincters in two Southwestern Atlantic dolphins: Pontoporia blainvillei and Lagenorhynchus obscurus – a comparative approach. Mammalia, 69, 233238.CrossRefGoogle Scholar
Crocker, D. E., Le Boeuf, B. J., & Costa, D. P. 1997. Drift diving in female northern elephant seals. Canadian Journal of Zoology, 75, 2739.CrossRefGoogle Scholar
Croll, D. A., Acevedo-Gutiérrez, A., Tershy, B. R., & Urbán-Ramírez, J. 2001. The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 797809.CrossRefGoogle ScholarPubMed
Croll, D. A., Gaston, A. J., Burger, A. E., & Konnoff, D. 1992a. Foraging behavior and physiological adaptation for diving in thick-billed murres. Ecology, 73, 344356.CrossRefGoogle Scholar
Croll, D. A. & McLaren, E. 1993. Diving metabolism and thermoregulation in common and thick-billed murres. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 163, 160166.CrossRefGoogle ScholarPubMed
Croll, D. A., Nishiguchi, M. K., & Kaupp, S. 1992b. Pressure and lactate dehydrogenase function in diving mammals and birds. Physiological Zoology, 65, 10221027.CrossRefGoogle Scholar
Croll, D. A., Tershy, B. R., Hewitt, R. P., et al. 1998. An integrated approach to the foraging ecology of marine birds and mammals. Deep-sea Research II, 45, 13531371.CrossRefGoogle Scholar
Cross, E. R. 1965. Taravana: diving syndrome in the Tuamotu diver. In: Rahn, H. & Yokoyama, T. (eds.) Physiology of breath-hold diving and the Ama of Japan. Washington, DC: National Academy of Sciences, National Research Council.Google Scholar
Cross, J. P., Mackintosh, C. G., & Griffin, J. F. T. 1988. Effect of physical restraint and xylazine sedation of haemotological values in red deer (Cervus elaphus). Research in Veterinary Science, 45, 281286.CrossRefGoogle Scholar
Croxall, J. P. (ed.) 1987. Seabirds: Feeding Ecology and Role in Marine Ecosystems, Cambridge: Cambridge University Press.Google Scholar
Croxall, J. P., Briggs, D. R., Kato, A., et al. 1993. Diving pattern and performance in the macaroni penguin Eudyptes chrysolophus. Journal of Zoology, London, 230, 3147.CrossRefGoogle Scholar
Croxall, J. P., Naito, Y., Kato, A., Rothery, P., & Briggs, D. 1991. Diving patterns and performance in the Antarctic blue-eyed shag Phalacrocorax atriceps. Journal of Zoology London, 225, 177199.CrossRefGoogle Scholar
Crum, L. A., Bailey, M. R., Guan, J., et al. 2005. Monitoring bubble growth in supersaturated blood and tissue ex vivo and the relevance to marine mammal bioeffects. Acoustics Research Letters Online, 6, 214220.CrossRefGoogle Scholar
Crum, L. A. & Mao, Y. 1996. Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety. Journal of the Acoustic Society of America, 99, 28982907.CrossRefGoogle ScholarPubMed
Crush, K. G. 1970. Carnosine and related substances in animal tissues. Comparative Biochemistry and Physiology, 34, 330.CrossRefGoogle ScholarPubMed
Culik, B. 1992. Diving heart rates in Adelie penguins (Pygoscelis adeliae). Comparative Biochemistry and Physiology, 102A, 487490.CrossRefGoogle Scholar
Culik, B. 2001. Finding food in the open ocean: foraging strategies in Humboldt penguins. Zoology, 104, 327338.CrossRefGoogle ScholarPubMed
Culik, B. M., Hennicke, J., & Martin, T. 2000. Humboldt penguins outmanoeuvring El Nino. Journal of Experimental Biology, 203, 23112322.CrossRefGoogle ScholarPubMed
Culik, B. M., Putz, K., Wilson, R. P., et al. 1996a. Diving energetics in king penguins (Aptenodytes patagonicus). Journal of Experimental Biology, 199, 973983.CrossRefGoogle ScholarPubMed
Culik, B. M., Putz, K., Wilson, R. P., et al. 1996b. Core temperature variability in diving king penguins (Aptenodytes patagonicus): a preliminary analysis. Polar Biology, 16, 371378.CrossRefGoogle Scholar
Culik, B. M., Wilson, R. P., & Bannasch, R. 1994. Under-water swimming at low energetic cost by Pygoscelid penguins. Journal of Experimental Biology, 197, 6578.CrossRefGoogle ScholarPubMed
Culik, B. M., Wilson, R. P., Dannfeld, R., et al. 1991. Pygoscelid penguins in a swim canal. Polar Biology, 11, 277282.CrossRefGoogle Scholar
Cuyler, L. C., Wiulsrød, R., & Øritsland, N. A. 1992. Thermal infrared radiation from free living whales. Marine Mammal Science, 8, 120134.CrossRefGoogle Scholar
Damant, G. C. C. 1934. Physiology of deep diving in the whale. Nature, 133, 874.CrossRefGoogle Scholar
Daniels, C. B. & Orgeig, S. 2003. Pulmonary surfactant: the key to the evolution of air breathing. News Physiological Sciences, 18, 151157.Google Scholar
Daniels, D. & Grossman, Y. 2003. Biological effects of pressure. In: Brubakk, A. O. & Neuman, T. S. (eds.) Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Davenport, J., Cotter, L., Rogan, E., Kelliher, D., & Murphy, C. 2013. Structure, material characteristics and function of the upper respiratory tract of the pygmy sperm whale. The Journal of Experimental Biology, 216, 46394646.Google ScholarPubMed
Davenport, J., Hughes, R. N., Shorten, M., & Larsen, P. S. 2011. Drag reduction in emperor penguins: a novel hypothesis. Marine Ecology Progress Series, 430, 171182.CrossRefGoogle Scholar
Davis, L. S. & Darby, J. T. (eds.) 1990. Penguin Biology. London: Academic Press.Google Scholar
Davis, M. B. & Guderley, H. 1987. Energy metabolism in the locomotor muscles of the common nurre (Uria aalge) and the atlantic puffin (Fratercula arctica). The Auk, 104, 733739.CrossRefGoogle Scholar
Davis, M. B. & Guderley, H. 1990. Biochemical adpatations to diving in the common murre (Uria aalge) and the atlantic puffin (Fratercula arctica). Journal of Experimental Zoology, 253, 235244.CrossRefGoogle Scholar
Davis, R. W. 2014. A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. Journal of Comparative Physiology B, 184, 2353.CrossRefGoogle ScholarPubMed
Davis, R. W., Castellini, M. A., Kooyman, G. L., & Maue, R. 1983. Renal GFR and hepatic blood flow during voluntary diving in Weddell seals. American Journal of Physiology, 245, R743R748.Google ScholarPubMed
Davis, R. W., Castellini, M. A., Williams, T. M., & Kooyman, G. L. 1991. Fuel homeostasis in the harbor seal during submerged swimming. Journal of Comparative Physiology B, 160, 627635.CrossRefGoogle ScholarPubMed
Davis, R. W., Fuiman, L. A., Williams, T. M., et al. 1999. Hunting behavior of a marine mammal beneath the Antarctic fast ice. Science, 283, 993996.CrossRefGoogle ScholarPubMed
Davis, R. W. & Kanatous, S. B. 1999. Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. Journal of Experimental Biology, 202, 10911113.CrossRefGoogle ScholarPubMed
Davis, R. W. & Williams, T. M. 2012. The marine mammal dive response is exercise modulated to maximize aerobic dive duration. Journal of Comparative Physiology A, 198, 583591.CrossRefGoogle ScholarPubMed
Davis, R. W., Worthy, G. A. J., Wursig, B., & Lynn, S. K. 1996. Diving behavior and at-sea movements of an Atlantic spotted dolphin in the Gulf of Mexico. Marine Mammal Science, 12, 569581.CrossRefGoogle Scholar
Dawson, C., Vincent, J. F. V., Jeronimidis, G., Rice, G., & Forshaw, P. 1999. Heat transfer through penguin feathers. Journal of Theoretical Biology, 199, 291295.CrossRefGoogle ScholarPubMed
De Burgh Daly, M., Elsner, R., & Angell-James, J. E. 1977. Cardiorespiratory control by carotid chemoreceptors during experimental dives in the seal. American Journal of Physiology: Heart and Circulatory Physiology, 232, H508H516.Google ScholarPubMed
De Leeuw, J. J. 1996. Diving costs as a component of daily energy budgets of aquatic birds and mammals: generalizing the inclusion of dive-recovery costs demonstrated in tufted ducks. Canadian Journal of Zoology, 74, 21312142.CrossRefGoogle Scholar
De Miranda, M. A., Schlater, A. E., Green, T. L., & Kanatous, S. B. 2012. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. The Journal of Experimental Biology, 215, 806813.CrossRefGoogle ScholarPubMed
De Vries, J. & Van Eerden, M. R. 1995. Thermal conductance in aquatic birds in relation to the degree of water contact, body mass, and body fat: energetic implications of living in a strong cooling environment. Physiological Zoology, 68, 11431163.CrossRefGoogle Scholar
Dehnhardt, G., Mauck, B., & Bleckmann, H. 1998. Seal whiskers detect water movements. Nature, 394, 235236.CrossRefGoogle Scholar
Dehnhardt, G., Mauck, B., Hanke, W., & Bleckmann, H. 2001. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science, 293, 102104.CrossRefGoogle ScholarPubMed
Dejours, P. 1987. Water and air physical characteristics and their physiological consequences. In: Dejours, P., Bolis, L., Taylor, C. R. & Weibel, E. R. (eds.), Comparative Physiology: Life in Water and On Land. New York: Springer.Google Scholar
Dejours, P. 1989. From comparative physiology of respiration to several problems of environmental adaptations and to evolution. Journal of Physiology, 410, 119.CrossRefGoogle ScholarPubMed
Dempsey, J. A., Veasey, S. C., Morgan, B. J., & O'Donnell, C. P. 2010. Pathophysiology of sleep apnea. Physiological Reviews, 90, 47112.CrossRefGoogle ScholarPubMed
Dendrinos, P., Karamanlidis, A. A., Androukaki, E., & Mcconnell, B. J. 2007. Diving development and behavior of a rehabilitated Mediterranean monk seal (Monachus monachus). Marine Mammal Science, 23, 387397.CrossRefGoogle Scholar
Denison, D. M. & Kooyman, G. L. 1973. The structure and the function of the small airways in pinniped and sea otter lungs. Respiration Physiology, 17, 110.CrossRefGoogle ScholarPubMed
Denison, D. M., Warrell, D. A., & West, J. B. 1971. Airway structure and alveolar emptying in the lungs of sea lions and dogs. Respration Physiology, 13, 252260.Google ScholarPubMed
Dennison, S., Fahlman, A., & Moore, M. J. 2012a. The use of diagnostic imaging for identifying abnormal gas accumulations in cetaceans and pinnipeds. Frontiers in Physiology. DOI: 10.3389/fphys.2012.00181.CrossRefGoogle Scholar
Dennison, S., Boor, M., Faquier, D., et al. 2011. Foramen ovale and ductus arteriosus patency in neonatal harbor seal (Phoca vitulina) pups in rehabilitation. Aquatic Mammals, 37, 161166.CrossRefGoogle Scholar
Dennison, S., Moore, M. J., Fahlman, A., et al. 2012b. Bubbles in live-stranded dolphins. Proceedings of the Royal Society B: Biological Sciences, 279, 13961404.CrossRefGoogle ScholarPubMed
Deruiter, S. L., Southall, B. L., Calambokidis, J., et al. 2013. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Biology Letters, 9. DOI: 10.1098/rsbl.2013.0223.CrossRefGoogle ScholarPubMed
Dhindsa, D. S., Metcalfe, J., Hoversland, A. S., & Hartman, R. A. 1974. Comparative studies of the respiratory functions of mammalian blood X: killer whale (Orcinus orca Linnaeus) and beluga whale (Delphinapterus leucas). Respiration Physiology, 20, 93103.CrossRefGoogle ScholarPubMed
Djojosugito, A. M., Folkow, B., & Yonce, L. R. 1969. Neurogenic adjustments of muscle blood flow, cutaneous A-V shunt flow and of venous tone during “diving” in ducks. Acta Physiologica Scandinavica, 75, 377386.CrossRefGoogle Scholar
Dolar, M. L. L., Suarez, P., Ponganis, P. J., & Kooyman, G. L. 1999. Myoglobin in pelagic small cetaceans. Journal of Experimental Biology, 202, 227236.CrossRefGoogle ScholarPubMed
Dormer, K. J., Denn, M. J., & Stone, H. L. 1977. Cerebral blood flow in the sea lion (Zalophus californianus) during voluntary dives. Comparative Biochemistry and Physiology Part A: Physiology, 58, 1118.CrossRefGoogle Scholar
Dow, D. 1964. Diving times of wintering water birds. The Auk, 81, 556558.CrossRefGoogle Scholar
Drabek, C. M. 1975. Some anatomical aspects of the cardiovascular system of Antarctic seals and their possinble functional significance in diving. Journal of Morphology, 145, 85105.CrossRefGoogle ScholarPubMed
Drabek, C. M. 1977. Some anatomical and functional aspects of seal hearts and aortae. In: Harrison, J. R. (ed.), Functional Anatomy of Marine Mammals. San Francisco, CA: Academic Press.Google Scholar
Drabek, C. M. 1989. Heart and ventricle weights of Antarctic penguins. Canadian Journal of Zoology, 67, 26022604.CrossRefGoogle Scholar
Drabek, C. M. 1997. Heart and ventricle weights of the little penguin, Eudyptula minor. Emu, 97, 258261.Google Scholar
Drabek, C. M. & Burns, J. M. 2002. Heart and aorta morphology of the deep-diving hooded seal (Cystophora cristata). Canadian Journal of Zoology, 80, 20302036.CrossRefGoogle Scholar
Drabek, C. M. & Kooyman, G. L. 1986. Bronchial morphometry of the upper conductive zones of four odontocete cetaceans. In: Harrison, R. J. (ed.), Research in Dolphins. Oxford: Oxford University Press.Google Scholar
Drabek, C. M. & Tremblay, Y. 2000. Morphological aspects of the heart of the northern rockhopper penguin (Eudyptes chrysocome moseley i): possible implication in diving behavior and ecology? Polar Biology, 23, 812816.CrossRefGoogle Scholar
Drouout, V., Gannier, A., & Goold, J. C. 2004. Diving and feeding behaviour of sperm whales (Physteter macrocephalus) in the Northwestern Mediterranean Sea. Aquatic Mammals, 30, 419426.CrossRefGoogle Scholar
Drummond, P. C. & Jones, D. R. 1970. The initiation and maintenance of bradycardia in a diving mammal, the muskrat, Ondatra zibethica. Journal of Physiology, 290, 253271.CrossRefGoogle Scholar
Du, N., Fan, J., Wu, H., Chen, S., & Liu, Y. 2007. An improved model of heat transfer through penguin feathers and down. Journal of Theoretical Biology, 248, 727735.CrossRefGoogle ScholarPubMed
Duchamp, C., Barre, H., Delage, D., et al. 1989. Nonshivering thermogenesis and adaptation to fasting in king penguin chicks. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 257, R744R751.Google ScholarPubMed
Duchamp, C., Barre, H., Rouanet, J. L., et al. 1991. Nonshivering thermogenesis in king penguin chicks: I. Role of skeletal muscle. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R1438R1445.Google ScholarPubMed
Duchamp, C., Chatonnet, J., Dittmar, A., & Barre, H. 1993. Increased role of skeletal muscle in the calorigenic response to glucagon of cold-acclimated ducklings. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 265, R1084R1091.Google ScholarPubMed
Duchamp, C., Rouanet, J.-L., & Barré, H. 2002. Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131, 765773.CrossRefGoogle ScholarPubMed
Duffy, D. C. 1983. The foraging ecology of Peruvian seabirds. The Auk, 100, 800810.CrossRefGoogle Scholar
Dumonteil, E., Barre, H., & Meissner, G. 1993. Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis. American Journal of Physiology: Cell Physiology, 265, C507C513.CrossRefGoogle ScholarPubMed
Duncker, H.-R. 1974. Structure of the avian respiratory tract. Respiration Physiology, 22, 119.CrossRefGoogle ScholarPubMed
Duncker, H. 1972. Structure of avian lungs. Respiration Physiology, 14, 4463.CrossRefGoogle ScholarPubMed
Dunkin, R. C., McLellan, W. A., Blum, J. E., & Pabst, D. A. 2005. The ontogenetic changes in the thermal properties of blubber from Atlantic bottlenose dolphin Tursiops truncatus. Journal of Experimental Biology, 208, 14691480.CrossRefGoogle ScholarPubMed
Duntley, S. Q. 1963. Light in the sea. Journal of the Optical Society of America, 53, 214233.CrossRefGoogle Scholar
Duran, W. N. & Renkin, E. M. 1974. Oxygen consumption and blood flow in resting mammalian skeletal muscle. American Journal of Physiology, 226, 173177.CrossRefGoogle ScholarPubMed
Dutka, A. J. 2003. Long term effects on the central nervous system. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Dutschmann, M. & Herbert, H. 1998. NMDA and GABAA receptors in the rat Kölliker-Fuse area control cardiorespiratory responses evoked by trigeminal ethmoidal nerve stimulation. The Journal of Physiology, 510, 793804.CrossRefGoogle ScholarPubMed
Dyck, M. G. & Romberg, S. 2007. Observations of a wild polar bear (Ursus maritimus) successfully fishing Arctic charr (Salvelinus alpinus) and fourhorn sculpin (Myxocephalus quadricornis). Polar Biology, 30, 16251628.CrossRefGoogle Scholar
Dykes, R. W. 1974. Factors related to the dive reflex in harbor seals: sensory contributions from the trigeminal region. Canadian Journal of Physiology and Pharmacology, 52, 259265.CrossRefGoogle Scholar
Eckenhoff, R. C., Olstad, C. S., & Carrod, G. 1990. Human dose–response relationship for decompression and endogenous bubble formation. Journal of Applied Physiology, 69, 914918.CrossRefGoogle ScholarPubMed
Eckenhoff, R. G. & Knight, D. R. 1984. Cardiac arrhythmias and heart rate changes in prolonged hyperbaric exposure. Undersea Biomedical Research, 11, 355366.Google Scholar
Edgar, A. 1962. A note on the diving of the two New Zealand grebes. Notornis, 10, 42.Google Scholar
Edwards, H. H. & Schnell, G. D. 2001. Body length, swimming speed, dive duration, and coloration of the dolphin Sotalia fluviatilis (Tucuxi) in Nicaragua. Caribbean Journal of Science, 37, 271298.Google Scholar
Eguchi, T. & Harvey, J. T. 2005. Diving behavior of the Pacific Harbor seal (Phoca vitulina richardsi) in Monterey Bay, California. Marine Mammal Science, 21, 283295.CrossRefGoogle Scholar
El-Sayed, H., Goodall, S. R., & Hainsworth, R. 1995. Re-evaluation of Evans Blue dye dilution method of plasma volume measurements,. Clinical & Laboratory Haematology, 17, 189194.Google Scholar
Eliassen, E. 1960. Cardiovascular Responses to Submersion Asphyxia in Avian Divers. Bergen: Norwegian Universities Press .Google Scholar
Elliott, K. H., Davoren, G. K., & Gaston, A. G. 2007. The influence of buoyancy and drag on the dive behaviour of an Arctic seabird, the thick-billed murre. Canadian Journal of Zoology, 85, 352361.CrossRefGoogle Scholar
Elliott, K. H., Shoji, A., Campbell, K. L., & Gaston, A. J. 2010. Oxygen stores and foraging behavior of two sympatric, planktivorous alcids. Aquatic Biology, 8, 221235.CrossRefGoogle Scholar
Elliott, N. M., Andrews, R. D., & Jones, D. R. 2002. Pharmacological blockade of the dive response: effects on heart rate and diving behaviour in the harbour seal (Phoca vitulina). Journal of Experimental Biology, 205, 37573765.CrossRefGoogle ScholarPubMed
Elowson, A. M. 1984. Spread-wing postures and the water repellency of feathers: a test of Rijke's hypothesis. The Auk, 101, 371383.Google Scholar
Elsner, R. 1965. Heart rate response in forced versus trained experimental dives of pinnipeds. Hvalradets Skrifter, 48, 2429.Google Scholar
Elsner, R. 1966. Diving bradycardia in the unrestrained hippopotamus. Nature, 212, 408.CrossRefGoogle ScholarPubMed
Elsner, R. 1969. Cardiovascular adjustments to diving. In: Andersen, H. T. (ed.) The Biology of Marine Mammals. New York: Academic Press.Google Scholar
Elsner, R. 1988. Anaerobic contributions to metabolism in diving seals. Canadian Journal of Zoology, 66, 142143.CrossRefGoogle Scholar
Elsner, R. 2015. Diving Seals and Meditating Yogis: Strategic Metabolic Retreats. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Elsner, R., Angell-James, J. E., & De Burgh Daly, M. 1977. Carotid body chemoreceptor reflexes and their interactions in the seal. American Journal of Physiology: Heart and Circulatory Physiology, 232, H517H525.Google ScholarPubMed
Elsner, R. & De La Lande, I. S. 1998. Heterogeneous cholinergic reactions of ringed seal coronary arteries. Comparative Biochemistry and Physiology A, 119, 10191025.CrossRefGoogle ScholarPubMed
Elsner, R., Franklin, D. L., Van Citters, R. L., & Kenney, D. W. 1966a. Cardiovascular defense against asphyxia. Science, 153, 941949.CrossRefGoogle ScholarPubMed
Elsner, R., Geoerge, J. C., & O'hara, T. 2004a. Vasomotor responses of isolated peripheral blood vessels from bowhead whales: thermoregulatory implications. Marine Mammal Science, 20, 546553.CrossRefGoogle Scholar
Elsner, R. & Gooden, B. 1983. Diving and Asphyxia: A Comparative Study of Animals and Man. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Elsner, R., Hammond, D. D., & Parker, H. R. 1970a. Circulatory responses to asphyxia in pregant and fetal animals: a comparative study of Weddell seals and sheep. Yale Journal of Biology and Medicine, 42, 202217.Google Scholar
Elsner, R., Hanafee, W. N., & Hammond, D. D. 1971. Angiography of the inferior vena cava of the harbor seal during simulated diving. American Journal of Physiology, 220, 11551157.CrossRefGoogle ScholarPubMed
Elsner, R., Kenney, D. W., & Burgess, K. 1966b. Bradycardia in the trained dolphin. Nature, 212, 407.CrossRefGoogle ScholarPubMed
Elsner, R. & Meiselman, H. J. 1995. Splenic oxygen storage and blood viscosity in seals. Marine Mammal Science, 11, 9396.CrossRefGoogle Scholar
Elsner, R., Meiselman, H. J., & Baskurt, O. K. 2004b. Temperature–viscosity relations of bowhead whale blood: a possible mechanism for maintaing cold blood flow. Marine Mammal Science, 20, 339344.CrossRefGoogle Scholar
Elsner, R., Millard, R. W., Kjekshus, J. K., et al. 1985. Coronary blood flow and myocardial segment dimensions during simulated dives in seals. American Journal of Physiology, 249, H1119H1126.Google ScholarPubMed
Elsner, R., Oyasaetr, S., Almaas, R., & Sauagstad, O. D. 1998. Diving seals, ischemia-reperfusion, and oxygen radicals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119, 975980.CrossRefGoogle ScholarPubMed
Elsner, R., Shurley, J. T., Hammond, D. D., & Brooks, R. E. 1970b. Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respiration Physiology, 9, 287297.CrossRefGoogle ScholarPubMed
Elsner, R., Wartzok, D., Sonafrank, N. B., & Kelly, B. P. 1989. Behavioral and physiological reactions of arctic seals during under-ice pilotage. Canadian Journal of Zoology, 67, 25062513.CrossRefGoogle Scholar
Elsner, R. W., Franklin, D. L., & Van Citters, R. L. 1964a. Cardiac output during diving in an unrestrained sea lion. Nature, 202, 809810.CrossRefGoogle Scholar
Elsner, R. W., Scholander, P. F., Craig, A. B., et al. 1964b. A venous blood oxygen reservoir in the diving elephant seal. The Physiologist, 7, 124.Google Scholar
Elsner, R. W., Shurley, J. T., Hammond, D. D., & Brooks, R. E. 1970c. Cerebral tolerance in asphyxiated Weddell seals. Respiration Physiology, 9, 287297.CrossRefGoogle ScholarPubMed
Emerling, B. M., Weinberg, F., Snyder, C., et al. 2009. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology and Medicine, 46, 13861391.CrossRefGoogle ScholarPubMed
English, A. W. 1976. Limb movements and locomotor function in the California sea lion (Zalophus californianus). Journal of Zoology, 178, 341364.CrossRefGoogle Scholar
English, A. W. 1977. Structural correlates of forelimb function in fur seals and sea lions. Journal of Morphology, 151, 325352.CrossRefGoogle ScholarPubMed
Enstipp, M. R., Andrews, R. D., & Jones, D. R. 1999. Cardiac responses to first ever submergence in double-crested cormorant chicks (Phalacrocorax auritus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 124, 523530.CrossRefGoogle ScholarPubMed
Enstipp, M. R., Andrews, R. D., & Jones, D. R. 2001. The effects of depth on the cardiac and behavioural responses of double-crested cormorants (Phalacrocorax auritus) during voluntary diving. Journal of Experimental Biology, 204, 40814092.CrossRefGoogle ScholarPubMed
Enstipp, M. R., Gremillet, D., & Jones, D. R. 2006. The effects of depth, temperature and food ingestion on the foraging energetics of a diving endotherm, the double-crested cormorant (Phalacrocorax auritus). Journal of Experimental Biology, 209, 845859.CrossRefGoogle ScholarPubMed
Enstipp, M. R., Grémillet, D., & Jones, D. R. 2008. Heat increment of feeding in double-crested cormorants (Phalacrocorax auritus) and its potential for thermal substitution. Journal of Experimental Biology, 211, 4957.CrossRefGoogle ScholarPubMed
Enstipp, M. R., Grémillet, D., & Lorentsen, S.-H. 2005. Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis). Journal of Experimental Biology, 208, 34513461.CrossRefGoogle ScholarPubMed
Evans, B., Jones, D., Baldwin, J., & Gabbott, G. 1994. Diving ability of the platypus. Journal of Zoology, 42, 1727.Google Scholar
Evans, W. E. 1971. Orientation behavior of delphinids: radio telemetric studies. Annals of the New York Academy of Sciences, 188, 142160.CrossRefGoogle ScholarPubMed
Fagius, J. & Sundolf, G. 1986. The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles. Journal of Physiology, 377, 429443.CrossRefGoogle ScholarPubMed
Fago, A., Jensen, F. B., Tota, B., et al. 2012. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: a comparative approach. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162, 16.CrossRefGoogle ScholarPubMed
Fahlman, A., Hooker, S. K., Olszowka, A., Bostrom, B. L., & Jones, D. R. 2009. Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath-hold diving: the Scholander and Kooyman legacy. Respiration Physiology and Neurobiology, 165, 2839.CrossRefGoogle ScholarPubMed
Fahlman, A., Loring, S. H., Ferrigno, M., et al. 2011. Static inflation and deflation pressure–volume curves from excised lungs of marine mammals. Journal of Experimental Biology, 214, 38223828.CrossRefGoogle ScholarPubMed
Fahlman, A., Olszowka, A., Bostrom, B., & Jones, D. R. 2006. Deep diving mammals: dive behavior and circulatory adjustments contribute to bends avoidance. Respiration Physiology and Neurobiology, 153, 6677.CrossRefGoogle ScholarPubMed
Fahlman, A., Schmidt, A., Jones, D. R., Bostrom, B. L., & Handrich, Y. 2007. To what extent might N2 limit dive performance in king penguins? Journal of Experimental Biology, 210, 33443355.CrossRefGoogle ScholarPubMed
Fahlman, A., Svard, C., Rosen, D. A., Jones, D. R., & Trites, A. W. 2008. Metabolic costs of foraging and management of O2 and CO2 stores in Steller sea lions. Journal of Experimental Biology, 211, 35733580.CrossRefGoogle ScholarPubMed
Fahlman, A., Tyack, P. L., Miller, P. J., & Kvadsheim, P. H. 2014. How man-made interference might cause gas bubble emboli in deep diving whales. Frontiers in Physiology. DOI: 10.3389/fphys.2014.00013.CrossRefGoogle Scholar
Fajardo, R. J., Hernandez, E., & O'Connor, P. M. 2007. Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds. Journal of Anatomy, 211, 138147.CrossRefGoogle ScholarPubMed
Falabella, V., Lewis, M., & Campagna, C. 1999. Development of cardiorespiratory patterns associated with terrestrial apneas in free-ranging southern elephant seals. Physiological and Biochemical Zoology, 72, 6470.CrossRefGoogle ScholarPubMed
Falk, K., Pedersen, C. E., & Kampp, K. 2000. Measurements of diving depth in dovekies (Alle alle). The Auk, 117, 522525.CrossRefGoogle Scholar
Falke, K. J., Busch, T., Hoffman, O., et al. 2008. Breathing pattern, CO2 elimination and the absence of exhaled NO in freely diving Weddell seals. Respiratory Physiology and Neurobiology, 162, 8592.CrossRefGoogle ScholarPubMed
Falke, K. J., Hill, R. D., Qvist, J., et al. 1985. Seal lungs collapse during free diving: evidence from arterial nitrogen tensions. Science, 229, 556558.CrossRefGoogle ScholarPubMed
Faraci, F. M. 1991. Adaptations to hypoxia in birds: how to fly high. Annual Review of Physiology, 53, 5970.CrossRefGoogle ScholarPubMed
Farhi, L. E. & Rahn, H. 1960. Dynamics of changes in carbon dioxide stores. Anesthesiology, 21, 604614.CrossRefGoogle ScholarPubMed
Farmer, M., Weber, R. E., Bonaventura, J., Best, R. C., & Domming, D. 1979. Functional properties of hemoglobin and whole blood in an aquatic mammal, the Amazonian manatee (Trichechus inunguis). Comparative Biochemistry and Physiology Part A: Comparative Physiology, 62, 231238.CrossRefGoogle Scholar
Fedak, M. A. 1986. Diving and exercise in seals: a benthic perspective. In: Brubakk, A. O., Kanwisher, J. W. & Sudnes, G. (eds.) Diving in Animals and Man. Trondheim: Tapir Publishers.Google Scholar
Fedak, M. A., Pullen, M. R., & Kanwisher, J. 1988. Circulatory responses of seals to periodic breathing: heart rate and breathing during exercise and diving in the laboratory and open sea. Canadian Journal of Zoology, 66, 5360.CrossRefGoogle Scholar
Fedak, M. A., Rome, L., & Seeherman, H. J. 1981. One-step N2-dilution technique for calibrating open-circuit VO2 measuring systems. Journal of Applied Physiology, 51, 772776.CrossRefGoogle ScholarPubMed
Feldkamp, S. D. 1987a. Forelimb propulsion in the California sea lion Zalophus californianus. Journal of the Zoological Society of London, 212, 43334357.CrossRefGoogle Scholar
Feldkamp, S. D. 1987b. Swimming in the California sea lion: morphometrics, drag and energetics. Journal of Experimental Biology, 131, 117135.CrossRefGoogle ScholarPubMed
Feldkamp, S. D., Delong, R. L., & Antonelis, G. A. 1989. Diving patterns of California sea lions, Zalophus californianus. Canadian Journal of Zoology, 67, 872883.CrossRefGoogle Scholar
Fernandez, A., Edwards, J., Martin, V., et al. 2005. “Gas and fat embolic syndrome” involving a mass stranding of beaked whales exposed to anthropogenic sonar signals. Journal of Veterinary Pathology, 42, 446457.CrossRefGoogle ScholarPubMed
Ferrante, F. 1970. Oxygen conservation during submergence apnea in a diving mammal, the nutria. American Journal of Physiology: Legacy Content, 218, 363371.CrossRefGoogle Scholar
Ferrante, F. L. & Opdyke, D. F. 1969. Mammalian ventricular function during submersion asphyxia. Journal of Applied Physiology, 26, 561570.CrossRefGoogle ScholarPubMed
Ferretti, G., Costa, M., Ferrigno, M., et al. 1991. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers. Journal of Applied Physiology, 70, 794802.CrossRefGoogle ScholarPubMed
Ferrigno, M., Ferretti, G., Ellis, A., et al. 1997. Cardiovascular changes during deep breath-hold dives in a pressure chamber. Journal of Applied Physiology, 83, 12821290.CrossRefGoogle Scholar
Ferrigno, M. & Lundgren, C. E. 2003. Breath-hold diving. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Field, C. L. & Tablin, F. 2012. Response of northern elephant seal platelets to pressure and temperature changes: a comparison with human platelets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162, 289295.CrossRefGoogle ScholarPubMed
Field, C. L., Walker, N. J., & Tablin, F. 2001. Northern elephant seal platelets: analysis of shape change and response to platelet agonists. Thrombosis Research, 101, 267277.CrossRefGoogle ScholarPubMed
Fischbeck, K. H. & Simon, R. P. 1981. Neurological manifestations of accidental hypothermia. Annals of Neurology, 10, 384387.CrossRefGoogle ScholarPubMed
Fish, F. 1994. Influence of hydrodynamic-design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology, 42, 79101.CrossRefGoogle Scholar
Fish, F. 1998. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance. Journal of Experimental Biology, 201, 28672877.CrossRefGoogle ScholarPubMed
Fish, F. E., Howle, L. E., & Murray, M. M. 2008. Hydrodynamic flow control in marine mammals. Integrative and Comparative Biology, 48, 788800.CrossRefGoogle ScholarPubMed
Fish, F. E. & Hui, C. A. 1991. Dolphin swimming: a review. Mammal Review, 21, 181195.CrossRefGoogle Scholar
Fish, F. E., Innes, S., & Ronald, K. 1988. Kinematics and estimated thrust production of swimming harp and ringed seals. Journal of Experimental Biology, 137, 157173.CrossRefGoogle ScholarPubMed
Fish, F. E. & Lauder, G. V. 2006. Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics, 38, 193224.CrossRefGoogle Scholar
Fish, F. E., Legac, P., Williams, T. M., & Wei, T. 2014. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. Journal of Experimental Biology, 217, 252260.CrossRefGoogle ScholarPubMed
Fish, F. E., Nicastro, A. J., & Weighs, D. 2006. Dynamics of the aerial manuvers of spinner dolphins. Journal of Experimental Biology, 209, 590598.CrossRefGoogle Scholar
Flogel, U., Fago, A., & Rassaf, T. 2010. Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. Journal of Experimental Biology, 213, 27262733.CrossRefGoogle ScholarPubMed
Flögel, U., Fago, A., & Rassaf, T. 2010. Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. Journal of Experimental Biology, 213, 27262733.CrossRefGoogle ScholarPubMed
Flück, M. & Hoppeler, H. 2003. Molecular basis of skeletal muscle plasticity: from gene to form and function. Reviews of Physiology, Biochemistry and Pharmacology, 146, 159216.CrossRefGoogle ScholarPubMed
Folkow, B., Fuxe, K., & Sonnenschein, R. R. 1966. Responses of skeletal musculature and it vasculature during “diving” in the duck: peculiarities of the adrenergic vasoconstrictor innervation. Acta Physiologica Scandinavica, 67, 327342.CrossRefGoogle ScholarPubMed
Folkow, B., Lisander, B., & Öberg, B. 1971. Aspects of the cardiovascular nervous control in a mammalian diver (Myocastor coypus). Acta Physiologica Scandinavica, 82, 439446.CrossRefGoogle Scholar
Folkow, B., Nilsson, N. J., & Yonce, L. R. 1967. Effects of “diving” on cardiac output in ducks. Acta Physiologica Scandinavica, 70, 347361.CrossRefGoogle ScholarPubMed
Folkow, B. & Yonce, L. R. 1967. The negative inotropic effect of vagal stimulation on the heart ventricles of the duck. Acta Physiologica Scandinavica, 71, 7784.CrossRefGoogle ScholarPubMed
Folkow, L. P. & Blix, A. S. 1987. Nasal heat and water exchange in gray seals. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 253, R883R889.Google ScholarPubMed
Folkow, L. P. & Blix, A. S. 1989. Thermoregulatory control of expired air temperature in diving harp seals. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 257, R306R310.Google ScholarPubMed
Folkow, L. P. & Blix, A. S. 1992. Metabolic rates of minke whales (Balaenoptera acutorostrata) in cold water. Acta Physiologica Scandinavica, 146, 141150.CrossRefGoogle ScholarPubMed
Folkow, L. P. & Blix, A. S. 1999. Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian Seas. Polar Biology, 22, 6174.CrossRefGoogle Scholar
Folkow, L. P., Nordøy, E. S., & Blix, A. S. 2004. Distribution and diving behaviour of harp seals (Pagophilus groenlandicus) from the Greenland Sea stock. Polar Biology, 27, 281298.CrossRefGoogle Scholar
Folkow, L. P., Ramirez, J.-M., Ludvigsen, S., Ramirez, N., & Blix, A. S. 2008. Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neuroscience Letters, 446, 147150.CrossRefGoogle ScholarPubMed
Foot, N. J., Orgeig, S., & Daniels, C. B. 2006. The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respiratory Physiology and Neurobiology, 154, 118138.CrossRefGoogle ScholarPubMed
Forbes, L. S. & Sealy, S. G. 1988. Diving behaviour of male and female western grebes. Canadian Journal of Zoology, 66, 26952698.CrossRefGoogle Scholar
Ford, T. J. & Kraus, S. D. 1992. A rete in the right whale. Nature, 359, 680–680.CrossRefGoogle ScholarPubMed
Ford, T. J., Werth, A. J., & George, J. C. 2013. An intraoral thermoregulatory organ in the bowhead whale (Balaena mysticetus), the corpus cavernosum maxillaris. The Anatomical Record, 296, 701708.CrossRefGoogle ScholarPubMed
Fowler, S. L., Costa, D. P., Arnould, J. P. Y., Gales, N. J., & Burns, J. M. 2007. Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Functional Ecology, 21, 922935.CrossRefGoogle Scholar
Fowler, S. L., Costa, D. P., Arnould, J. P. Y., Gales, N. J., & Kuhn, C. E. 2006. Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer. Journal of Animal Ecology, 75, 358367.CrossRefGoogle Scholar
Francis, J., Boness, D., & Ochoa-Acuña, H. 1998. A protracted foraging and attendance cycle in female Juan Fernandez fur seals. Marine Mammal Science, 14, 552574.CrossRefGoogle Scholar
Francis, T. J. R. & Mitchell, S. J. 2003. Pathophysiology of decompression sickness. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Frankel, A. S. 2009. Sound production. In: Perrin, W. F., Wursig, B. & Thewissen, J. G. M. (eds.), Encyclopedia of Marine Mammals. San Diego, CA: Academic Press.Google Scholar
Frantzis, A. 1998. Does acoustic testing strand whales? Nature, 392, 29.CrossRefGoogle ScholarPubMed
Freeman, A., Nicholls, D., Wilson, K., & Bartle, J. 1997. Radio- and satellite-tracking Westland petrels Procellaria westlandica. Marine Ornithology, 25, 3136.Google Scholar
Friedlaender, A. S., Goldbogen, J. A., Nowacek, D. P., et al. 2014. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). Journal of Experimental Biology, 217, 28512854.CrossRefGoogle ScholarPubMed
Froget, G., Butler, P. J., Woakes, A. J., et al. 2004. Heart rate and energetics of free-ranging king penguins (Aptenodytes patagonicus). Journal of Experimental Biology, 207, 39173926.CrossRefGoogle ScholarPubMed
Frost, P. G. H., Siegfried, W. R., & Greenwood, P. J. 1975. Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. Journal of Zoology, 175, 231241.CrossRefGoogle Scholar
Fujise, Y., Hidaka, H., Tatsukawa, R., & Miyazaki, N. 1985. External measurements and organ weights of five Weddell seals (Leptonychotes weddelli) caught near Syowa Station. Antarctic Record (Tokyo), 85, 96101.Google Scholar
Furilla, R. A. & Jones, D. R. 1986. The contribution of nasal receptors to the cardiac response to diving in restrained and unrestrained redhead ducks (Aythya americana). Journal of Experimental Biology, 121, 227238.CrossRefGoogle Scholar
Furilla, R. A. & Jones, D. R. 1987a. Cardiac responses to dabbling and diving in the mallard, Anas platyrhynchos. Physiological Zoology, 60, 406412.CrossRefGoogle Scholar
Furilla, R. A. & Jones, D. R. 1987b. The relationship between dive and pre-dive heart rates in restrained and free dives by diving ducks. Journal of Experimental Biology, 127, 333348.CrossRefGoogle Scholar
Fuson, A. L., Cowan, D. F., Kanatous, S. B., Polasek, L. K., & Davis, R. W. 2003. Adaptations to hypoxia in the heart, kidneys, and splanchnic organs of harbor seals (Phoca vitulina). Journal of Experimental Biology, 206, 41394154.CrossRefGoogle ScholarPubMed
Gabbott, G. R. J. & Jones, D. R. 1991. The effect of brain transection on the response to forced submergence in ducks. Journal of the Automonic Nervous System, 36, 6574.CrossRefGoogle ScholarPubMed
Galantsev, V. P. 1991. Adaptational changes in the venous system of diving mammals. Canadian Journal of Zoology, 69, 414419.CrossRefGoogle Scholar
Gales, N. J. & Mattlin, R. H. 1997. Summer diving behaviour of lactating New Zealand sea lions, Phocarctos hookeri. Canadian Journal of Zoology, 75, 16951706.CrossRefGoogle Scholar
Gales, R., Williams, C., & Ritz, D. 1990. Foraging behaviour of the little penguin, Eudyptula minor: initial results and assessment of instrument effect. Journal of Zoology, 220, 6185.CrossRefGoogle Scholar
Galliano, R. E., Morgane, P. J., Mcfarland, W. L., Nagel, E. L., & Catherman, R. L. 1966. The anatomy of the cervicothoracic arterial system in the bottlenose dolphin (Tursiops truncatus) with a surgical approach suitable for guided angiography. The Anatomical Record, 155, 325337.CrossRefGoogle ScholarPubMed
Gallivan, G. J. 1980. Hypoxia and hypercapnia in the respiratory control of the Amazonian manatee (Trichechus inunguis). Physiological Zoology, 53, 254261.CrossRefGoogle Scholar
Gallivan, G. J. 1981. Ventilation and gas exchange in unrestrained harp seals. Comparative Biochemistry and Physiology Part A: Physiology, 69, 809813.CrossRefGoogle Scholar
Gallivan, G. J. & Best, R. C. 1980. Metabolism and respiration of the Amazonian manatee (Trichechus inguinis). Physiological Zoology, 53, 245253.CrossRefGoogle Scholar
Gallivan, G. J., Best, R. C., & Kanwisher, J. W. 1983. Temperature regulation in the Amazonian manatee Trichechus inunguis. Physiological Zoology, 56, 255262.CrossRefGoogle Scholar
Gallivan, G. J., Kanwisher, J. W., & Best, R. C. 1986. Heart rates and gas exchange in the Amazonian manatee (Trichecus manutus) in relation to diving. Journal of Comparative Physiology B, 156, 415423.CrossRefGoogle Scholar
Gallivan, G. J. & Ronald, K. 1979. Temperature regulation in freely diving harp seals (Phoca groenlandica). Canadian Journal of Zoology, 57, 22562263.CrossRefGoogle ScholarPubMed
Gallo-Reynoso, J. P., Figuero-Carranza, A.-L., & Leboeuf, B. J. 2008. Foraging behavior of lactating Guadalupe fur seals. In: Lorenzo, C. E. E. & Ortega, J. (eds.), Advances en el Estudio de los Aifamijeros de Mexico, Vol. II. Mexico: Asociacion Mexicana de Mastozoologia.Google Scholar
Garey, W. F. 1962. Cardiac responses of fishes in asphyxic environments. Biological Bulletin, 122, 362368.CrossRefGoogle Scholar
Garry, D. J., Kanatous, S. B., & Mammen, P. P. A. 2003. Emerging roles for myoglobin in the heart. Trends in Cardiovascular Medicine, 13, 111116.CrossRefGoogle ScholarPubMed
Garry, D. J., Ordway, G. A., Lorenz, J. N., et al. 1998. Mice without myoglobin. Nature, 395, 905908.CrossRefGoogle ScholarPubMed
Garthe, S. & Furness, R. W. 2001. Frequent shallow diving by a northern fulmar feeding at Shetland. Waterbirds, 24, 287289.CrossRefGoogle Scholar
Gauer, O. H. & Thron, H. L. 1965. Postural changes in circulation. In: Hamilton, W. F. & Dow, P. (eds.), Handbook of Physiology: Circulation. Washington, DC: American Physiological Society.Google Scholar
Gayeski, T. E. J. & Honig, C. 1986. O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. American Journal of Physiology, 251, H1179H1186.Google ScholarPubMed
Gazo, M. & Acuilar, A. 2005. Maternal attendance and diving behavior of a lactating Mediterranean monk seal. Marine Mammal Science, 21, 340345.CrossRefGoogle Scholar
Geiser, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology, 66, 239274.CrossRefGoogle ScholarPubMed
Gentry, R. L. & Kooyman, G. L. (eds.) 1986. Fur Seals: Maternal Strategies on Land and at Sea. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Gentry, R. L., Kooyman, G. L., & Goebel, M. E. 1986. Feeding and diving behavior of northern fur seals. In: Gentry, R. L. & Kooyman, G. L. (eds.), Fur Seals: Maternal Strategies on Land and at Sea. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
George, J. C. & Ronald, K. 1973. The harp seal, Pagophilus groenlandicus: XXV. Ultrastructure and metabolic adaptation of skeletal muscle. Canadian Journal of Zoology, 51, 833839.CrossRefGoogle ScholarPubMed
Georges, J.-Y., Bonadonna, F., & Guinet, C. 2000a. Foraging habitat and diving activity of subantarctic fur seals in relation to sea-surface temperatures at Amsterdam Island. Marine Ecology Progress Series, 196, 291304.CrossRefGoogle Scholar
Georges, J.-Y., Tremblay, Y., & Guinet, C. 2000b. Seasonal diving behaviour in lactating subantarctic fur seals on Amsterdam Island. Polar Biology, 23, 5969.CrossRefGoogle Scholar
Gilmartin, W. G., Pierce, R. W., & Antonelis, G. A. Jr 1974. Some physiological parameters of the blood of the California gray whale. Marine Fisheries Review, 36, 2831.Google Scholar
Gjertz, I., Griffiths, D., Krafft, B. A., Lydersen, C., & Wiig, O. 2001. Diving and haul out patterns of walruses Odobenus rosmarus on Svalbard. Polar Biology, 24, 314319.CrossRefGoogle Scholar
Gjertz, I., Kovacs, K. M., Lydersen, C., & Wiig, Ø. 2000a. Movements and diving of adult ringed seals (Phoca hispida) in Svalbard. Polar Biology, 23, 651656.CrossRefGoogle Scholar
Gjertz, I., Kovacs, K. M., Lydersen, C., & Wiig, Ø. 2000b. Movements and diving of bearded seal (Erignathus barbatus) mothers and pups during lactation and post-weaning. Polar Biology, 23, 559566.CrossRefGoogle Scholar
Gläser, N., Wieskotten, S., Otter, C., Dehnhardt, G., & Hanke, W. 2011. Hydrodynamic trail following in a California sea lion (Zalophus californianus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 141151.CrossRefGoogle Scholar
Glezer, I. I., Jacobs, M. S., & Morgane, P. J. 1987. Ultrastructure of the blood–brain barrier in the dolphin (Stenella coeruleoalba). Brain Research, 414, 205218.CrossRefGoogle ScholarPubMed
Godecke, A., Flogel, U., Zanger, K., et al. 1999. Disruption of mice in myoglobin induced multiple compensatory mechanisms. Proceedings of the National Academy of Sciences, 96, 1049510500.CrossRefGoogle ScholarPubMed
Goforth, H. W. 1986. Glycogenolytic responses and force production characteristics of a bottlenose dolphin (Tursiops truncatus) while exercising against a force transducer. PhD thesis, University of California Los Angeles.Google Scholar
Goldbogen, J. A., Calambokidis, J., Croll, D. A., et al. 2008. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. Journal of Experimental Biology, 211, 37123719.CrossRefGoogle ScholarPubMed
Goldbogen, J. A., Calambokidis, J., Croll, D. A., et al. 2012. Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Functional Ecology, 26, 216226.CrossRefGoogle Scholar
Goldbogen, J. A., Calambokidis, J., Oleson, E., et al. 2011. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. Journal of Experimental Biology, 214, 131146.CrossRefGoogle ScholarPubMed
Goldbogen, J. A., Calambokidis, J., Shadwick, R., et al. 2006. Kinematics of foraging dives and lunge-feeding in fin whales. Journal of Experimental Biology, 209, 12311244.CrossRefGoogle ScholarPubMed
Goldbogen, J. A., Pyenson, N. D., & Shadwick, R. E. 2007. Big gulps require high drag for fin whale lunge feeding. Marine Ecology Progress Series, 349, 289301.CrossRefGoogle Scholar
Goldbogen, J. A., Southall, B. L., Deruiter, S. L., et al. 2013. Blue whales respond to simulated mid-frequency military sonar. Proceedings of the Royal Society B: Biological Sciences, 280. DOI: 10.1098/rspb.2013.0657.Google ScholarPubMed
Goldman, S. 2010. Free energy wells for small gas bubbles in soft deformable materials. Journal of Chemical Physics, 132. DOI: 10.1063/1.3394940.CrossRefGoogle ScholarPubMed
Gooden, B. A. & Elsner, R. 1985. What diving mammals might tell us about blood flow regulation. Perspectives in Biology and Medicine, 28, 463474.CrossRefGoogle ScholarPubMed
Gordon, K. R. 1981. Locomotor behaviour of the walrus (Odobenus). Journal of Zoology, 195, 349367.CrossRefGoogle Scholar
Gorini, C., Jameson, H. S., & Mendelowitz, D. 2009. Serotonergic modulation of the trigeminocardiac reflex neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Journal of Neurophysiology, 102, 14431450.CrossRefGoogle ScholarPubMed
Gosline, J. M. & Shadwick, R. E. 1996. The mechanical properties of fin whale arteries are explained by novel connective tissue designs. Journal of Experimental Biology, 199, 985997.CrossRefGoogle ScholarPubMed
Goudappel, J. R. & Slijper, E. J. 1958. Microscopic structure of the lungs of the bottlenose whale. Nature, 182, 479.CrossRefGoogle Scholar
Goulet, A.-M., Hammill, M. O., & Barrette, C. 2001. Movements and diving of grey seal females (Halichoerus grypus) in the Gulf of St. Lawrence, Canada. Polar Biology, 24, 432439.CrossRefGoogle Scholar
Graf, P., Wilson, R. Â. P., Cohen Sanchez, L., Hacklander, K., & Rosell, F. 2014. Diving behaviour and energtics of a semi-aquatic, shallow-diving species: the Eurasian beaver (Castor fiber). Fifth International Bio-logging Science Symposium. Strasbourg, France.Google Scholar
Green, J. A., Butler, P. J., Woakes, A. J., & Boyd, I. L. 2003. Energetics of diving in macaroni penguins. Journal of Experimental Biology, 206, 4357.CrossRefGoogle ScholarPubMed
Green, K., Williams, R., & Green, M. 1998. Foraging ecology and diving behaviour of macaroni penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology, 26, 2734.Google Scholar
Grémillet, D. 1995. “Wing-drying” in cormorants. Journal of Avian Biology, 26, 176.CrossRefGoogle Scholar
Grémillet, D., Chauvin, C., Wilson, R. P., Le Maho, Y., & Wanless, S. 2005. Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. Journal of Avian Biology, 36, 5763.CrossRefGoogle Scholar
Grémillet, D., Dell'omo, G., Ryan, P. G., et al. 2004. Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of cape gannets from neighbouring colonies. Marine Ecology Progress Series, 268, 265279.CrossRefGoogle Scholar
Gremillet, D., Tuschy, I., & Kierspel, M. 1998. Body temperature and insulation in diving great cormorants and European shags. Functional Ecology, 12, 386394.CrossRefGoogle Scholar
Grémillet, D., Wilson, R. P., Storch, S., & Gary, Y. 1999. Three-dimensional space utilization by a marine predator. Marine Ecology Progress Series, 183, 263273.CrossRefGoogle Scholar
Grinnell, S. W., Irving, L., & Scholander, P. F. 1942. Experiments on the relation between blood flow and heart rate in the living seal. Journal of Cellular and Comparative Physiology, 19, 341350.CrossRefGoogle Scholar
Grocott, M. P. W., Martin, D. S., Levett, D. Z. H., et al. 2009. Arterial blood gases and oxygen content in climbers on Mount Everest. New England Journal of Medicine, 360, 140149.CrossRefGoogle ScholarPubMed
Gros, G., Wittenberg, B. A., & Jue, T. 2010. Myoglobin's old and new clothes: from molecular structure to function in living cells. Journal of Experimental Biology, 213, 27132725.CrossRefGoogle ScholarPubMed
Groscolas, R. 1990. Metabolic adaptations to fasting in emperor and king penguins. In: Davis, L. S. & Darby, J. T. (eds.), Penguin Biology. San Diego, CA: Academic Press.Google Scholar
Groscolas, R. & Rodriquez, A. 1982. Glucose and lactate kinetics and interrelations in an Antarctic bird (emperor penguin). American Journal of Physiology, 242, R458R464.Google Scholar
Grubb, B. R. 1981. Blood flow and oxygen consumption in avian skeletal muscle during hypoxia. Journal of Applied Physiology, 50, 450455.CrossRefGoogle ScholarPubMed
Guard, C. L. & Murrish, D. E. 1975. Effects of temperature on the viscous behavior of blood from Antarctic birds and mammals. Comparative Biochemistry and Physiology Part A: Physiology, 52, 287290.CrossRefGoogle ScholarPubMed
Guillemette, M., Anthony, J. Woakes, A. J., et al. 2004. The effect of depth on the diving behaviour of common eiders. Canadian Journal of Zoology, 82, 18181826.CrossRefGoogle Scholar
Gulland, F. M. D., Werner, L., O'Neill, S., et al. 1996. Baseline coagulation assay values for northern elephant seals (Mirounga angustirostris), and disseminated intravascular coagulation in this species. Journal of Wildlife Diseases, 32, 536540.CrossRefGoogle ScholarPubMed
Gunn, A. J. & Thoresen, M. 2006. Hypothermic neuroprotection. NeuroRX, 3, 154169.CrossRefGoogle ScholarPubMed
Guppy, M., Hill, R. D., Liggins, G. C., Zapol, W. M., & Hochachka, P. W. 1986. Micro-computer assisted metabolic studies of voluntary diving of Weddell seals. American Journal of Physiology, 250, 175187.Google Scholar
Guppy, M. & Withers, P. 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews, 74, 140.CrossRefGoogle ScholarPubMed
Gutierrez-Herrera, E., Vacas-Jaques, P., Anderson, R., Zapol, W. M., & Franco, W. 2013. Oxygen saturation in free-diving whales: optical sensor development. Proceedings SPIE 8592 Biomedical Applcations of Light Scattering. DOI: 10.117/12.2008547.CrossRefGoogle Scholar
Gutierrez, G., Pohl, R. J., & Strong, R. 1988. Effect of flow on O2 consumption during progressive hypoxemia. Journal of Applied Physiology, 65, 601607.CrossRefGoogle ScholarPubMed
Guyton, G. P., Stanek, K. S., Schneider, R. C., et al. 1995. Myoglobin-saturation in free-diving Weddell seals. Journal of Applied Physiology, 79, 11481155.CrossRefGoogle ScholarPubMed
Haggblom, L., Terwilliger, R. C., & Terwilliger, N. B. 1988. Changes in myoglobin and lactate dehydrogenase in muscle tissues of a diving bird, the pigeon guillemot, during maturation. Comparative Biochemistry and Physiology B, 91, 273278.CrossRefGoogle ScholarPubMed
Halasz, N. A., Elsner, R., & Garvie, R. S. 1974. Renal recovery from ischemia: a comparative study of harbor seal and dog kidneys. American Journal of Physiology, 227, 13311335.CrossRefGoogle ScholarPubMed
Hall, J. 1970. Conditioning Pacific white-striped dophins, Lagenorhynchus obliquidens, for open-ocean release. Naval Undersea Center Technical Paper No. 200. San Diego, California.Google Scholar
Hallman, M., Glumoff, V., & Rämet, M. 2001. Surfactant in respiratory distress syndrome and lung injury. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 287294.CrossRefGoogle ScholarPubMed
Hallman, M., Spragg, R., Harrell, J. H., Moser, K. M., & Gluck, L. 1982. Evidence of lung surfactant abnormality in respiratory failure: study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. Journal of Clinical Investigation, 70, 673683.CrossRefGoogle ScholarPubMed
Halsey, J. 1982. Effects of high pressure on the central nervous system. Physiological Reviews, 62, 13411377.CrossRefGoogle ScholarPubMed
Halsey, L. G., Butler, P. J., Fahlman, A., Woakes, A. J., & Handrich, Y. 2008. Behavioral and physiological significance of minimum resting metabolic rate in king penguins. Physiological and Biochemical Zoology, 81, 7486.CrossRefGoogle ScholarPubMed
Hamilton, C. D., Golightly, R. T., & Takekawa, J. Y. 2005. Characteristics of diving in radio-marked Xantus's murrelet. Marine Ornithology, 33, 155159.Google Scholar
Hamilton, J., Moodie, D., & Levy, J. 1979. The use of the diving reflex to terminate supraventricular tachycardia in a 2-week-old infant. American Heart Journal, 97, 371374.CrossRefGoogle Scholar
Hammel, H. T., Elsner, R. W., Heller, H. C., Maggert, J. A., & Bainton, C. R. 1977. Thermoregulatory responses to altering hypothalamic temperature in the harbor seal. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 232, R18R26.Google ScholarPubMed
Hammond, D., Elsner, R., Simison, G., & Hubbard, R. 1969. Submersion bradycardia in the newborn elephant seal Mirounga angustirostris. American Journal of Physiology 216, 220222.CrossRefGoogle ScholarPubMed
Hammond, J. A., Bennett, A., Waltom, M. J., & Hall, A. J. 2005. Molecular cloning and expression of leptin in gray and harbor seal blubber, bone marrow, and lung and its potential role in marine mammal respiratory physiology. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R545R553.Google ScholarPubMed
Hampton, I. F. G. & Whittow, G. C. 1976. Body temperature and heat exchange in the Hawaiian spinner dolphin, Stenella longirostris. Comparative Biochemistry and Physiology Part A: Physiology, 55, 195197.CrossRefGoogle ScholarPubMed
Hance, A. J., Robin, E. D., Halter, J. B., et al. 1982. Hormonal changes and enforced diving in the harbor seal, Phoca vitulina: II. Plasma catecholamines. American Journal of Physiology, 242, R528R532.Google ScholarPubMed
Handrich, Y., Bevan, R. M., Charrassin, J.-B., et al. 1997. Hypothermia in foraging king penguins. Nature, 388, 6467.CrossRefGoogle Scholar
Hanke, W., Witte, M., Miersch, L., et al. 2010. Harbor seal vibrissa morphology suppresses vortex-induced vibrations. Journal of Experimental Biology, 213, 26652672.CrossRefGoogle ScholarPubMed
Hansel, J., Solleder, I., Gfroerer, W., et al. 2009. Hypoxia and cardiac arrhythmias in breath-hold divers during voluntary immersed breath-holds. European Journal of Applied Physiology, 105, 673678.CrossRefGoogle ScholarPubMed
Hanson, M. B. & Baird, R. W. 1998. Dall's porpoise reactions to tagging attempts using a remotely-deployed suction-cup tag. Marine Technology Society Journal, 32, 1823.Google Scholar
Harding, A., Egevang, C., Walkusz, W., et al. 2009. Estimating prey capture rates of a planktivorous seabird, the little auk (Alle alle), using diet, diving behaviour, and energy consumption. Polar Biology, 32, 785796.CrossRefGoogle Scholar
Harris, R. C., Marlin, D. J., Dunnett, M., Snow, D. H., & Hultman, E. 1990. Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comparative Biochemistry and Physiology Part A: Physiology, 97, 249251.CrossRefGoogle ScholarPubMed
Harrison, R. J. & Kooyman, G. L. 1968. General physiology of the pinnipedia. In: Harrison, R. J., Hubbard, R. C., Peterson, R. S., Rice, C. E., Schusterman, R. J. (ed.), The Behavior and Physiology of Pinnipeds. New York: Appleton-Century-Crofts.Google Scholar
Harrison, R. J. & Tomlinson, J. D. W. 1956. Observations on the venous system in certain Pinnipedia and Cetacea. Proceedings of the Zoological Society of London, 126, 205233.CrossRefGoogle Scholar
Hartman, F. A. 1955. Heart weight in birds. The Condor, 57, 221238.CrossRefGoogle Scholar
Harvey, E. N., Mcelroy, W. D., Whitely, A. H., Warren, G. H., & Peace, D. C. 1944. Bubble formation in animals: III. An analysis of gas pressure and hydrostatic tension in cats. Journal of Cellular and Comparative Physiology, 24, 117132.CrossRefGoogle Scholar
Hassrick, J. L., Crocker, D. E., Teutschel, N. M., et al. 2010. Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals. Journal of Experimental Biology, 213, 585592.CrossRefGoogle ScholarPubMed
Hastie, G. D., Rosen, D. A. S., & Trites, A. W. 2007. Reductions in oxygen consumption during dive and estimated submergence limitations of Steller sea lions (Eumetopias jubatus). Marine Mammal Science, 23, 272286.CrossRefGoogle Scholar
Hausenloy, D. J. & Yellon, D. M. 2011. The therapeutic potential of ischemic conditioning: an update. Nature Reviews Cardiology, 8, 619629.CrossRefGoogle ScholarPubMed
Hawkey, C. M., Horsley, D. T., & Keymer, I. F. 1989. Haematology of wild penguins (spenisciformes) in the Falkland Islands. Avian Pathology, 18, 495502.CrossRefGoogle ScholarPubMed
Hawkins, P., Butler, P., Woakes, A., & Gabrielsen, G. 1997. Heat increment of feeding in Brunnich's guillemot. Journal of Experimental Biology, 200, 17571763.CrossRefGoogle ScholarPubMed
Hawkins, P. A., Butler, P. J., Woakes, A. J., & Speakman, J. R. 2000. Estimation of the rate of oxygen consumption of the common eider duck (Somateria mollissima), with some measurements of heart rate during voluntary dives. Journal of Experimental Biology, 203, 28192832.CrossRefGoogle ScholarPubMed
Heath, M. E. & Ridgway, S. H. 1999. How dolphins use their blubber to avoid heat stress during encounters with warm water. American Journal of Physiology, 276, R1188R1194.Google ScholarPubMed
Hedd, A., Gales, R., Brothers, N., & Robertson, G. 1997. Diving behaviour of the shy albatross Diomedea cauta in Tasmania: initial findings and dive recorder assessment. Ibis, 139, 452460.CrossRefGoogle Scholar
Hedrick, M. S. & Duffield, D. A. 1991. Haemotological and rheological aspects of blood in seven species of marine mammals: physiological implications for diving behavior. Journal of Zoology (London), 225, 273283.CrossRefGoogle Scholar
Hedrick, M. S., Duffield, D. A., & Cornell, L. H. 1986. Blood viscosity and optimal hematocrit in a deep-diving mammal, the northern elephant seal (Mirounga angustirostris). Canadian Journal of Zoology, 64, 20812085.CrossRefGoogle Scholar
Heerah, K., Andrews-Goff, V., Williams, G., et al. 2013. Ecology of Weddell seals during winter: influence of environmental parameters on their foraging behaviour. Deep Sea Research Part II: Topical Studies in Oceanography, 88–89, 2333.CrossRefGoogle Scholar
Heglund, N. C., Cavagna, G. A., & Taylor, C. R. 1982a. Energetics and mechanics of terrestrial locomotion: III. Energy changes of the centre of mass as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 4156.CrossRefGoogle ScholarPubMed
Heglund, N. C., Fedak, M. A., Taylor, C. R., & Cavagna, G. A. 1982b. Energetics and mechanics of terrestrial locomotion: IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 5766.CrossRefGoogle ScholarPubMed
Heide-Jorgensen, M. P., Bloch, D., Stefansson, E., et al. 2002. Diving behaviour of long-finned pilot whales Globicephalas around the Faroe Islands. Wildlife Biology, 8, 307311.CrossRefGoogle Scholar
Heide-Jorgensen, M. P., & Dietz, R. 1995. Some characteristics of narwhal, Monodon monoceros, diving behaviour in Baffin Bay. Canadian Journal of Zoology, 73, 21202132.CrossRefGoogle Scholar
Heintzelman, D. S. 1963. Diving times of a common goldeneye. Wilson Bulletin, 75, 91.Google Scholar
Helbo, S. & Fago, A. 2012. Functional properties of myoglobins from five whale species with different diving capacities. Journal of Experimental Biology, 215, 34033410.Google ScholarPubMed
Helbo, S., Weber, R. E., & Fago, A. 2013. Expression patterns and adaptive functional diversity of vertebrate myoglobins. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 1834, 18321839.CrossRefGoogle ScholarPubMed
Hemmingsen, E. & Scholander, P. F. 1960. Specific transport of oxygen through hemoglobin solutions. Science, 132, 1379.CrossRefGoogle ScholarPubMed
Hemmingsen, E. A. 1963. Enhancement of oxygen transport by myoglobin. Comparative Biochemistry and Physiology, 10, 239.CrossRefGoogle ScholarPubMed
Henkel, L. A., Burkett, E. E., & Takekawa, J. Y. 2004. At-sea activity and diving behavior of a radio-tagged marbled murrelet in Central California. Waterbirds, 27, 912.CrossRefGoogle Scholar
Herrera, E. A., Reyes, R. V., Giussani, D. A., et al. 2008. Carbon monoxide: a novel pulmonary artery vasodilator in neonatal llamas of the Andean altiplano. Cardiovascular Research, 77, 197201.CrossRefGoogle ScholarPubMed
Heyning, J. E. & Mead, J. G. 1997. Thermoregulation in the mouths of feeding gray whales. Science, 278, 11381140.CrossRefGoogle ScholarPubMed
Heyning, J. E., Mead, J. G., & Bryden, M. M. 1993. A palatal rete in the right whale? Nature, 361, 2425.CrossRefGoogle ScholarPubMed
Hickey, R., Albin, M. S., Bunegin, L., & Gelineau, J. 1986. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain. Stroke, 17, 11831189.CrossRefGoogle Scholar
Hill, B. G., Dranka, B. P., Bailey, S. M., Lancaster, J. R., & Darley-Usmar, V. M. 2010. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. Journal of Biological Chemistry, 285, 1969919704.CrossRefGoogle Scholar
Hill, R. D. 1986. Microcomputer monitor and blood sampler for free-diving Weddell seals Leptonychotes weddelli. Journal of Applied Physiology, 61, 15701576.CrossRefGoogle Scholar
Hill, R. D., Schneider, R. C., Liggins, G. C., et al. 1987. Heart rate and body temperature during free diving of Weddell seals. American Journal of Physiology, 253, R344R351.Google ScholarPubMed
Hilton, J. W. & Gaskin, D. E. 1978. Comparative volumes and vascular microanatomy of the intrahepatic venous system of the harbour porpoise, Phocoena phocoena (L.). Canadian Journal of Zoology, 56, 22922298.CrossRefGoogle ScholarPubMed
Hindell, M. A. & Lea, M. A. 1998. Heart rate, swimming speed, and estimated oxygen consumption of a free-ranging southern elephant seal. Physiological Zoology, 71, 7484.CrossRefGoogle ScholarPubMed
Hindell, M. A., Slip, D. J., & Burton, H. R. 1991. The diving behaviour of adult male and female southern elephant seals, Mirounga leonina (Pinnipedia: Phocidae). Australian Journal of Zoology, 39, 595619.CrossRefGoogle Scholar
Hindell, M. A., Slip, D. J., Burton, H. R., & Bryden, M. M. 1992. Physiological implications of continuous, prolonged, and deep dives of southern elephant seals. Canadian Journal of Zoology, 70, 370379.CrossRefGoogle Scholar
Hindle, A. G., Mellish, J.-A. E., & Horning, M. 2011. Aerobic dive limit does not decline in an aging pinniped. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 315A, 544552.CrossRefGoogle Scholar
Hindle, A. G., Senkiw, R. W., & Macarthur, R. A. 2006. Body cooling and the diving capabiities of muskrats (Ondatra zibethicus). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 144, 232241.CrossRefGoogle ScholarPubMed
Hindle, A. G., Young, B. L., Rosen, D. A. S., Haulena, M., & Trites, A. W. 2010. Dive response differs between shallow- and deep-diving Steller sea lions. Journal of Experimental Marine Biology and Ecology, 394, 141148.CrossRefGoogle Scholar
Hinds, D. S. & Calder, W. A. 1971. Tracheal dead space in the respiration of birds. Evolution, 25, 429440.CrossRefGoogle ScholarPubMed
Hlastala, M. P., McKenna, H. P., Franada, R. L., & Detter, J. C. 1976. Influence of carbon monoxide on hemoglobin–oxygen binding. Journal of Applied Physiology, 41, 893899.CrossRefGoogle ScholarPubMed
Hobson, R. P. & Martin, A. R. 1996. Behaviour and dive times of Arnoux's beaked whales, Berardius arnuxii, at narrow leads in fast ice. Canadian Journal of Zoology, 74, 388393.CrossRefGoogle Scholar
Hochachka, P. W. 1986a. Balancing conflicting metabolic demands of exercise and diving. Federation Proceedings, 45, 29482952.Google ScholarPubMed
Hochachka, P. W. 1986b. Defense strategies against hypoxia and hypothermia. Science, 231, 234241.CrossRefGoogle ScholarPubMed
Hochachka, P. W. 1986c. Metabolic arrest. Intensive Care Medicine, 12, 127133.CrossRefGoogle ScholarPubMed
Hochachka, P. W. 1988. Metabolic suppression and oxygen availability. Canadian Journal of Zoology, 66, 152158.CrossRefGoogle Scholar
Hochachka, P. W. 2000. Pinniped diving response mechanism and evolution: a window on the paradigm of comparative biochemistry and physiology. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 126, 435458.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Buck, L. T., Doll, C. J., & Land, S. C. 1996. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences, 93, 94939498.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Castellini, J. M., Hill, R. D., et al. 1988. Protective metabolic mechanisms during liver ischemia: transferrable lessons from long-diving animals. Molecular and Cellular Biochemistry, 84, 7785.CrossRefGoogle Scholar
Hochachka, P. W. & Foreman, R. A. 1993. Phocid and cetacean blueprints of muscle metabolism. Canadian Journal of Zoology, 71, 20892098.CrossRefGoogle Scholar
Hochachka, P. W. & Guppy, M. 1987. Metabolic Arrest and the Control of Biological Time. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Hochachka, P. W., Liggins, G. C., Qvist, J., et al. 1977. Pulmonary metabolism for diving: conditioning blood for the brain. Science, 198, 831834.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Lutz, P. L. 2001. Mechanism, origin, and evolution of hypoxia tolerance in animals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 130, 435459.CrossRefGoogle ScholarPubMed
Hochachka, P. W., Owen, T. G., Allen, J. F., & Whittow, G. C. 1975. Multiple end products of anaerobiosis in diving vertebrates. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 50, 17.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Somero, G. N. 1984. Biochemical Adaptation. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Hogan, M. C., Bebout, D. E., & Wagner, P. D. 1993. Effect of blood flow reduction on maximal O2 uptake in canine gastrocnemius muscle in situ. Journal of Applied Physiology, 74, 17421747.CrossRefGoogle ScholarPubMed
Hohimer, A. R., Hales, J. R., Rowell, L. B., & Smith, O. A. 1983. Regional distribution of blood flow during mild dynamic leg exercise in the baboon. Journal of Applied Physiology, 55, 11731177.CrossRefGoogle ScholarPubMed
Hol, R., Blix, A. S., & Myhre, H. O. 1975. Selective redistribution of the blood volume in the diving seal (Pagophilus groenlandicus). Rapports et Proces-Verbaux del Reúnions Conseil permanent international pour l'exploration de la mer, 169, 423432.Google Scholar
Hong, S. K., Ashwell-Erickson, S., Gigliotti, P., & Elsner, R. 1982. Effects of anoxia and low pH on organic ion transport and electrolyte distribution in harbor seal (Phoca vitulina) kidney slices. Journal of Comparative Physiology, 149, 1924.CrossRefGoogle Scholar
Hong, S. K., Song, S. H., Kim, P. K., & Suh, C. S. 1967. Seasonal observations on the cardiac rhythm during diving in the Korean ama. Journal of Applied Physiology, 23, 1822.CrossRefGoogle ScholarPubMed
Hooker, S. K. & Baird, R. W. 1999. Deep-diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proceedings of the Royal Society London B, 266, 671676.CrossRefGoogle Scholar
Hooker, S. K. & Baird, R. W. 2001. Diving and ranging behaviour of odontocetes: a methodological review and critique. Mammal Review, 31, 81105.CrossRefGoogle Scholar
Hooker, S. K., Baird, R. W., & Fahlman, A. 2009. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus. Respiratory Physiology & Neurobiology, 167, 235246.CrossRefGoogle ScholarPubMed
Hooker, S. K., Fahlman, A., Moore, M. J., et al. 2012. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proceedings of the Royal Society B: Biological Sciences, 279, 10411050.CrossRefGoogle ScholarPubMed
Hooker, S. K., Miller, P. J. O., Johnson, M. P., Cox, O. P., & Boyd, I. L. 2005. Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proceedings of the Royal Society London B, 272, 355363.Google ScholarPubMed
Horning, M. 2012. Constraint lines and performance envelopes in behavioral physiology: the case of the aerobic dive limit. Frontiers in Physiology, 3. DOI: 10.3389/fphys.2012.00381.CrossRefGoogle ScholarPubMed
Horning, M. & Trillmich, F. 1997. Ontogeny of diving behaviour in the Galápagos fur seal. Behaviour, 134, 12111257.CrossRefGoogle Scholar
Horsburgh, J. M., Morrice, M., Lea, M.-A., & Hindell, M. A. 2008. Determining feeding events and prey encounter rates in a southern elephant seal: a method using swim speed and stomach temperature. Marine Mammal Science, 24, 207217.CrossRefGoogle Scholar
Houser, D. S., Dankiewicz-Talmadge, L. A., Stockard, T. K., & Ponganis, P. J. 2010. Investigation of the potential for vascular bubble formation in a repetitively diving dolphin. Journal of Experimental Biology, 213, 5262.CrossRefGoogle Scholar
Houser, D. S., Howard, R., & Ridgway, S. 2001. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals. Journal of Theoretical Biology, 213, 183195.CrossRefGoogle ScholarPubMed
Howell, A. B. 1930. Aquatic Mammals. New York: Dover Publications.Google Scholar
Hudson, C. C., Liu, M., Chiang, G. G., et al. 2002. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology, 22, 70047014.CrossRefGoogle ScholarPubMed
Hudson, D. M. & Jones, D. R. 1986. The influence of body mass on the endurance to restrained submersion in the Pekin duck. Journal of Experimental Biology, 120, 351367.CrossRefGoogle Scholar
Hui, C. 1975. Thoracic collapse as affected by the retia thoracica in the dolphin. Respiration, 25, 6370.CrossRefGoogle ScholarPubMed
Hui, C. A. 1988a. Penguin swimming: I. Hydrodynamics. Physiological Zoology, 61, 333343.CrossRefGoogle Scholar
Hui, C. A. 1988b. Penguin swimming: II. Energetics and behavior. Physiological Zoology, 61, 344350.CrossRefGoogle Scholar
Huin, N. 1994. Diving depths of white-chinned petrels. The Condor, 96, 11111113.CrossRefGoogle Scholar
Huin, N. & Prince, P. A. 1997. Diving behaviour of the grey-headed albatross. Antarctic Science, 9, 243249.CrossRefGoogle Scholar
Hull, C. L. 2000. Comparative diving behaviour and segregation of the marine habitat by breeding royal penguins, Eudyptes schlegeli, and eastern rockhopper penguins, Eudyptes chrysocome filholi, at Macquarie Island. Canadian Journal of Zoology, 78, 333345.CrossRefGoogle Scholar
Hurford, W. E., Hochachka, P. W., Schneider, R. C., et al. 1996. Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal. Journal of Applied Physiology, 80, 298306.CrossRefGoogle ScholarPubMed
Hurford, W. E., Hong, S. K., Park, Y. S., et al. 1990. Splenic contraction during breath-hold diving in the Korean ama. Journal of Applied Physiology, 69, 932936.CrossRefGoogle ScholarPubMed
Hurley, J. A. & Costa, D. P. 2001. Standard metabolic rate at the surface and during trained submersions in adult California sea lions (Zalophus californianus). Journal of Experimental Biology, 204, 32733281.CrossRefGoogle ScholarPubMed
Hyatt, R. E., Schilder, D. P., & Fry, D. L. 1958. Relationship between maximum expiratory flow and degree of lung inflation. Journal of Applied Physiology, 13, 331336.CrossRefGoogle ScholarPubMed
Hyman, A. L. & Kadowitz, P. J. 1975. Effects of alveolar and perfusion hypoxia and hypercapnia on pulmonary vascular resistance in the lamb. American Journal of Physiology, 228, 397403.CrossRefGoogle ScholarPubMed
Hyvärinen, H. 1989. Diving in darkness: whiskers as sense organs of the ringed seal (Phoca hispida saimensis). Journal of Zoology, 218, 663678.CrossRefGoogle Scholar
Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences, 84, 92659269.CrossRefGoogle ScholarPubMed
Ikels, K. G. 1970. Production of gas bubbles in fluids by tribonucleation. Journal of Applied Physiology, 28, 524527.CrossRefGoogle Scholar
Irvine, A. B. 1983. Manatee metabolism and its influence on distribution in Florida. Biological Conservation, 25, 315334.CrossRefGoogle Scholar
Irving, L. 1934. On the ability of warm-blooded animals to survive without breathing. The Scientific Monthly, 38, 422428.Google Scholar
Irving, L. 1938. Changes in the blood flow through the brain and muscles during the arrest of breathing. American Journal of Physiology, 122, 207214.CrossRefGoogle Scholar
Irving, L. 1939. Respiration in diving mammals. Physiological Reviews, 19, 112134.CrossRefGoogle Scholar
Irving, L. 1963. Bradycardia in human divers. Journal of Applied Physiology, 18, 489491.CrossRefGoogle ScholarPubMed
Irving, L. & Hart, J. S. 1957. The metabolism and insulation of seals as bare-skinned mammals in cold water. Canadian Journal of Zoology, 35, 497511.CrossRefGoogle Scholar
Irving, L. & Orr, M. D. 1935. The diving habits of the beaver. Science, 82, 569.CrossRefGoogle ScholarPubMed
Irving, L., Peyton, L. J., Bahn, C. H., & Peterson, R. S. 1962. Regulation of temperature in fur seals. Physiological Zoology, 35, 275284.CrossRefGoogle Scholar
Irving, L., Peyton, L. J., Bahn, C. H., & Peterson, R. S. 1963. Action of the heart and breathing during the development of fur seals (Callorhinus ursinus). Physiological Zoology, 36, 120.CrossRefGoogle Scholar
Irving, L., Scholander, P. F., & Grinnell, S. W. 1940. Respiratory metabolism of the porpoise. Science, 91, 455.Google Scholar
Irving, L., Scholander, P. F., & Grinnell, S. W. 1941a. The respiration of the porpoise, Tursiops truncatus. Journal of Cellular and Comparative Physiology, 17, 145168.CrossRefGoogle Scholar
Irving, L., Scholander, P. F., & Grinnell, S. W. 1941b. Significance of the heart rate to the diving ability of seals. Journal of Cellular and Comparative Physiology, 18, 283297.CrossRefGoogle Scholar
Irving, L., Scholander, P. F., & Grinnell, S. W. 1942a. Experimental studies of the respiration of sloths. Journal of Cellular and Comparative Physiology, 20, 189210.CrossRefGoogle Scholar
Irving, L., Scholander, P. F., & Grinnell, S. W. 1942b. The regulation of arterial blood pressure in the seal during diving. American Journal of Physiology, 135, 557566.CrossRefGoogle Scholar
Irving, L., Solandt, O. M., & Solandt, D. Y. 1935a. The respiratory metabolism of the seal and its adjustment to diving. Journal of Cellular and Comparative Physiology, 7, 137151.CrossRefGoogle Scholar
Irving, L., Solandt, O. M., Solandt, D. Y., & Fisher, K. C. 1935b. Respiratory characteristics of the blood of the seal. Journal of Cellular and Comparative Physiology, 6, 393403.CrossRefGoogle Scholar
Iyer, N. V., Kotch, L. E., Agani, F., et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes & Development, 12, 149162.CrossRefGoogle Scholar
Janes, D. N. & Chappell, M. A. 1995. The effect of ration size and body size on specific dynamic action in Adélie penguin chicks, Pygoscelis adeliae. Physiological Zoology, 68, 10291044.CrossRefGoogle Scholar
Jaquet, N., Dawson, S., & Slooten, E. 2000. Seasonal distribution and diving behaviour of male sperm whales off Kaikoura: foraging implications. Canadian Journal of Zoology, 78, 407419.CrossRefGoogle Scholar
Jarman, M. 1973. Experiments on the emperor penguin, Aptendoytes forsteri, in various thermal environments. British Antarctic Survey Bulletin, 33–34, 5763.Google Scholar
Jay, C. V., Farley, S. D., & Garner, G. W. 2001. Summer diving behavior of male walruses in Bristol Bay, Alaska. Marine Mammal Science, 17, 617631.CrossRefGoogle Scholar
Jefferson, T. A. 1987. A study of the behavior of Dall's porpoise (Phocoenoides dalli) in the Johnstone Strait, British Columbia. Canadian Journal of Zoology, 65, 736744.CrossRefGoogle Scholar
Jenni, D. A. & Gambs, R. D. 1974. Diving times of grebes and masked ducks. The Auk, 91, 415417.Google Scholar
Jensen, F. B., Hansen, M. N., Montesanti, G., & Wang, T. 2014. Nitric oxide metabolites during anoxia and reoxygenation in the anoxia-tolerant vertebrate Trachemys scripta. Journal of Experimental Biology, 217, 423431.Google ScholarPubMed
Jepson, P. D., Arbelo, M., Deaville, R., et al. 2003. Gas-bubble lesions in stranded cetaceans. Nature, 425, 575576.CrossRefGoogle ScholarPubMed
Jepson, P. D., Deaville, R., Patterson, I. A. P., et al. 2005. Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. Veterinary Pathology Online, 42, 291305.CrossRefGoogle ScholarPubMed
Jobe, A. H. 1993. Pulmonary surfactant therapy. New England Journal of Medicine, 328, 861868.Google ScholarPubMed
Jobsis, P. D., Ponganis, P. J., & Kooyman, G. L. 2001. Effects of training on forced submersion responses in harbor seals. Journal of Experimental Biology, 204, 38773885.CrossRefGoogle ScholarPubMed
Jodice, P. G. & Collopy, M. W. 1999. Diving and foraging patterns of marbled murrelets (Brachyramphus inarmoratus): testing predictions from optimal-breathing models. Canadian Journal of Zoology, 77, 14091418.CrossRefGoogle Scholar
Johansen, K. 1959. Heart activity during experimental diving of snakes. American Journal of Physiology: Legacy Content, 197, 604606.CrossRefGoogle ScholarPubMed
Johansen, K. 1964. Regional distribution of circulating blood during submersion asphyxia in the duck. Acta Physiologica Scandinavica, 62, 19.CrossRefGoogle ScholarPubMed
Johansen, K. & Aakhus, T. 1963. Central cardiovascular responses to submersion asphyxia in the duck. American Journal of Physiology: Legacy Content, 205, 11671171.CrossRefGoogle ScholarPubMed
Johansen, K., Berger, M., Bicudo, J. E. P. W., Ruschi, A., & De Alameida, P. J. 1987. Respiratory properties of blood and myoglobin in hummingbirds. Physiological Zoology, 60, 269278.CrossRefGoogle Scholar
Johansen, K. & Krog, J. 1959. Peripheral circulatory response to submersion asphyxia in the duck. Acta Physiologica Scandinavica, 46, 194200.CrossRefGoogle ScholarPubMed
Johansson, L. C. & Aldrin, B. S. W. 2002. Kinematics of diving Atlantic puffins (Fratercula arctica L.): evidence for an active upstroke. Journal of Experimental Biology, 205, 371378.CrossRefGoogle ScholarPubMed
Johansson, L. C. & Lindhe Norberg, U. M. 2001. Lift-based paddling in diving grebe. Journal of Experimental Biology, 204, 16871696.CrossRefGoogle ScholarPubMed
Johansson, L. C. & Norberg, R. A. 2003. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. Nature, 424, 6568.CrossRefGoogle ScholarPubMed
Johnson, M., Madsen, P. T., Zimmer, W. M. X., De Soto, N. A., & Tyack, P. L. 2004. Beaked whales echolocate on prey. Proceedings of the Royal Society of London B: Biological Sciences, 271, S383S386.CrossRefGoogle ScholarPubMed
Johnson, M., Madsen, P. T., Zimmer, W. M. X., De Soto, N. A., & Tyack, P. L. 2006. Foraging Blainville's beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation. Journal of Experimental Biology, 209, 50385050.CrossRefGoogle ScholarPubMed
Johnson, M. P. & Tyack, P. L. 2003. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28, 312.CrossRefGoogle Scholar
Jones, D. R., Bryan, R. M. Jr., West, N. H., Lord, R. H., & Clark, B. 1979. Regional distribution of blood flow during diving in the duck (Anas platyrhynchos). Canadian Journal of Zoology, 57, 9951002.CrossRefGoogle Scholar
Jones, D. R., Fisher, H. D., Mctaggart, S., & West, N. H. 1973. Heart rate during breath-holding and diving in the unrestrained harbor seal (Phoca vitulina richardi). Canadian Journal of Zoology, 51, 671680.CrossRefGoogle Scholar
Jones, D. R. & Furilla, R. A. 1987. The anatomical, physiological, behavioral, and metabolic consequences of voluntary and forced diving. In: Seller, T. J. (ed.), Bird Respiration. Boca Raton, FL: CRC Press.Google Scholar
Jones, D. R., Furilla, R. A., Heieis, M. R. A., Gabbott, G. R. J., & Smith, F. M. 1988. Forced and voluntary diving in ducks: cardiovascular adjustments and their control. Canadian Journal of Zoology, 66, 7583.CrossRefGoogle Scholar
Jones, D. R. & Holeton, G. F. 1972. Cardiac output of ducks during diving. Comparative Biochemistry and Physiology, 41, 639645.CrossRefGoogle ScholarPubMed
Jones, D. R., Milsom, W. K., & Gabbott, G. R. J. 1982. Role of central and peripheral chemoreceptors in diving responses of ducks. American Journal of Physiology, 243, R537R545.Google ScholarPubMed
Jones, D. R., Milsom, W. K., Smith, F. M., West, N. H., & Bamford, O. S. 1983. Diving responses in ducks after acute barodenervation. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 245, R222R229.Google ScholarPubMed
Jones, D. R. & Purves, M. J. 1970. The carotid body in the duck and the consequences of its denervation upon the cardiac responses to immersion. Journal of Physiology, 211, 279294.CrossRefGoogle ScholarPubMed
Jones, J. H., Effmann, E. L., & Schmidt-Nielsen, K. 1985. Lung volume changes during respiration in ducks. Respiration Physiology, 59, 1525.CrossRefGoogle ScholarPubMed
Joulia, F., Lemaitre, F., Fontanari, P., Mille, M. L., & Barthelemy, P. 2009. Circulatory effects of apnoea in elite breath-hold divers. Acta Physiologica, 197, 7582.CrossRefGoogle ScholarPubMed
Joyner, M. J. & Wilkins, B. W. 2007. Exercise hyperaemia: is anything obligatory but the hyperaemia? Journal of Physiology, 583, 855860.CrossRefGoogle ScholarPubMed
Jurgens, K. D., Papadopoulos, S., Peters, T., & Gros, G. 2000. Myoglobin: just an oxygen store or also an oxygen transporter? News in Physiological Sciences, 15, 269274.Google ScholarPubMed
Jurgens, K. D., Peters, T., & Gros, G. 1994. Diffusivity of myoglobin in intact skeletal muscle cells. Proceedings of the National Academy of Sciences, 91, 38293833.CrossRefGoogle ScholarPubMed
Jury, J. 1986. Razorbill swimming at depth of 140 m. British Birds, 79, 339.Google Scholar
Kadowaki, A., Matsukawa, K., Wakasugi, R., Nakamoto, T., & Liang, N. 2011. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats. American Journal of Physiology: Heart and Circulatory Physiology, 300, H1373H1385.Google Scholar
Kaiser, M. J., Galanidi, M., Showler, D., et al. 2006. Distribution and behaviour of common scoter Melanitta nigra relative to prey resources and environmental parameters. Ibis, 148, 110128.CrossRefGoogle Scholar
Kajimura, M., Fukuda, R., Bateman, R. M., Yamamoto, T., & Suematsu, M. 2010. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxidants & Redox Signaling, 13, 157192.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Davis, R. W., Watson, R., et al. 2002. Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? Journal of Experimental Biology, 205, 36013608.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Dimichele, L. V., Cowan, D. F., & Davis, R. W. 1999. High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. Journal of Applied Physiology, 86, 12471256.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Elsner, R., & Mathieu-Costello, O. 2001. Muscle capillary supply in harbor seals. Journal of Applied Physiology, 90, 19191926.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Hawke, T. J., Trumble, S. J., et al. 2008. The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. Journal of Experimental Biology, 211, 25592565.CrossRefGoogle ScholarPubMed
Kanatous, S. B., Mammen, P. P. A., Rosenberg, P. B., et al. 2009. Hypoxia reprograms calcium signaling and regulates myoglobin expression. American Journal of Physiology: Cell Physiology, 296, C393C402.CrossRefGoogle ScholarPubMed
Kanwisher, J. W., Gabrielsen, G., & Kanwisher, N. 1981. Free and forced diving in birds. Science, 211, 717719.CrossRefGoogle ScholarPubMed
Kaseloo, P. & Lovvorn, J. 2006. Substitution of heat from exercise and digestion by ducks diving for mussels at varying depths and temperatures. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 176, 265275.CrossRefGoogle ScholarPubMed
Kaseloo, P. A. & Lovvorn, J. R. 2003. Heat increment of feeding and thermal substitution in mallard ducks feeding voluntarily on grain. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 173, 207213.CrossRefGoogle ScholarPubMed
Kasting, N. W., Adderley, S. A. L., Safford, T., & Hewlett, K. G. 1989. Thermoregulation in beluga (Delphinapterus leucas) and killer (Orcinus orca) whales. Physiological Zoology, 62, 687701.CrossRefGoogle Scholar
Kato, A., Croxall, J. P., Watanuki, Y., & Naito, Y. 1992. Diving patterns and performance in male and female blue-eyed cormorants Phalacrocorax atriceps at South Georgia. Marine Ornithology, 19, 117129.Google Scholar
Kato, A., Ropert-Coudert, Y., Gremillet, D., & Cannell, B. 2006. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Marine Ecology Progress Series, 308, 293301.CrossRefGoogle Scholar
Kato, A., Watanuki, Y., & Naito, Y. 2003. Foraging behaviour of chick-rearing rhinoceros auklets Cerorhinca monocerata at Teuri Island, Japan, determined by acceleration-depth recording micro data loggers. Journal of Avian Biology, 34, 282287.CrossRefGoogle Scholar
Kato, A., Watanuki, Y., Nishumi, I., et al. 2000. Variation in foraging and parental behavior of king cormorants. The Auk, 117, 718730.CrossRefGoogle Scholar
Kaufman, M. P. & Forster, H. V. 1996. Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell, L. B. & Shepherd, J. T. (eds.), Handbook of Physiology. Bethesda, MD: American Physiological Society.Google Scholar
Kawakami, Y., Natelson, B. H., & Dubois, A. R. 1967. Cardiovascular effects of face immersion and factors affecting diving reflex in man. Journal of Applied Physiology, 23, 964970.CrossRefGoogle ScholarPubMed
Keijer, E. & Butler, P. J. 1982. Volumes of the respiratory and circulatory systems in tufted and mallard ducks. Journal of Experimental Biology, 101, 213220.CrossRefGoogle Scholar
Keitt, B. S., Croll, D. A., & Tershy, B. R. 2001. Dive depth and diet of the black-vented shearwater (Puffinus opisthomelas). The Auk, 117, 507510.CrossRefGoogle Scholar
Kelly, B. P. & Wartzok, D. 1996. Ringed seal diving behavior in the breeding season. Canadian Journal of Zoology, 74, 15471555.CrossRefGoogle Scholar
Kempainen, R. R. & Brunette, D. D. 2004. The evaluation and management of accidental hypothermia. Respiratory Care, 49, 192205.Google ScholarPubMed
Kenny, R. 1979. Breathing and heart rates of the southern elephant seal, Mirounga leonina L. Papers and Proceedings of the Royal Society of Tasmania, 113, 2127.CrossRefGoogle Scholar
Kenyon, K. 1969. The Sea Otter in the Eastern Pacific Ocean. Washington, DC: Government Printing Office.CrossRefGoogle Scholar
Kenyon, K. W. 1975. The Sea Otter in the Eastern North Pacific. New York: Dover Publications.Google Scholar
Kerem, D. & Elsner, R. 1973. Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respiration Physiology, 19, 188200.CrossRefGoogle ScholarPubMed
Kerem, D. H., Hammond, D. D., & Elsner, R. 1973. Tissue glycogen levels in the Weddell seals (Leptonychotes weddelli): a possible adaptation to asphyxial hypoxia. Comparative Biochemistry and Physiology Part A: Comparative Physiology, 45, 731736.CrossRefGoogle Scholar
Kerem, D. H., Kylstra, J. A., & Saltzman, H. A. 1975. Respiratory flow rates in the sea lion. Undersea Biomedical Research, 2, 2027.Google ScholarPubMed
Kielhorn, C. E., Dillaman, R. M., Kinsey, S. T., et al. 2013. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. Journal of Morphology, 274, 663675.CrossRefGoogle ScholarPubMed
King, A. S. & Cowie, A. F. 1969. The functional anatomy of the bronchial muscle of the bird. Journal of Anatomy, 105, 323336.Google ScholarPubMed
King, J. E. 1983. Seals of the World. Ithaca, NY: Cornell University Press.Google Scholar
Kipps, E. K., McLellan, W. A., Rommel, S. A., & Pabst, D. A. 2002. Skin density and its influence on buoyancy in the manatee (Trichechus manatus latirostris), harbor porpoise (Phocoena phocoena), and bottlenose dolphin (Tursiops truncatus). Marine Mammal Science, 18, 765778.CrossRefGoogle Scholar
Kirac, C. O., Savas, Y., Güclüsoy, H., & Veryeri, N. O. 2002. Observations on diving behaviour of free-ranging Mediterranean monk seals Monachus monachus on Turkish coasts. The Monachus Guardian, 5.Google Scholar
Kirkwood, R. & Robertson, G. 1997. The foraging ecology of female emperor penguins in winter. Ecological Monographs, 67, 155176.CrossRefGoogle Scholar
Kjekshus, K. J., Blix, A. S., Elsner, R., Hol, R., & Amundsen, E. 1982. Myocardial blood flow in the diving seal. American Journal of Physiology, 242, R97R104.Google ScholarPubMed
Klabunde, R. E. 2011. Cardiovascular Physiology Concepts. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Klatsky, L. J., Wells, R. S., & Sweeney, J. C. 2007. Offshore bottlenose dolphins (Tursiops truncatus): movement and dive behavior near the Bermuda Pedestal. Journal of Mammalogy, 88, 5966.CrossRefGoogle Scholar
Kleiber, M. 1975. The Fire of Life. New York: Wiley and Sons.Google Scholar
Knieriem, A. & Hartmann, M. G. 2001. Comparative histopathology of lungs from by-caught Atlantic white-sided dolphins (Leucopleurus acutus). Aquatic Mammals, 27, 7381.Google Scholar
Koehler, R. C., Traystman, R. J., Zeger, S., Rogers, M. C., & Jones, M. D. 1984. Comparison of cerebrovascular response to hypoxic and carbon monoxide hypoxia in newborn and adult sheep. Journal of Cerebral Blood Flow & Metabolism, 4, 115122.CrossRefGoogle ScholarPubMed
Kohin, S., Williams, T. M., & Ortiz, C. L. 1999. Effects of hypoxia and hypercapnia on aerobic metabolic processes in northern elephant seals. Respiration Physiology, 117, 5972.CrossRefGoogle ScholarPubMed
Kojeszewski, T. & Fish, F. E. 2007. Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. Journal of Experimental Biology, 210, 24112418.CrossRefGoogle ScholarPubMed
Kolluru, G. K., Shen, X., Bir, S. C., & Kevil, C. G. 2013. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide, 35, 520.CrossRefGoogle ScholarPubMed
Koopman, H. N. & Westgate, A. J. 2012. Solubility of nitrogen in marine mammal blubber depends on its lipid composition. Journal of Experimental Biology, 215, 38563863.Google ScholarPubMed
Kooyman, G. L. 1965. Maximum diving capacities of the Weddell seal (Leptonychotes weddelli). Science, 151, 15531554.CrossRefGoogle Scholar
Kooyman, G. L. 1968. An analysis of some behavioral and physiological characteristics related to diving in the Weddell seal. Antarctic Research Series, 11, 227261.Google Scholar
Kooyman, G. L. 1972. Deep diving behaviour and effects of pressure in reptiles, birds, and mammals. Symposia of the Society for Experimental Biology, 26, 295311.Google ScholarPubMed
Kooyman, G. L. 1973. Respiratory adaptations in marine mammals. American Zoologist, 13, 457468.CrossRefGoogle Scholar
Kooyman, G. L. 1981. Weddell Seal: Consummate Diver. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kooyman, G. L. 1985. Physiology without restraint in diving mammals. Marine Mammal Science, 1, 166178.CrossRefGoogle Scholar
Kooyman, G. L. 1989. Diverse Divers: Physiology and Behavior. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kooyman, G. L. 2006. Mysteries of adaptation to hypoxia and pressure in marine mammals: the Kenneth S. Norris Lifetime Achievement Award Lecture. Marine Mammal Science, 22, 507526.CrossRefGoogle Scholar
Kooyman, G. L. & Andersen, H. T. 1968. Deep diving. In: Andersen, H. T. (ed.), The Biology of Marine Mammals. New York: Academic Press.Google Scholar
Kooyman, G. L. & Campbell, W. B. 1972. Heart rates in freely diving Weddell seals, Leptonychotes weddelli. Comparative Biochemistry and Physiology Part A: Physiology, 43, 3136.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Castellini, M. A., Davis, R. W., & Maue, R. A. 1983. Aerobic dive limits in immature Weddell seals. Journal of Comparative Physiology, 151, 171174.CrossRefGoogle Scholar
Kooyman, G. L., Cherel, Y., Le Maho, Y., et al. 1992a. Diving behavior and energetics during foraging cycles in king penguins. Ecological Monographs, 62, 143163.CrossRefGoogle Scholar
Kooyman, G. L. & Cornell, L. H. 1981. Flow properties of expiration and inspiration in a trained bottlenose porpoise. Physiological Zoology, 54, 5561.CrossRefGoogle Scholar
Kooyman, G. L., Davis, R. W., & Croxall, J. P. 1986. Diving behavior of Antarctic fur seals. In: Gentry, R. L. & Kooyman, G. L. (eds.), Fur Seals: Maternal Strategies on Land and at Sea. Princeton, NJ: Princeton University Press.Google Scholar
Kooyman, G. L., Drabek, C. M., Elsner, R., & Campbell, W. B. 1971a. Diving behavior of the emperor penguin, Aptenodytes forsteri. The Auk, 88, 775795.CrossRefGoogle Scholar
Kooyman, G. L., Gentry, R. L., Bergman, W. P., & Hammel, H. T. 1976a. Heat loss in penguins during immersion and compression. Comparative Biochemistry and Physiology, 54A, 7580.CrossRefGoogle Scholar
Kooyman, G. L., Gentry, R. L., & Urquhart, D. L. 1976b. Northern fur seal diving behavior: a new approach to its study. Science, 193, 411412.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Hammond, D. D., & Schroeder, J. P. 1970. Bronchograms and tracheograms of seals under pressure. Science, 169, 8284.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Kerem, D. H., Campbell, W. B., & Wright, J. J. 1971b. Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respiration Physiology, 12, 271282.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Kerem, D. H., Campbell, W. B., & Wright, J. J. 1973a. Pulmonary gas exchange in freely diving Weddell seals (Leptonychotes weddelli). Respiration Physiology, 17, 283290.CrossRefGoogle ScholarPubMed
Kooyman, G. L. & Kooyman, T. G. 1995. Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. Condor, 97, 536549.CrossRefGoogle Scholar
Kooyman, G. L., Kooyman, T. G., Horning, M., & Kooyman, C. A. 1996. Penguin dispersal after fledging. Nature, 383, 397.CrossRefGoogle Scholar
Kooyman, G. L., Norris, K. S., & Gentry, R. L. 1975. Spout of the gray whale: its physical characteristics. Science, 190, 908910.CrossRefGoogle Scholar
Kooyman, G. L. & Ponganis, P. J. 1990. Behavior and physiology of diving in emperor and king penguins. In: Davis, L. S. & Darby, J. T. (eds.), Penguin Biology. San Diego, CA: Academic Press.Google Scholar
Kooyman, G. L. & Ponganis, P. J. 1994. Emperor penguin oxygen consumption, heart rate and plasma lactate levels during graded swimming exercise. Journal of Experimental Biology, 195, 199209.CrossRefGoogle ScholarPubMed
Kooyman, G. L. & Ponganis, P. J. 1998. The physiological basis of diving to depth: birds and mammals. Annual Review of Physiology, 60, 1932.CrossRefGoogle ScholarPubMed
Kooyman, G. L. & Ponganis, P. J. 2008. The initial journey of juvenile emperor penguins. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 537543.Google Scholar
Kooyman, G. L., Ponganis, P. J., Castellini, M. A., et al. 1992b. Heart rates and swim speeds of emperor penguins diving under sea ice. Journal of Experimental Biology, 165, 161180.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Ponganis, P. J., & Howard, R. S. 1999. Diving animals. In: Lundgren, C. & Miller, J. (eds.), The Lung at Depth. New York: Marcel Dekker.Google Scholar
Kooyman, G. L., Schroeder, J. P., Denison, D. M., et al. 1973b. Blood N2 tensions of seals during simulated deep dives. American Journal of Physiology, 223, 10161020.CrossRefGoogle Scholar
Kooyman, G. L., Schroeder, J. P., Greene, D. G., & Smith, V. A. 1973c. Gas exchange in penguins during simulated dives to 30 and 68 m. American Journal of Physiology, 225, 14671471.CrossRefGoogle Scholar
Kooyman, G. L. & Sinnett, E. E. 1979. Mechanical properties of the harbor porpoise lung. Respiration Physiology, 36, 287300.CrossRefGoogle ScholarPubMed
Kooyman, G. L. & Sinnett, E. E. 1982. Pulmonary shunts in harbor seals and sea lions during simulated dives to depth. Physiological Zoology, 55, 105111.CrossRefGoogle Scholar
Kooyman, G. L. & Trillmich, F. 1986. Diving behavior of Galapagos fur seals. In: Gentry, R. L. & Kooyman, G. L. (eds.), Fur Seals: Maternal Strategies on Land and at Sea. Princeton, NJ: Princeton University Press.Google Scholar
Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W., & Sinnett, E. E. 1980. Aerobic and anaerobic metabolism during diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. Journal of Comparative Physiology, 138, 335346.CrossRefGoogle Scholar
Kooyman, M. M. & Kooyman, G. L. 2009. Historical perspectives. Aquatic Mammals, 35, 523556.CrossRefGoogle Scholar
Koschier, F. J., Elsner, R. W., Holleman, D. F., & Hong, S. K. 1978. Organic anion transport by renal cortical slices of harbor seals (Phoca vitulina). Comparative Biochemistry and Physiology Part A: Physiology, 60, 289292.CrossRefGoogle Scholar
Kovacs, C. E. & Meyers, R. E. 2000. Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic puffin, Fratercula artcica. Journal of Morphology, 244, 109125.3.0.CO;2-0>CrossRefGoogle Scholar
Krafft, B. A., Lydersen, C., Kovacs, K. M., Gjertz, I., & Haug, T. 2000. Diving behaviour of lactating bearded seals (Erignathus barbatus) in the Svalbard area. Canadian Journal of Zoology, 78, 14081418.CrossRefGoogle Scholar
Kramer, D. L. 1988. The behavioral ecology of air breathing by aquatic mammals. Canadian Journal of Zoology, 66, 8994.CrossRefGoogle Scholar
Krogh, A. 1934. The physiology of the blue whale. Nature, 133, 635637.CrossRefGoogle Scholar
Krutzikowsky, G. K. & Mate, B. R. 2000. Dive and surfacing characteristics of bowheadwhales (Balaena mysticetus) in the Beaufort and Chukchi seas. Canadian Journal of Zoology, 78, 11821198.CrossRefGoogle Scholar
Kuhn, C. E. & Costa, D. P. 2006. Identifying and quantifying prey consumption using stomach temperature change in pinnipeds. Journal of Experimental Biology, 209, 45244532.CrossRefGoogle ScholarPubMed
Kuhn, C. E., Crocker, D. E., Tremblay, Y., & Costa, D. P. 2009. Time to eat: measurements of feeding behaviour in a large marine predator, the northern elephant seal Mirounga angustirostris. Journal of Animal Ecology, 78, 512523.CrossRefGoogle Scholar
Kuhn, C. E., McDonald, B. I., Shaffer, S. A., et al. 2006. Diving physiology and winter foraging activity of a juvenile leopard seal (Hydrurga leptonyx). Polar Biology, 29, 303307.CrossRefGoogle Scholar
Kuhn, R. A., Ansorge, H., Godynicki, S., & Meyer, W. 2010. Hair density in the Eurasian otter Lutra lutra and the sea otter Enhycra lutris. Acta Theriologica, 55, 211222.CrossRefGoogle Scholar
Kuroki, M., Kato, A., Watanuki, Y., Takahashi, A., & Naito, Y. 2003. Diving behavior of an epipelagically feeding alcid, the rhinoceros auklet (Cerorhinca monocerata). Canadian Journal of Zoology, 81, 12491256.CrossRefGoogle Scholar
Kvadsheim, P. H. & Aarseth, J. J. 2002. Thermal function of phocid seal fur. Marine Mammal Science, 18, 952962.CrossRefGoogle Scholar
Kvadsheim, P. H. & Folkow, L. P. 1997. Blubber and flipper heat transfer in harp seals. Acta Physiologica Scandinavica, 161, 385395.CrossRefGoogle ScholarPubMed
Kvadsheim, P. H., Folkow, L. P., & Blix, A. S. 1996. Thermal conductivity of minke whale blubber. Journal of Thermal Biology, 21, 123128.CrossRefGoogle Scholar
Kvadsheim, P. H., Folkow, L. P., & Blix, A. S. 2005. Inhibition of shivering in hypothermic seals during diving. American Journal of Physiology, 289, R326R331.Google ScholarPubMed
Kvadsheim, P. H., Miller, P. J. O., Tyack, P. L., et al. 2012. Estimated tissue and blood N2 levels and risk of decompression sickness in deep-, intermediate-, and shallow-diving toothed whales during exposure to naval sonar. Frontiers in Physiology. DOI: 10.3389/fphys.2012.00125.CrossRefGoogle Scholar
Kvietys, P. R. & Granger, D. N. 1982. Relation between intestinal blood flow and oxygen uptake. American Journal of Physiology, 242, G202G208.Google ScholarPubMed
Lacombe, A. M. & Jones, D. R. 1990. The source of circulating catecholamines in forced dived ducks. General and Comparative Endocrinology, 80, 4147.CrossRefGoogle ScholarPubMed
Lacombe, A. M. & Jones, D. R. 1991a. Neural and humoral effects on hindlimb vascular resistance of ducks during forced submergence. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R1579R1586.Google ScholarPubMed
Lacombe, A. M. & Jones, D. R. 1991b. Role of adrenal catecholamines during forced submergence in ducks. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 261, R1364R1372.Google ScholarPubMed
Ladhams, D. 1968. Diving times of grebes. British Birds, 61, 2730.Google Scholar
Lafortuna, C., Jahoda, M., Azzellino, A., Saibene, F., & Colombini, A. 2003. Locomotor behaviours and respiratory pattern of the Mediterranean fin whale (Balaenoptera physalus). European Journal of Applied Physiology, 90, 387395.CrossRefGoogle ScholarPubMed
Laidre, K. L., Heide-Jørgensen, M., & Dietz, R. 2002. Diving behaviour of narwhals (Monodon monoceros) at two coastal localities in the Canadian High Arctic. Canadian Journal of Zoology, 80, 624635.CrossRefGoogle Scholar
Laidre, K. L., Heide-Jørgensen, M., & Nielsen, T. G. 2007. Role of the bowhead whale as a predator in West Greenland. Marine Ecology Progress Series, 346, 285297.CrossRefGoogle Scholar
Lancel, S., Hassoun, S. M., Favory, R., et al. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. Journal of Pharmacology and Experimental Therapeutics, 329, 641648.CrossRefGoogle ScholarPubMed
Lander, M. E., Gulland, F. M., & Delong, R. L. 2000. Satellite tracking a rehabilitated Guadalupe fur seal (Arctocephalus townsendi). Aquatic Mammals, 26, 137142.Google Scholar
Lang, T. G. & Pryor, K. 1966. Hydrodynamic perfomance of porpoises (Stenella attenuata). Science, 152, 531533.CrossRefGoogle Scholar
Lanphier, E. H. & Rahn, H. 1963. Alveolar gas exchange during breath-hold diving. Journal of Applied Physiology, 18, 471477.CrossRefGoogle ScholarPubMed
Lasiewski, R. C. & Calder, W. A. 1971. A preliminary allometric analysis of respiratory variables in resting birds. Respiration Physiology, 11, 152166.CrossRefGoogle ScholarPubMed
Laughlin, M. H. & Armstrong, R. B. 1987. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. Journal of Applied Physiology, 62, 14651472.CrossRefGoogle ScholarPubMed
Laughlin, M. H., Korthuis, R. J., Duncker, D. J., & Bache, R. J. 2010. Control of blood flow to cardiac and skeletal muscle during exercise. In: Terjung, R. (ed.), Comprehensive Physiology. Bethesda, MD: John Wiley & Sons, Inc.Google Scholar
Lavigne, D. M., Innes, S., Worthy, G. A. J., et al. 1986. Metabolic rates of seals and whales. Canadian Journal of Zoology, 64, 279284.CrossRefGoogle Scholar
Lawrie, R. 1953. The activity of the cytochrome system in muscle and its relation to myoglobin. Biochemical Journal, 55, 298305.CrossRefGoogle ScholarPubMed
Le Boeuf, B. J., Costa, D. P., Huntley, A. C., & Feldkamp, S. D. 1988. Continuous, deep diving in female Northern seals, Mirounga angustirostris. Canadian Journal of Zoology, 66, 446458.CrossRefGoogle Scholar
Le Boeuf, B. J., Crocker, D. E., Blackwell, S. B., Morris, P. A., & Thorson, P. H. 1993. Sex differences in diving and foraging behaviour of northern elephant seals. Symposia Zoological Society London, 66, 149178.Google Scholar
Lecorre, M. 1997. Diving depths of two tropical pelecaniformes: the red-tailed tropicbird and the red-footed booby. The Condor, 99, 10041007.Google Scholar
Lei, J., Vodovotz, Y., Tzeng, E., & Billiar, T. R. 2013. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide, 35, 175185.CrossRefGoogle ScholarPubMed
Leith, D. 1976. Comparative mammalian respiratory mechanics. The Physiologist, 19, 485510.Google ScholarPubMed
Leith, D., Lowe, R., & Gillespie, J. 1972. Mechanics of baleen whale lungs. Federation Proceedings, 31, 335.Google Scholar
Leith, D. E. 1989. Adaptations to deep breath-hold diving: respiratory and circulatory mechanics. Undersea Biomedical Research, 16, 345353.Google ScholarPubMed
Lenfant, C. 1969. Physiological properties of blood of marine mammals. In: Anderson, H. T. (ed.), The Biology of Marine Mammals. New York: Academic Press.Google Scholar
Lenfant, C., Johansen, K., & Torrance, J. D. 1970. Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respiration Physiology, 9, 277286.CrossRefGoogle ScholarPubMed
Lenfant, C., Kenney, D. W., & Aucutt, C. 1968. Respiratory function in the killer whale (Orcinus orca Linnaeus). American Journal of Physiology, 215.Google Scholar
Lenfant, C., Kooyman, G. L., Elsner, R., & Drabek, C. M. 1969a. Respiratory function of blood of the adult and fetus Weddell seal (Leptonychotes weddelli). American Journal of Physiology, 216, 15951597.CrossRefGoogle ScholarPubMed
Lenfant, C., Kooyman, G. L., Elsner, R., & Drabek, C. M. 1969b. Respiratory function of the blood of the Adelie penguins (Pygoscelis adleiae). American Journal of Physiology, 216, 15981600.CrossRefGoogle Scholar
Lesage, V., Hammill, M. O., & Kovacs, K. M. 1999. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Canadian Journal of Zoology, 77, 7487.CrossRefGoogle Scholar
Lescroel, A. & Bost, C.-A. 2005. Foraging under contrasting oceanographic conditions: the gentoo penguin at Kerguelen Archipelago. Marine Ecology Progress Series, 302, 245261.CrossRefGoogle Scholar
Lestyk, K., Folkow, L., Blix, A., Hammill, M., & Burns, J. 2009. Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 179, 985996.CrossRefGoogle ScholarPubMed
Levenson, D. H. & Dizon, A. 2003. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 673679.CrossRefGoogle ScholarPubMed
Levenson, D. H., Ponganis, P. J., Crognale, M. A., et al. 2006. Visual pigments of marine carnivores: pinnipeds, polar bears, and sea otters. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 833843.CrossRefGoogle Scholar
Levenson, D. H. & Schusterman, R. J. 1997. Pupillometry in seals and sea lions: ecological implications. Canadian Journal of Zoology, 75, 20502057.CrossRefGoogle Scholar
Levenson, D. H. & Schusterman, R. J. 1999. Dark adaptation and visual sensitivity in shallow- and deep-diving pinnipeds. Marine Mammal Science, 15, 13031313.CrossRefGoogle Scholar
Levy, M. N. 1971. Brief reviews: sympathetic–parasympathetic interactions in the heart. Circulation Research, 29, 437445.CrossRefGoogle Scholar
Lewis, S., Benvenuti, S., Dall'antonia, L., et al. 2002. Sex-specific foraging behaviour in a monomorphic seabird. Proceedings of the Royal Society London, Series B, 269, 16871693.CrossRefGoogle Scholar
Liebsch, N., Wilson, R. P., Bornemann, H., Adelung, D., & Plötz, J. 2007. Mouthing off about fish capture: jaw movement in pinnipeds reveals the real secrets of ingestion. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 256269.CrossRefGoogle Scholar
Liggins, G. C., France, J. T., Knox, B. S., & Zapol, W. M. 1979. High corticosteroid levels in plasma of adult and foetal Weddell seals (Leptonychotes weddelli). Acta Endocrinologica Copenhagen, 90, 718726.Google ScholarPubMed
Liggins, G. C., France, J. T., Schneider, R. C., Knox, B. S., & Zapol, W. M. 1993. Concentrations, metabolic clearance rates, production rates and plasma binding of cortisol in Antarctic phocid seals. Acta Endocrinologica, 129, 356359.Google ScholarPubMed
Liggins, G. C., Qvist, J., Hochachka, P. W., et al. 1980. Fetal cardiovascular and metabolic responses to simulated diving in the Weddell seal. Journal of Applied Physiology, 49, 424430.CrossRefGoogle ScholarPubMed
Lillie, M. A., Piscitelli, M. A., Vogl, A. W., Gosline, J. M., & Shadwick, R. E. 2013. Cardiovascular design in fin whales: high-stiffness arteries protect against adverse pressure gradients at depth. Journal of Experimental Biology, 216, 25482563.CrossRefGoogle ScholarPubMed
Lin, P.-C., Kreutzer, U., & Jue, T. 2007. Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport. Journal of Physiology, 578, 595603.CrossRefGoogle ScholarPubMed
Lin, Z., Demello, D. E., Wallot, M., & Floros, J. 1998. An SP-B gene mutation responsible for SP-B deficiency in fatal congenital alveolar proteinosis: evidence for a mutation hotspot in exon 4. Molecular Genetics and Metabolism, 64, 2535.CrossRefGoogle ScholarPubMed
Lindholm, P., Ekborn, A., Oberg, D., & Gennser, M. 2008. Pulmonary edema and hemoptypsis after breath-hold diving at residual volume. Journal of Applied Physiology, 102, 912917.CrossRefGoogle Scholar
Lindholm, P. & Lundgren, C. E. G. 1996. Alveolar gas composition before and after maximal breath-holds in competitive divers. Undersea and Hyperbaric Medicine, 33, 463467.Google Scholar
Lindholm, P. & Lundgren, C. E. G. 2009. The physiology and pathophysiology of human breath-hold diving. Journal of Applied Physiology, 106, 284292.CrossRefGoogle ScholarPubMed
Liner, M. H. & Andersson, J. P. A. 2008. Pulmlonary edema after competitive breath-hold diving. Journal of Applied Physiology, 102, 986990.CrossRefGoogle Scholar
Liner, M. H. & Andersson, J. P. A. 2009. Hypoxic syncope in a competitive breath-hold diver with elevation of the brain damage marker S100B. Aviation Space and Environmental Medicine, 80, 10661068.CrossRefGoogle Scholar
Liu, L., Cash, T. P., Jones, R. G., et al. 2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Molecular Cell, 21, 521531.CrossRefGoogle ScholarPubMed
Liwanag, H. E. M., Berta, A., Costa, D. P., Abney, M., & Williams, T. M. 2012. Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biological Journal of the Linnean Society, 106, 926939.CrossRefGoogle Scholar
Liwanag, H. E. M., Williams, T. M., Costa, D. P., et al. 2009. The effects of water temperature on the energetic costs of juvenile and adult California sea lions (Zalophus californianus): the importance of skeletal muscle thermogenesis for thermal balance. Journal of Experimental Biology, 212, 39773984.CrossRefGoogle ScholarPubMed
Ljubkovic, M., Dujic, Z., Mollerlokken, A., et al. 2011. Venous and arterial bubbles at rest after no-decompression air dives. Medicine & Science in Sports & Exercise, 43, 990995.CrossRefGoogle ScholarPubMed
Lockyer, C. 1976. Body weights of some species of large whales. Journal du Conseil/Conseil Permanent International pour l'Exploration de la Mer, 36, 259273.CrossRefGoogle Scholar
Lockyer, C. & Waters, T. 1986. Weights and anatomical measurements of northeastern Atlantic fin (Balaenoptera physalus, Linnaeus) and sei (B. borealis, Lesson) whales. Marine Mammal Science, 2, 169185.CrossRefGoogle Scholar
Lohman, S., Folkow, L. P., Osterud, B., & Sager, G. 1998. Changes in fibrinolytic activity in diving grey seals. Comparative Biochemistry and Physiology A, 120, 693698.CrossRefGoogle ScholarPubMed
London, J., Johnson, D., Boveng, P. L., & Cameron, M. F. 2014. Dive behavior and spatial variability of bearded, ribbon, and spotted seals in the Bering and Chukchi Seas. Fifth International Bio-logging Science Symposium. Strasbourg, France.Google Scholar
Longo, L. D., Koos, B. J., & Power, G. G. 1973. Fetal myoglobin: quantitative determination and importance for oxygenation. American Journal of Physiology, 224, 10321036.CrossRefGoogle ScholarPubMed
Lovick, T. A. 1987. Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. Journal of Physiology, 389, 2335.CrossRefGoogle ScholarPubMed
Lovvorn, J. R. 2001. Upstroke thrust, drag effects, and stroke–glide cycles in wing-propelled swimming by birds. American Zoologist, 41, 154165.Google Scholar
Lovvorn, J. R., Croll, D. A., & Liggins, G. A. 1999. Mechanical versus physiological determinants of swimming speeds in diving Brunnich's guillemots. Journal of Experimental Biology, 202, 17411752.CrossRefGoogle ScholarPubMed
Lovvorn, J. R. & Jones, D. R. 1991. Effects of body size, body fat, and change in pressure with depth on buoyancy and costs of diving in ducks (Aythya spp.). Canadian Journal of Zoology, 69, 28792887.CrossRefGoogle Scholar
Lovvorn, J. R., Jones, D. R., & Blake, R. W. 1991. Mechanics of underwater locomotion in diving ducks: drag, buoyancy and acceleration in a size gradient of species. Journal of Experimental Biology, 159, 89108.Google Scholar
Lovvorn, J. R. & Liggins, G. A. 2002. Interactions of body shape, body size and stroke-acceleration patterns in costs of underwater swimming by birds. Functional Ecology, 16, 106112.CrossRefGoogle Scholar
Lovvorn, J. R., Liggins, G. A., Borstad, M. H., Calisal, S. M., & Mikkelsen, J. 2001. Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds. Journal of Experimental Biology, 204, 15471557.CrossRefGoogle ScholarPubMed
Lovvorn, J. R., Watanuki, Y., Kato, A., Naito, Y., & Liggins, G. A. 2004. Stroke patterns and regulation of swim speed and energy cost in free-ranging Brünnich's guillemots. Journal of Experimental Biology, 207, 46794695.CrossRefGoogle Scholar
Lowry, L. F., Frost, K., Davis, R., Suydam, R. S., & Demaster, D. 1994. Movements and behavior of satellite-tagged spotted seals (Phoca largha) in the Bering and Chukchi Seas. Springfield, VA: US Department of Commerce.Google Scholar
Ludynia, K., Garthe, S., & Luna-Jorquera, G. 2010. Distribution and foraging behaviour of the Peruvian booby (Sula variegata) off northern Chile. Journal of Ornithology, 151, 103111.CrossRefGoogle Scholar
Lukton, A. & Olcott, H. S. 1958. Content of free imidazole compounds in the muscle tissue of aquatic animals. Journal of Food Science, 23, 611618.CrossRefGoogle Scholar
Luna-Jorquera, G., & Culik, B. M. 1999. Diving behaviour of Humboldt penguins Spheniscus humboldti in northern Chile. Marine Ornithology, 27, 6776.Google Scholar
Lutz, J., Henrich, H., & Bauereisen, E. 1975. Oxygen supply and uptake in the liver and the intestine. Pflugers Archiv, 360, 715.CrossRefGoogle ScholarPubMed
Lyamin, O. I., Manger, P. R., Mukhametov, L. M., Siegel, J. M., & Shpak, O. V. 2000. Rest and activity states in a gray whale. Journal of Sleep Research, 9, 261267.CrossRefGoogle Scholar
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M., & Siegel, J. M. 2008. Cetacean sleep: an unusual form of mammalian sleep. Neuroscience & Biobehavioral Reviews, 32, 14511484.CrossRefGoogle ScholarPubMed
Lydersen, C. & Kovacs, K. M. 1993. Diving behaviour of lactating harp seal, Phoca groenlandica, females from the Gulf of St. Lawrence, Canada. Animal Behviour, 46, 12131221.CrossRefGoogle Scholar
Lydersen, C., Ryg, M. S., Hammill, M. O., & O'Brien, P. J. 1992. Oxygen stores and aerobic dive limit of ringed seals (Phoca hispida). Canadian Journal of Zoology, 70, 458461.CrossRefGoogle Scholar
Lydersen, C. L., Kovacs, K. K., Ries, S. R., & Knauth, M. K. 2002. Precocial diving and patent foramen ovale in bearded seal (Erignathus barbatus) pups. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 172, 713717.Google ScholarPubMed
Lythgoe, J. N. & Dartnall, H. J. A. 1970. A “deep sea rhodopsin” in a mammal. Nature, 227, 955956.CrossRefGoogle Scholar
Macarthur, R. A. 1986. Brown fat and aquatic temperature regulation in muskrats, Ondatra zibethicus. Physiological Zoology, 59, 306317.CrossRefGoogle Scholar
Macarthur, R. A., Humphries, M. M., Fines, G. A., & Campbell, K. L. 2001. Body oxygen stores, aerobic dive limits, and the diving abilities of juvenile and adult muskrats (Ondatra zibethicus). Physiological and Biochemical Zoology, 74, 178190.CrossRefGoogle ScholarPubMed
Macarthur, R. A. & Karpan, C. M. 1989. Heart rates of muskrats diving under simulated field conditions: persistence of the bradycardia response and factors modifying its expression. Canadian Journal of Zoology, 67, 17831792.CrossRefGoogle Scholar
Macklem, P. T., Bouverot, P., & Scheid, P. 1979. Measurement of the distensibility of the parabronchi in duck lungs. Respiration Physiology, 38, 2335.CrossRefGoogle ScholarPubMed
Madsen, P. T., Johnson, M. P., Aguilar De Soto, N., Zimmer, W. M. X., & Tyack, P. L. 2005. Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181194.CrossRefGoogle ScholarPubMed
Madsen, P. T., Lammers, M., Wisniewska, D., & Beedholm, K. 2013. Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. Journal of Experimental Biology, 216, 40914102.CrossRefGoogle ScholarPubMed
Madsen, P. T., Payne, R., Kristiansen, N. U., et al. 2002. Sperm whale sound production studied with ultrasound time/depth-recording tags. Journal of Experimental Biology, 205, 18991906.CrossRefGoogle ScholarPubMed
Madsen, P. T., Wilson, M., Johnson, M., et al. 2007. Clicking for calamari: toothed whales can echolocate squid Loligo pealeii. Aquatic Biology, 1, 141150.CrossRefGoogle Scholar
Maina, J. A. & King, A. S. 1987. A morphometric study of the lung of the Humboldt penguin (Spheniscus humboldti). Zentralblat of Veterinary Medicine, C: Anatomy, Histology and Embryology, 16, C293C297.Google Scholar
Maina, J. M. 2006. Development, structure, and function of a novel respiratory organ, the lung–air sac system of birds: to go where no other vertebrate has gone. Biological Review, 81, 54555479.CrossRefGoogle ScholarPubMed
Maina, J. N. & Nathaniel, C. 2001. A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. Journal of Experimental Biology, 204, 23132330.CrossRefGoogle ScholarPubMed
Maina, J. N., West, J. B., Orgeig, S., et al. 2010. Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiological and Biochemical Zoology, 83, 792807.CrossRefGoogle ScholarPubMed
Malan, A. 2014. The evolution of mammalian hibernation: lessons from comparative acid–base physiology. Integrative and Comparative Biology, 54, 484496.CrossRefGoogle ScholarPubMed
Mallet, M. L. 2002. Pathophysiology of accidental hypothermia. Quarterly Journal of Medicine, 95, 775785.CrossRefGoogle ScholarPubMed
Manohar, M., Goetz, T. E., & Hassan, A. S. 2001. Effect of prior high-intensity exercise on exercise-induced arterial hypoxemia in thoroughbred horses. Journal of Applied Physiology, 90, 23712377.CrossRefGoogle ScholarPubMed
Maresh, J. L., Simmons, S. E., Crocker, D. E., et al. 2014. Free-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport. Journal of Experimental Biology, 217, 14851495.CrossRefGoogle Scholar
Markussen, N. H., Ryg, M., & Oritsland, N. A. 1994. The effect of feeding on the metabolic rate in harbour seals (Phoca vitulina). Journal of Comparative Physiology B, 164, 8993.CrossRefGoogle ScholarPubMed
Marsh, H., Spain, A. V., & Heinsohn, G. E. 1978. Physiology of the dugong. Comparative Biochemistry and Physiology Part A: Physiology, 61, 159168.CrossRefGoogle Scholar
Marshall, C. D. 2009. Feeding morphology. In: Perrin, W. F., Wursig, B. & Thewissen, J. G. M. (eds.), Encyclopedia of Marine Mammals. San Diego, CA: Academic Press.Google Scholar
Marshall, C. D., Amin, H., Kovacs, K. M., & Lydersen, C. 2006. Microstructure and innervation of the mystacial vibrissal follicle–sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A, 1325.CrossRefGoogle Scholar
Marshall, C. D., Huth, G. D., Edmonds, V. M., Halin, D. L., & Reep, R. L. 1998. Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Marine Mammal Science, 14, 274289.CrossRefGoogle Scholar
Martin, A. R. & Smith, T. G. 1992. Deep diving in wild, free-ranging beluga whales, Delphinapterus leucas. Canadian Journal of Fisheries and Aquatic Sciences, 49, 462466.CrossRefGoogle Scholar
Martin, A. R. & Smith, T. G. 1999. Strategy and capability of wild belugas, Delphinapterus leucas, during deep, benthic diving. Canadian Journal of Zoology, 77, 17831793.CrossRefGoogle Scholar
Martin, G. R. 1998. Eye structure and amphibious foraging in albatrosses. Proceedings of the Royal Society B, 265, 665671.CrossRefGoogle Scholar
Martin, G. R. 1999. Eye structure and foraging in king penguins Aptenodytes patagonicus. Ibis, 141, 444450.CrossRefGoogle Scholar
Martin, G. R. & Brooke, M. D. L. 1991. The eye of a procellariiform seabird the Manx shearwater Puffinus-puffinus visual fields and optical structure. Brain Behavior and Evolution, 37, 6578.CrossRefGoogle ScholarPubMed
Mason, R. J., Murray, J. F., Broaddus, V. C., & Nadel, T. A. 2005. Murray and Nadel's Textbook of Respiratory Medicine. Philadelphia, PA: Saunders.Google Scholar
Mass, A. M. & Supin, A. Y. 2009. Vision. In: Perrin, W. F., Wursig, B. & Thewissen, J. G. M. (eds.), Encyclopedia of Marine Mammals. San Diego, CA: Academic Press.Google Scholar
Masuda, K., Kent, T., Ping-Chang, L., et al. 2008. Determination of myoglobin concentration in blood perfused tissue. European Journal of Applied Physiology, 104, 4148.CrossRefGoogle ScholarPubMed
Mate, B., Mesecar, R., & Lagerquist, B. 2007. The evolution of satellite-monitored radio tags for large whales: one laboratory's experience. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 224247.CrossRefGoogle Scholar
Mate, B. R., Rossbach, K. A., Nieukirk, S. L., et al. 1995. Satellite-monitored movements and dive behavior of a bottlenose dolphin (Tursiops truncatus) in Tampa Bay, Florida. Marine Mammal Science, 11, 452463.CrossRefGoogle Scholar
Mate, B. R., Stafford, K. M., Nawojchik, R., & Dunn, J. L. 1994. Movements and dive behavior of a satellite-monitored Atlantic white-sided dolphin (Lagenorhynchus acutus) in the Gulf of Maine. Marine Mammal Science, 10, 116121.CrossRefGoogle Scholar
Matsukawa, K. 2012. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Experimental Physiology, 97, 2028.CrossRefGoogle ScholarPubMed
Matsukawa, K., Mitchell, J. H., Wall, P. T., & Wilson, L. B. 1991. The effect of static exercise on renal sympathetic nerve activity in conscious cats. Journal of Physiology, 434, 453467.CrossRefGoogle ScholarPubMed
Matsukawa, K., Wall, P. T., Wilson, L. B., & Mitchell, J. H. 1990. Reflex responses of renal nerve activity during isometric muscle contraction in cats. American Journal of Physiology: Heart and Circulatory Physiology, 259, H1380H1388.Google ScholarPubMed
Matsukawa, K., Wall, P. T., Wilson, L. B., & Mitchell, J. H. 1992. Neurally mediated renal vasoconstriction during isometric muscle contraction in cats. American Journal of Physiology: Heart and Circulatory Physiology, 262, H833H838.Google ScholarPubMed
Mattlin, R. H., Gales, N. J., & Costa, D. P. 1998. Seasonal dive behaviour of lactating New Zealand fur seals (Arctocephalus forsteri). Canadian Journal of Zoology, 76, 350360.CrossRefGoogle Scholar
Matyukhin, V. A., Neshumova, T. V., & Cherepanova, V. A. 1988. Energetics of Muscular Activity in Diving Animals. Novosibirsk: Siberian Academy of Sciences Science Publishing.Google Scholar
McAnulty, J. F. 2010. Hypothermic organ preservation by static storage methods: current status and a view to the future. Cryobiology, 60, S13S19.CrossRefGoogle Scholar
McClelland, S. J., Gay, M., Pabst, D. A., et al. 2012. Microvascular patterns in the blubber of shallow and deep diving odontocetes. Journal of Morphology, 273, 932942.CrossRefGoogle ScholarPubMed
McCulloch, P. F. 2012. Animal models for investigating central control of the mammalian diving reflex. Frontiers in Physiology, 3: 169. DOI: 10.3389/fphys.2012.00169.CrossRefGoogle Scholar
McCulloch, P. F., Paterson, I. A., & West, N. H. 1995. An intact glutamatergic trigeminal pathway is essential for the cardiac response to simulated diving. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 269, R669R677.Google ScholarPubMed
McDonald, B. I. & Ponganis, P. J. 2012. Lung collapse in the diving sea lion: hold the nitrogen and save the oxygen. Biology Letters, 8, 10471049.CrossRefGoogle ScholarPubMed
McDonald, B. I. & Ponganis, P. J. 2013. Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. Journal of Experimental Biology, 216, 33323341.CrossRefGoogle ScholarPubMed
McDonald, B. I. & Ponganis, P. J. 2014. Deep-diving sea lions exhibit extreme bradycardia in long-duration dives. Journal of Experimental Biology, 217, 15251534.CrossRefGoogle ScholarPubMed
McFarland, W. L., Jacobs, M. S., & Morgane, P. J. 1979. Blood supply to the brain of the dolphin, Tursiops truncatus, with comparative observations on special aspects of the cerebrovascular supply of other vertebrates. Neuroscience and Biobehavior Research, 3, 193.Google Scholar
McGinnis, S. M., Whittow, G. C., Ohata, C. A., & Huber, H. 1972. Body heat dissipation and conservation in two species of dolphins. Comparative Biochemistry and Physiology Part A: Physiology, 43, 417423.CrossRefGoogle ScholarPubMed
McIntyre, I. W., Campbell, K. L., & MacArthur, R. A. 2002. Body oxygen stores, aerobic dive limits and diving behaviour of the star-nosed mole (Condylura cristata) and comparisons with non-aquatic talpids. Journal of Experimental Biology, 205, 4554.CrossRefGoogle ScholarPubMed
McKean, T. 1982. Cardiovascular adjustments to laboratory diving in beavers and nutria. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 242, R434R440.Google ScholarPubMed
Meagher, E. M., McLellan, W. A., Westgate, A. J., et al. 2002. The relationship between heat flow and vasculature in the dorsal fin of wild bottlenose dolphins Tursiops truncatus. Journal of Experimental Biology, 205, 34753486.CrossRefGoogle ScholarPubMed
Medway, W. & Moldovan, F. 1966. Blood studies on the North Atlantic pilot (pothead) whale, Globicephala melaena (Traill, 1809). Physiological Zoology, 39, 110116.CrossRefGoogle Scholar
Meir, J. U., Champagne, C. D., Costa, D. P., Williams, C. L., & Ponganis, P. J. 2009. Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297, R927R939.Google ScholarPubMed
Meir, J. U. & Ponganis, P. J. 2009. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. Journal of Experimental Biology, 212, 33303338.CrossRefGoogle ScholarPubMed
Meir, J. U. & Ponganis, P. J. 2010. Blood temperature profiles of diving elephant seals. Physiological and Biochemical Zoology, 83, 531540.CrossRefGoogle ScholarPubMed
Meir, J. U., Robinson, P. W., Vilchis, L. I., et al. 2013. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal. PloS ONE, 8, e83248.CrossRefGoogle Scholar
Meir, J. U., Stockard, T. K., Williams, C. L., Ponganis, K. V., & Ponganis, P. J. 2008. Heart rate regulation and extreme bradycardia in diving emperor penguins. Journal of Experimental Biology, 211, 11691179.CrossRefGoogle ScholarPubMed
Meis, L., Arruda, A. P., & Carvalho, D. P. 2005. Role of sarco/endoplasmic reticulum Ca2+-ATPase in thermogenesis. Bioscience Reports, 25, 181190.CrossRefGoogle ScholarPubMed
Meiselman, H. J., Castellini, M. A., & Elsner, R. 1992. Hemorheological behavior of seal blood. Clinical Hemorheology, 12, 657675.Google Scholar
Mekjavic, I. G., Tipton, M. J., & Eiken, O. 2003. Thermal considerations in diving. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Melin, S. R., Delong, R. L., & Siniff, D. B. 2008. The effects of El Niño on the foraging behavior of lactating California sea lions (Zalophus californianus californianus) during the nonbreeding season. Canadian Journal of Zoology, 86, 192206.CrossRefGoogle Scholar
Mellish, J.-A., Thomton, J., & Horning, M. 2007. Physiological and behavioral response to intra-abdominal transmitter implantation in Steller sea lions. Journal of Experimental Marine Biology and Ecology, 351, 283293.CrossRefGoogle Scholar
Melnikov, V. V. 1997. The arterial system of the sperm whale (Physeter macrocephalus). Journal of Morphology, 234, 3750.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Melrose, W. D. & Nicol, S. C. 1992. Haematology, red cell metabolism and blood chemistry of the black-faced cormorant Leucocarbo fuscescens. Comparative Biochemistry and Physiology A, 102, 6770.CrossRefGoogle ScholarPubMed
Merrick, R. L. & Loughlin, T. R. 1997. Foraging behavior of adult female and young-of-the-year Steller sea lions in Alaskan waters. Canadian Journal of Zoology, 75, 776786.CrossRefGoogle Scholar
Meyers, R. A. & Stakebake, E. F. 2005. Anatomy and histochemistry of spread-wing posture in birds: 3. Immunohistochemistry of flight muscles and the “shoulder lock” in albatrosses. Journal of Morphology, 263, 1229.CrossRefGoogle Scholar
Midtgård, U. 1980a. Arteriovenous anastomoses and vascularity in the feet of eiders and gulls (Aves). Zoomorphology, 96, 263270.CrossRefGoogle Scholar
Midtgård, U. 1980b. Heat loss from the feet of mallards Anas platyrhynchos and arterio-venous heat exhcange in the rete tibiotarsale. Ibis, 122, 354359.CrossRefGoogle Scholar
Midtgård, U. 1981. The rete tibiotarsale and arterio-venous association in the hind limb of birds: a comparative morphological study on counter-current heat exchange systems. Acta Zoologica, 62, 6787.CrossRefGoogle Scholar
Midtgård, U. 1983. Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the rete ophthalmicum. Journal of Experimental Zoology, 225, 197207.CrossRefGoogle ScholarPubMed
Midtgård, U. 1984. Density of arteriovenous anastomoses in some skin areas of the domestic fowl (Gallus domesticus). The Anatomical Record, 209, 455459.CrossRefGoogle ScholarPubMed
Midtgard, U., Sejrsen, P., & Johansen, K. 1985. Blood flow in the brood patch of Bantam hens: evidence of cold vasodilatation. Journal of Comparative Physiology B, 155, 703709.CrossRefGoogle Scholar
Milde, L. N. 1992. Clinical use of mild hypothermia for brain protection: a dream revisited. Journal of Neurosurgical Anesthesia, 4, 211215.CrossRefGoogle ScholarPubMed
Mill, G. K. & Baldwin, J. 1983. Biochemical correlates of swimming and diving behavior in the little blue penguin Eudyptula minor. Physiological Zoology, 56, 242254.CrossRefGoogle Scholar
Millard, R. W., Johansen, K., & Milsom, W. K. 1973. Radiotelemetry of cardiovascular responses to exercise and diving in penguins. Journal of Comparative Biochemistry and Physiology A, 46, 227240.CrossRefGoogle ScholarPubMed
Miller, A. K. & Trivelpiece, W. Z. 2008. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey, Antarctic krill. Marine Biology, 154, 201208.CrossRefGoogle Scholar
Miller, N. J., Daniels, C. B., Costa, D. P., & Orgeig, S. 2004a. Control of surfactant secretion in adult California sea lions. Biochemical and Biophysical Research Communications, 313, 727732.CrossRefGoogle ScholarPubMed
Miller, N. J., Daniels, C. B., Schurch, S., Schoel, W. M., & Orgeig, S. 2006a. The surface activity of pulmonary surfactant from diving mammals. Respiratory Physiology and Neurobiology, 150, 220232.CrossRefGoogle ScholarPubMed
Miller, N. J., Postle, A. D., Orgeig, S., Coster, G., & Daniels, C. B. 2006b. The composition of pulmonary surfactant from diving mammals. Respiratory Physiology and Neurobiology, 152, 152168.CrossRefGoogle ScholarPubMed
Miller, N. J., Postle, A. D., Scurch, S., et al. 2005. The development of the pulmonary surfactant system in California sea lions. Comparative Biochemistry and Physiology A, 141, 191199.CrossRefGoogle ScholarPubMed
Miller, P. J., Johnson, M. P., Tyack, P. L., & Terray, E. A. 2004b. Swimming gait, passive drag and buoyancy of diving sperm whales. Journal of Experimental Biology, 207, 19531967.CrossRefGoogle ScholarPubMed
Miller, P. J. O., Johnson, M. P., & Tyack, P. L. 2004c. Sperm whale behaviour indicates the use of echolocation click buzzes “creaks” in prey capture. Proceedings of the Royal Society of London Series B: Biological Sciences, 271, 22392247.CrossRefGoogle Scholar
Millikan, G. A. 1939. Muscle hemoglobin. Physiological Reviews, 19, 503523.CrossRefGoogle Scholar
Mills, K. 2000. Diving behaviour of two Galapagos penguins Spheniscus mendiculus. Marine Ornithology, 28, 7579.Google Scholar
Milsom, W., Castellini, M., Harris, M., et al. 1996. Effects of hypoxia and hypercapnia on patterns of sleep-associated apnea in elephant seal pups. American Journal of Physiology, 271, R1017R1024.Google ScholarPubMed
Milsom, W. K., Johansen, K., & Millard, R. W. 1973. Blood respiratory properties in some Antarctic birds. The Condor, 75, 472474.CrossRefGoogle Scholar
Milsom, W. K., Jones, D. R., & Gabbott, G. R. 1981. On chemoreceptor control of ventilatory responses to CO2 in unanesthetized ducks. Journal of Applied Physiology, 50, 11211128.CrossRefGoogle ScholarPubMed
Minamikawa, S., Iwasaki, T., & Kishiro, T. 2007. Diving behaviour of a Baird's beaked whale, Berardius bairdii, in the slope water region of the western North Pacific: first dive records using a data logger. Fisheries Oceanography, 16, 573577.CrossRefGoogle Scholar
Minamikawa, S., Watanabe, H., & Iwasaki, T. 2013. Diving behavior of a false killer whale, Pseudorca crassidens, in the Kuroshio–Oyashio transition region and the Kuroshio front region of the western North Pacific. Marine Mammal Science, 29, 177185.CrossRefGoogle Scholar
Mirceta, S., Signore, A. V., Burns, J. M., et al. 2013. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science, 340, 13241327.CrossRefGoogle ScholarPubMed
Mitani, Y., Andrews, R. D., Sato, K., et al. 2010. Three-dimensional resting behaviour of northern elephant seals: drifting like a falling leaf. Biology Letters, 6, 163166.CrossRefGoogle Scholar
Mitchell, J. H., Kaufman, M. P., & Iwamoto, G. A. 1983. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annual Review of Physiology, 45, 229242.CrossRefGoogle ScholarPubMed
Mitz, S. A., Reuss, S., Folkow, L. P., et al. 2009. When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience, 163, 552560.CrossRefGoogle Scholar
Miyazaki, N. 2001. A review of studies on ringed, Caspian, and Baikal seals. Otsuchi Marine Science, 26, 16.Google Scholar
Mizuno, M., Kimura, Y., Iwakawa, T., et al. 2003. Regional differences in blood flow and oxygen consumption in resting muscle and their relationship during recovery from exhaustive exercise. Journal of Applied Physiology, 95, 22042210.CrossRefGoogle ScholarPubMed
Molyneux, G. S. & Bryden, M. M. 1975. Arteriovenous anastomoses in the skin of the Weddell seal (Leptonychotes weddelli). Science, 189, 11001102.CrossRefGoogle Scholar
Molyneux, G. S. & Bryden, M. M. 1978. Arteriovenous anastomoses in the skin of seals I: the Weddell seal (Leptonychotes weddelli) and the elephant seal (Mirounga leonina) (Pinnipedia: Phocidae). Anatomical Record, 191, 239252.CrossRefGoogle ScholarPubMed
Montague, T. 1985. A maximum dive recorder for little penguins. Emu, 85, 264267.CrossRefGoogle Scholar
Moore, C., Crocker, D. E., Fahlman, A., et al. 2014. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris). Frontiers in Physiology, 5. DOI: 10.3389/fphys.2014.00217.CrossRefGoogle ScholarPubMed
Moore, M. J., Bogomolni, A. L., Dennison, S. E., et al. 2009. Gas bubbles in seals, dolphins, and porpoises entangled and drowned at depth in gillnets. Veterinary Pathology, 46, 536547.CrossRefGoogle ScholarPubMed
Moore, M. J. & Early, G. A. 2004. Cumulative sperm whale bone damage and the bends. Science, 306, 2215.CrossRefGoogle ScholarPubMed
Moore, M. J., Hammar, T., Arruda, J., et al. 2011. Hyperbaric computed tomographic measurement of lung compression in seals and dolphins. Journal of Experimental Biology, 214, 23902397.CrossRefGoogle ScholarPubMed
Morrison, P. 1962. Body temperatures in some Australian mammals: III. Cetacea (Megaptera). The Biological Bulletin, 123, 154169.CrossRefGoogle Scholar
Morrison, P., Rosenmann, M., & Estes, J. A. 1974. Metabolism and thermoregulation in the sea otter. Physiological Zoology, 47, 218229.CrossRefGoogle Scholar
Morrison, S. F. 2001. Differential control of sympathetic outflow. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 281, R683R698.Google ScholarPubMed
Moser, E. & Andersen, P. 1994. Conserved spatial learning in cooled rats in spite of slowing of dentate field potentials. Journal of Neuroscience, 14, 44584466.CrossRefGoogle ScholarPubMed
Motterlini, R. & Otterbein, L. E. 2010. The therapeutic potential of carbon monoxide. Nature Reviews Drug Discovery, 9, 728743.CrossRefGoogle ScholarPubMed
Moudgil, R., Michelakis, E. D., & Archer, S. L. 2005. Hypoxic pulmonary vasoconstriction. Journal of Applied Physiology, 98, 390403.CrossRefGoogle ScholarPubMed
Mougin, J.-L. & Mougin, M.-C. 2000. Maximum diving depths for feeding attained by Bulwer's petrels (Bulweria bulwerii) during the incubation period. Journal of Zoology London, 250, 7577.CrossRefGoogle Scholar
Moylan, T. J. & Sidell, B. D. 2000. Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fish. Journal of Experimental Biology, 203, 12771286.CrossRefGoogle Scholar
Mozo, J., Emre, Y., Bouillaud, F., Ricquier, D., & Criscuolo, F. 2005. Thermoregulation: what role for UCPs in mammals and birds? Bioscience Reports, 25, 227249.CrossRefGoogle ScholarPubMed
Murdaugh, H. V. & Jackson, J. E. 1962. Heart rate and blood lactic acid concentration during experimental diving of water snakes. American Journal of Physiology: Legacy Content, 202, 11631165.CrossRefGoogle ScholarPubMed
Murdaugh, H. V. Jr, Cross, C. E., Millen, J. E., Gee, J. B. L., & Robin, E. D. 1968. Dissociation of bradycardia and arterial constriction during diving in the seal Phoca vitulina. Science, 162, 364365.CrossRefGoogle ScholarPubMed
Murdaugh, H. V., Schmidt-Nielsen, B., Wood, J. W., & Mitchell, W. L. 1961. Cessation of renal function during diving in the trained seal (Phoca vitulina). Journal of Cellular and Comparative Physiology, 58, 261265.CrossRefGoogle ScholarPubMed
Murphy, E. & Steenbergen, C. 2008. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews, 88, 581609.CrossRefGoogle ScholarPubMed
Murray, J., Escobar, E., & Rapaport, E. 1969. Effects of blood viscosity on hemodynamic responses in acute normovolemic anemia. American Journal of Physiology: Legacy Content, 216, 638642.CrossRefGoogle ScholarPubMed
Murrish, D. E. 1970. Responses to diving in the dipper, Cinclus mexicanus. Comparative Biochemistry and Physiology, 34, 853858.CrossRefGoogle Scholar
Murrish, D. E. 1982. Acid–base balance in three species of Antarctic penguins exposed to thermal stress. Physiological Zoology, 55, 137143.CrossRefGoogle Scholar
Murry, C. E., Jennings, R. B., & Reimer, K. A. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 11241136.CrossRefGoogle ScholarPubMed
Murry, C. E., Richard, V. J., Reimer, K. A., & Jennings, R. B. 1990. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circulation Research, 66, 913931.CrossRefGoogle ScholarPubMed
Musch, T. I., Friedman, D. B., Pitetti, K. H., et al. 1987a. Regional distribution of blood flow of dogs during graded dynamic exercise. Journal of Applied Physiology, 63, 22692277.CrossRefGoogle ScholarPubMed
Musch, T. I., Haidet, G. C., Ordway, G. A., Longhurst, J. C., & Mitchell, J. H. 1987b. Training effects on regional blood flow response to maximal exercise in foxhounds. Journal of Applied Physiology, 62, 17241732.CrossRefGoogle ScholarPubMed
Nagy, K. A. 1980. CO2 production in animals: analysis of potential errors in the doubly labeled water method. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 238, R466R473.Google ScholarPubMed
Nagy, K. A., Girard, I. A., & Brown, T. K. 1999. Energetics of free-ranging mammals, reptiles, and birds. Annual Review of Nutrition, 19, 247277.CrossRefGoogle ScholarPubMed
Nagy, K. A., Kooyman, G. L., & Ponganis, P. J. 2001. Energetic cost of foraging in free-diving emperor penguins. Physiological and Biochemical Zoology, 74, 541547.CrossRefGoogle ScholarPubMed
Naito, Y., Costa, D. P., Adachi, T., et al. 2013. Unravelling the mysteries of a mesopelagic diet: a large apex predator specializes on small prey. Functional Ecology, 27, 710717.CrossRefGoogle Scholar
Nakaoa, A., Netoa, J. S., Kannob, S., et al. 2005. Protection against ischemia/reperfusion injury in cardicac and renal transplantation with carbon monoxide, bilverdin, and both. American Journal of Transplantation, 5, 282291.CrossRefGoogle Scholar
Nawojchik, R., St. Aubin, D. J., & Johnson, A. 2003. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the Northwest Atlantic. Marine Mammal Science, 19, 232239.CrossRefGoogle Scholar
Neshumova, T. V., Cherapanova, V. A., & Petrov, E. A. 1983. Myoglobin concentration in muscles of the seal Pusa sibirica. Journal of Evolutionary Biochemistry and Physiology, 19, 9395.Google Scholar
Neshumova, T. V., Cherapanova, V. A., & Zhuzhgin, S. M. 1986. Electrical activity in muscles of the seal Pusa sibirica during locomotion in water and on land. Journal of Evolutionary Biochemistry and Physiology, 22, 323326.Google Scholar
Neshumova, T. V. & Cherepanova, V. A. 1984. Blood supply and myoglobin stocks in muscles of the seal Pusa siberica and muskrat Ondatra zibethica. Journal of Evolutionary Biochemistry and Physiology, 20, 282287.Google Scholar
Neves, V., Bried, J., Gonzalez-Solis, J., Roscales, J., & Clarke, M. 2012. Feeding ecology and movements of the Barolo shearwater Puffinus baroli baroli in the Azores, NE Atlantic. Marine Ecology Progress Series, 452, 269285.CrossRefGoogle Scholar
Nevitt, G. A., Veit, R. R., & Kareiva, P. 1995. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds Nature, 376, 680682.CrossRefGoogle Scholar
Nichols, J. W. & Weber, L. J. 1989. Comparative oxygen affinity of fish and mammalian myoglobins. Journal of Comparative Physiology B, 159, 205210.CrossRefGoogle ScholarPubMed
Nicol, S. 1991. Respiratory properties of the blood of the little blue penguin Eudyptula minor. Comparative Biochemistry and Physiology A, 98, 1722.CrossRefGoogle Scholar
Niizuma, Y., Gabrielsen, G. W., Sato, K., Watanuki, Y., & Naito, Y. 2007. Brunnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives. Comparative Biochemistry and Physiology A, 147, 438444.CrossRefGoogle ScholarPubMed
Ninomiya, H., Imamura, E., & Inomata, T. 2014. Comparative anatomy of the ophthalmic rete and its relationship to ocular blood flow in three species of marine mammal. Veterinary Ophthalmology, 17, 100105.CrossRefGoogle ScholarPubMed
Ninomiya, H., Inomata, T., Shirouzu, H., & Katsumata, E. 2005. Microanatomy of the terminal air spaces of Baird's beaked whale (Berardius bairdii) lungs. Journal of Veterinary Medical Science, 67, 473479.CrossRefGoogle ScholarPubMed
NOAA. 2002. Report of the Workshop on Acoustic Resonance as a Source of Tissue Trauma in Cetaceans, 24 and 25 April 2002. Silver Spring, MD: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. [Available at www.nmfs.noaa.gov/pro_tres/readingrm/MMSURTASS/Res_Wkshp_Rpt_Fin.pdf.Google Scholar
Nocera, J. J. & Burgess, N. M. 2002. Diving schedules of common loons in varying environments. Canadian Journal of Zoology, 80, 1643.CrossRefGoogle Scholar
Nolet, B. A., Wansink, D. E. H., & Kruuk, H. 1993. Diving of otters (Lutra lutra) in a marine habitat: use of depths by a single-prey loader. Journal of Animal Ecology, 62, 2232.CrossRefGoogle Scholar
Nordgarden, U., Folkow, L. P., Walloe, L., & Blix, A. S. 2000. On the direction and velocity of blood flow in the extradural vein of harp seals (Phoca groenlandica) during simulated diving. Acta Physiologica Scandinavica, 168, 271276.CrossRefGoogle ScholarPubMed
Nordoy, E. S. & Blix, A. S. 2009. Movements and dive behaviour of two leopard seals (Hydrurga leptonyx) off Queen Maud Land, Antarctica. Polar Biology, 32, 263270.CrossRefGoogle Scholar
Noren, D. P., Kendall, T., Cuccurullo, V., & Williams, T. M. 2012a. The dive response redefined: underwater behavior influences cardiac variability in freely diving dolphins. Journal of Experimental Biology, 215, 27352741.CrossRefGoogle ScholarPubMed
Noren, D. P., Williams, T. M., Berry, P., & Butler, E. 1999. Thermoregulation during swimming and diving in bottlenose dolphins (Tursiops truncatus). Journal of Comparative Physiology B, 169, 9399.CrossRefGoogle ScholarPubMed
Noren, S. R. 2004. Buffering capacity of the locomotor muscle in cetaceans: correlates with postpartum development, dive duration, and swim performance. Marine Mammal Science, 20, 808822.CrossRefGoogle Scholar
Noren, S. R., Cuccurullo, V., & Williams, T. M. 2004. The development of diving bradycardia in bottlenose dolphins (Tursiops truncatus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 174, 139147.CrossRefGoogle ScholarPubMed
Noren, S. R., Iverson, S. J., & Boness, D. J. 2005. Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Physiological and Biochemical Zoology, 78, 482490.CrossRefGoogle ScholarPubMed
Noren, S. R. & Williams, T. M. 2000. Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comparative Biochemistry and Physiology A, 126, 181191.CrossRefGoogle ScholarPubMed
Noren, S. R., Williams, T. M., Pabst, D. A., McLellan, W. A., & Dearolf, J. L. 2001. Development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. Journal of Comparative Physiology B, 171, 127134.CrossRefGoogle ScholarPubMed
Noren, S., Williams, T., Ramirez, K., et al. 2012b. Changes in partial pressures of respiratory gases during submerged voluntary breath hold across odontocetes: is body mass important? Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 182, 299309.CrossRefGoogle ScholarPubMed
Norman, F. & Ward, S. 1993. Foraging group size and dive duration of Adélie penguins Pygoscelis adeliae at sea off Hop Island, Rauer group, East Antarctica. Marine Ornithology, 21, 3747.Google Scholar
Norris, K. S. 1968. The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake, E. T. (ed.) Evolution and Environment. New Haven, CT: Yale University Press.Google Scholar
Norris, K. S. & Dohl, T. P. 1980. Behavior of the Hawaiian spinner dolphin, Stenella longirostris. Fishery Bulletin, 77, 821849.Google Scholar
Norris, K. S. & Harvey, G. W. 1972. A theory of the function of the spermaceti organ of the sperm whale (Physeter catodon L.). In: Galler, S. F., Schmidt-Koenig, K., Jacobs, G. J. & Belleville, R. E. (eds.), Animal Orientation and Navigation. Washington, DC: NASA.Google Scholar
Norton, J. M. 2001. Toward consistent definitions for preload and afterload. Advances in Physiology Education, 25, 5361.CrossRefGoogle ScholarPubMed
Nowacek, D. P., Johnson, M. P., Tyack, P. L., Shorter, K. A., Mclellan, J., & Pabst, D. A. 2001. Buoyant Balaenids: the ups and downs of buoyancy in right whales. Proceedings of the Royal Society London B, 268, 18111816.CrossRefGoogle ScholarPubMed
Nowicki, S. N., Stirling, I., & Sjare, B. 1997. Duration of stereotyped underwater vocal displays by male Atlantic walruses in relation to aerobic dive limit. Marine Mammal Science, 13, 566575.CrossRefGoogle Scholar
Nummela, S. 2009. Hearing. In: Perrin, W. F., Wursig, B. & Thewissen, J. G. M. (eds.), Encyclopedia of Marine Mammals. San Diego, CA: Academic Press.Google Scholar
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, T., & Kumar, K. 2007. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290, 716733.CrossRefGoogle ScholarPubMed
Nunn, J. F. 1977. Applied Respiratory Physiology. London: Butterworths.Google Scholar
O'Connor, P. M. 2004. Pulmonary pneumaticity in the postcranial skeleton of extant Aves: a case study examining Anseriformes. Journal of Morphology, 261, 141161.CrossRefGoogle ScholarPubMed
O'Connor, P. M. 2009. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 629646.CrossRefGoogle Scholar
O'Leary, D. S. 1993. Autonomic mechanisms of muscle metaboreflex control of heart rate. Journal of Applied Physiology, 74, 17481754.CrossRefGoogle ScholarPubMed
Ochrymowych, C. & Lambertsen, R. H. 1984. Anatomy and vasculature of a minke whale heart. American Journal of Anatomy, 169, 165175.CrossRefGoogle ScholarPubMed
Odden, A., Folkow, L. P., Caputa, M., Hotvedt, R., & Blix, A. S. 1999. Brain cooling in seals. Acta Physiologica Scandinavica, 166, 7778.CrossRefGoogle ScholarPubMed
Odend'hal, S. & Poulter, T. C. 1966. Pressure regulation in the middle ear cavity of sea lions: a possible mechanism. Science, 153, 768769.CrossRefGoogle ScholarPubMed
Oelschlager, H. H. A. & Oeschlager, J. S. 2008. Brain. In: Perrin, W. F., Wursig, B. & Thewissen, J. G. M. (eds.), Encyclopedia of Marine Mammals. 2nd edn. Amsterdam: Elsevier.Google Scholar
Oka, N. 1994. Underwater feeding of three shearwaters: pale-footed (Puffinus carneipes), sooty (Puffinus griseus) and streaked (Calonectris leucomelas) shearwaters. Journal of the Yamashina Institute for Ornithology, 26, 8184.CrossRefGoogle Scholar
Okuma, E. & Abe, H. 1992. Major buffering constituents in animal muscle. Comparative Biochemistry and Physiology Part A: Physiology, 102, 3741.CrossRefGoogle ScholarPubMed
Oliver, G. W., Morris, P. A., Thorson, P. H., & Le Boeuf, B. J. 1998. Homing behavior of juvenile northern elephant seals. Marine Mammal Science, 14, 245256.CrossRefGoogle Scholar
Olsen, C. R., Elsner, R., Hale, F. C., & Kenney, D. W. 1969a. “Blow” of the pilot whale. Science, 163, 953955.CrossRefGoogle ScholarPubMed
Olsen, C. R., Hale, F. C., & Elsner, R. 1969b. Mechanics of ventilation in the pilot whale. Respiration Physiology, 7, 137149.CrossRefGoogle ScholarPubMed
Olson, K. R., Dombkowski, R. A., Russell, M. J., et al. 2006. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. Journal of Experimental Biology, 209, 40114023.CrossRefGoogle ScholarPubMed
Olson, K. R., Whitfield, N. L., Bearden, S. E., et al. 2010. Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R51R60.Google ScholarPubMed
Ordway, G. A. & Garry, D. J. 2004. Myoglobin: an essential hemoprotein in striated muscle. Journal of Experimental Biology, 207, 34413446.CrossRefGoogle ScholarPubMed
Orgeig, S., Bernhard, W., Biswas, S. C., et al. 2007. The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures? Integrative and Comparative Biology, 47, 610627.CrossRefGoogle Scholar
Otani, S., Naito, Y., Kawamura, A., et al. 1998. Diving behavior and performance of harbor porpoises, Phocoena phocoena, in Funka Bay, Hokkaido, Japan. Marine Mammal Science, 14, 209220.CrossRefGoogle Scholar
Overgaard, K., Friis, S., Pedersen, B. K., & Lykkeboe, G. 2006. Influence of lung volume, glossopharyngeal inhalation, and PET O2 and PET CO2 on apnea performance in trained breath-hold divers. European Journal of Applied Physiology, 97, 158164.CrossRefGoogle ScholarPubMed
Pabst, D. A. 1990. Axial muscles and connective tissues of the bottlenose dolphin. In: Leatherwood, S. & Reeves, R. R. (eds.) The Bottlenose Dolphin. San Diego, CA: Academic Press.Google Scholar
Pabst, D. A. 1993. Intramuscular morphology and tendon geometry of the epaxial swimming muscles of dolphins. Journal of Zoology, 230, 159176.CrossRefGoogle Scholar
Pabst, D. A., Rommel, S. A., & McLellan, W. A. 1999. The functional morphology of marine mammals. In: Reynolds, J. E., & Rommel, S. A. (eds.), Biology of Marine Mammals. Washington, DC: Smithsonian University Press.Google Scholar
Pabst, D. A., Rommel, S. A., McLellan, W. A., Williams, T. M., & Rowles, T. K. 1995. Thermoregulation of the intra-abdominal testes of the bottlenose dolphin (Tursiops truncatus) during exercise. Journal of Experimental Biology, 198, 221226.CrossRefGoogle ScholarPubMed
Panigada, S., Zanardelli, M., Canese, S., & Jahoda, M. 1999. How deep can baleen whales dive? Marine Ecology Progress Series, 187, 309311.CrossRefGoogle Scholar
Panneton, W. M. 2013. The mammalian diving response: an enigmatic reflex to preserve life? Physiology, 28, 284297.CrossRefGoogle ScholarPubMed
Panneton, W. M., Gan, Q., & Juric, R. 2010. The rat: a laboratory model for studies of the diving response. Journal of Applied Physiology, 108, 811820.CrossRefGoogle Scholar
Panneton, W. M. & Yavari, P. 1995. A medullary dorsal horn relay for the cardiorespiratory responses evoked by stimulation of the nasal mucosa in the muskrat Ondatra zibethicus: evidence for excitatory amino acid transmission. Brain Research, 691, 3745.CrossRefGoogle ScholarPubMed
Papadopoulos, S., Jurgens, K. D., & Gros, G. 1995. Diffusion of myoglobin in skeletal muscle cells: dependence on fibre type, contraction and temperature. Pflugers Archiv, 430, 519525.CrossRefGoogle ScholarPubMed
Papaioannou, T. G. & Stefanadis, C. 2005. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO Journal, 51, 296300.CrossRefGoogle ScholarPubMed
Papastavrou, V., Smith, S. C., & Whitehead, H. 1989. Diving behaviour of the sperm whale, Physeter macrocephalus, off the Galapagos Islands. Canadian Journal of Zoology, 67, 839846.CrossRefGoogle Scholar
Park, K. H., Rubin, L. E., Gross, S. S., & Roberto, L. 1992. Nitric oxide is a mediator of hypoxic coronary vasodilation: regulation to adenosine and cyclooxygenase-derived metabolites. Circulation Research, 71, 9921001.CrossRefGoogle Scholar
Parkos, C. A. & Wahrenbrock, E. A. 1987. Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respiration Physiology, 67, 197207.CrossRefGoogle ScholarPubMed
Parrish, F. A., Abernathy, K., Marshall, G. J., & Buhleier, B. M. 2002. Hawaiian monk seals (Monachus schauinslandi) foraging in deep-water coral beds. Marine Mammal Science, 18, 244258.CrossRefGoogle Scholar
Påsche, A. 1976a. The effect of hypercapnia on respiratory characteristics and diving behaviour of freely diving seals. Respiration Physiology, 26, 183193.CrossRefGoogle ScholarPubMed
Påsche, A. 1976b. Hypoxia in freely diving hooded seal, Cystophora cristata. Comparative Biochemistry and Physiology Part A: Physiology, 55, 319322.CrossRefGoogle ScholarPubMed
Paton, J. F. R., Boscan, P., Pickering, A. E., & Nalivaiko, E. 2005. The Yin and Yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Research Reviews, 49, 555565.CrossRefGoogle ScholarPubMed
Paton, J. F. R., Nalivaiko, E., Boscan, P., & Pickering, A. E. 2006. Reflexively evoked coactivation of cardiac vagal and sympathetic motor outflows: observations and functional implications. Clinical and Experimental Pharmacology and Physiology, 33, 12451250.CrossRefGoogle ScholarPubMed
Patterson, W. R., Dalton, L. M., & McGlasson, D. L. 1998. A comparison of human and killer whale platelet fatty acid composition. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120, 247252.CrossRefGoogle ScholarPubMed
Patterson, W. R., Dalton, L. M., McGlasson, D. L., & Cissik, J. H. 1993. Aggregation of killer whale platelets. Thrombosis Research, 70, 225231.CrossRefGoogle ScholarPubMed
Paulev, P. 1965. Decompression sickness following repeated breath-hold dives. Journal of Applied Physiology, 20, 10281031.CrossRefGoogle ScholarPubMed
Peichl, L., Behrmann, G., & Kröger, R. H. H. 2001. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. European Journal of Neuroscience, 13, 15201528.CrossRefGoogle ScholarPubMed
Perko, M. J., Nielsen, H. B., Skak, C., et al. 1998. Mesenteric, coeliac and splanchnic blood flow in humans during exercise. Journal of Physiology, 513, 907913.CrossRefGoogle ScholarPubMed
Perrin, W. F., Wursig, B., & Thewissen, J. G. M. (eds.) 2009. Encyclopedia of Marine Mammals. San Diego, CA: Academic Press.Google Scholar
Persson, S. G. B., Ekman, L., Lyden, G., & Tufvesson, G. 1973. Circulation effects of splenectomy in the horse I–IV. II. Effect on plasma volume and total and circulating red cell volume. Zentrabl. Veterinaermed, 20, 456468.CrossRefGoogle Scholar
Peters, G., Wilson, R. P., Scolaro, J. A., et al. 1998. The diving behavior of Magellanic penguins at Punta Norte, Peninsula Valdés, Argentina. Colonial Waterbirds, 21, 110.CrossRefGoogle Scholar
Petersen, S. L., Ryan, P. G., & Gremillet, D. 2006. Is food availability limiting African penguins Spheniscus demersus at Boulders? A comparison of foraging effort at mainland and island colonies. Ibis, 148, 1426.CrossRefGoogle Scholar
Petrov, E. A. 1985. Myoglobin concentration and distribution in the tissue of foetal Baikalian seal (Phoca sibirica). Journal of Evolutionary Biochemistry and Physiology, 21, 8386.Google Scholar
Petrov, E. A. & Shoshenko, K. A. 1987. Total store of oxygen and duration of diving of the Nerpa. In: Galazii, G. I. (ed.), Morphology and Ecology of Fish. Novbosibirsk: Academy of Sciences of Russia, Siberian Division.Google Scholar
Petschow, D., Wardinger, I., Baumann, R., et al. 1977. Causes of high blood O2 affinity in animals living at high altitude. Journal of Applied Physiology, 42, 139143.CrossRefGoogle ScholarPubMed
Piantadosi, C. A. 2008. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radical Biology and Medicine, 45, 562569.CrossRefGoogle ScholarPubMed
Piantadosi, C. A., Carraway, M. S., Babiker, A., & Suliman, H. B. 2008. Heme Oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circulation Research, 103, 12321240.CrossRefGoogle ScholarPubMed
Piatt, J. F. & Nettleship, D. N. 1985. Diving depths of four alcids. The Auk, 102, 293297.CrossRefGoogle Scholar
Pierard, J. 1971. Osteology and myology of the Weddell seal (Leptonychotes weddelli)(Lesson, 1826). Antarctic Research Series, 18, 53108.CrossRefGoogle Scholar
Piscitelli, M., McLellan, W., Rommel, S., Blum, J., Barco, S., & Pabst, D. A. 2010. Lung size and thoracic morphology in shallow (Tursiops truncatus) and deep (Kogia spp.) diving cetaceans. Journal of Morphology, 271, 654673.CrossRefGoogle Scholar
Piscitelli, M. A., Raverty, S. A., Lillie, M. A., & Shadwick, R. E. 2013. A review of cetacean lung morphology and mechanics. Journal of Morphology, 274, 14251440.CrossRefGoogle ScholarPubMed
Pitcher, K. W., Rehberg, M. J., Pendleton, G. W., et al. 2004. Ontogeny of dive performance in pup and juvenile Steller sea lions in Alaska. Canadian Journal of Zoology, 83, 12141231.CrossRefGoogle Scholar
Polasek, L. & Davis, R. W. 2001. Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. Journal of Experimental Biology, 204, 209215.CrossRefGoogle ScholarPubMed
Polasek, L., Dickson, K. A., & Davis, R. W. 2006. Metabolic indicators in the skeletal muscles of harbor seals (Phoca vitulina). American Journal of Physiology, 290, R1720R1727.Google ScholarPubMed
Ponganis, P. J. 2007. Bio-logging of physiological parameters in higher marine vertebrates. Deep-Sea Research II, 54, 183192.CrossRefGoogle Scholar
Ponganis, P. J. 2011. Diving mammals. In: Terjung, R. (ed.) Comprehensive Physiology. Bethesda, MD: John Wiley & Sons, Inc.Google Scholar
Ponganis, P. J., Costello, M. L., Starke, L. N., Mathieu-Costello, O., & Kooyman, G. L. 1997a. Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respiration Physiology, 109, 7380.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Gentry, R. L., Ponganis, E. P., & Ponganis, K. V. 1992a. Analysis of swim velocities during deep and shallow dives of two northern fur seals, Callorhinus ursinus. Marine Mammal Science, 8, 6975.CrossRefGoogle Scholar
Ponganis, P. J. & Kooyman, G. L. 1999. Heart rate and electrocardiogram characteristics of a young California gray whale (Eschrictius robustus). Marine Mammal Science, 15, 11981207.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., Baronov, E. A., Thorson, P. H., & Stewart, B. S. 1997b. The aerobic submersion limit of Baikal seals, Phoca sibirica. Canadian Journal of Zoology, 75, 13231327.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., & Castellini, M. A. 1993a. Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, post-dive end tidal PO2's, and blood and muscle oxygen stores. Physiological Zoology, 66, 732749.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., & Castellini, M. A. 1995. Multiple sightings of Arnoux's beaked whales along the Victoria Land coast. Marine Mammal Science, 11, 247250.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., Castellini, M. A., Ponganis, E. P., & Ponganis, K. V. 1993b. Muscle temperature and swim velocity profiles during diving in a Weddell seal, Leptonychotes weddellii. Journal of Experimental Biology, 183, 341348.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., & Ridgway, S. H. 2003a. Comparative diving physiology. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Ponganis, P. J., Kooyman, G. L., Sartoris, D., & Jobsis, P. F. 1992b. Pinniped splenic volumes. American Journal of Physiology, 262, R322R325.Google ScholarPubMed
Ponganis, P. J., Kooyman, G. L., Starke, L. N., Kooyman, C. A., & Kooyman, T. G. 1997c. Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. Journal of Experimental Biology, 200, 16231626.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Kooyman, G. L., Van Dam, R., & Le Maho, Y. 1999a. Physiological responses of king penguins during simulated diving to 136 m depth. Journal of Experimental Biology, 202, 28192822.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Kooyman, G. L., Winter, L. M., & Starke, L. N. 1997d. Heart rate and plasma lactate responses during submerged swimming and diving in California sea lions (Zalophus californianus). Journal of Comparative Physiology B, 167, 916.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Kooyman, G. L., & Zornow, M. H. 1991. Cardiac output in swimming California sea lions, Zalophus californianus. Physiological Zoology, 64, 12961306.CrossRefGoogle Scholar
Ponganis, P. J., Kooyman, G. L., Zornow, M. H., Castellini, M. A., & Croll, D. A. 1990. Cardiac output and stroke volume in swimming harbor seals. Journal of Comparative Physiology, 160B, 473482.Google Scholar
Ponganis, P. J., Kreutzer, U., Stockard, T. K., et al. 2008. Blood flow and metabolic regulation in seal muscle during apnea. Journal of Experimental Biology, 211, 33233332.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Meir, J. U., & Williams, C. L. 2010a. Oxygen store depletion and the aerobic dive limit in emperor penguins. Aquatic Biology, 8, 237245.CrossRefGoogle Scholar
Ponganis, P. J., Meir, J. U., & Williams, C. L. 2011. In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. Journal of Experimental Biology, 214, 33253339.CrossRefGoogle Scholar
Ponganis, P. J. & Pierce, R. W. 1978. Muscle metabolic profiles and fiber-type composition in some marine mammals. Comparative Biochemistry and Physiology B, 59, 99102.CrossRefGoogle ScholarPubMed
Ponganis, P. J., St. Leger, J., & Scadeng, M. 2015. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy. Journal of Experimental Biology, 218, 720730.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Starke, L. N., Horning, M., & Kooyman, G. L. 1999b. Development of diving capacity of emperor penguins. Journal of Experimental Biology, 202, 781786.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Stockard, T., Levenson, D. H., Berg, L., & Baranov, E. A. 2006a. Intravascular pressure profiles in elephant seals: a hypothesis on the extradural vein and venous return to the heart. Comparative Biochemistry and Physiology A, 145, 123130.CrossRefGoogle Scholar
Ponganis, P. J., Stockard, T., Levenson, D. H., Berg, L., & Barnov, E. A. 2006b. Cardiac output and muscle blood flow during rest-associated apneas in elephant seals. Comparative Biochemistry and Physiology A, 144, 105111.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Stockard, T. K., Meir, J. U., et al. 2009. O2 store management in diving emperor penguins. Journal of Experimental Biology, 212, 217224.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Stockard, T. K., Meir, J. U., et al. 2007. Returning on empty: extreme blood O2 depletion underlies dive capacity of emperor penguins. Journal of Experimental Biology, 210, 42794285.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Van Dam, R. P., Knower, T., & Levenson, D. H. 2001. Temperature regulation in emperor penguins foraging under sea ice. Comparative Biochemistry and Physiology A, 129, 811820.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Van Dam, R. P., Knower, T., Levenson, D. H., & Ponganis, K. V. 2004. Deep dives and aortic temperatures of emperor penguins: new directions for bio-logging at the isolated dive hole. Memoirs of the National Institute of Polar Research, Special Issue, 58, 155161.Google Scholar
Ponganis, P. J., Van Dam, R. P., Levenson, D. H., et al. 2003b. Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comparative Biochemistry and Physiology A, 135, 477487.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Van Dam, R. P., Marshall, G., Knower, T., & Levenson, D. H. 2000. Sub-ice foraging behavior of emperor penguins. Journal of Experimental Biology, 203, 32753278.CrossRefGoogle ScholarPubMed
Ponganis, P. J., Welch, T. J., Welch, L. S., & Stockard, T. K. 2010b. Myoglobin production in emperor penguins. Journal of Experimental Biology, 213, 19011906.CrossRefGoogle ScholarPubMed
Postle, A. D., Heeley, E. L., & Wilton, D. C. 2001. A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 6573.CrossRefGoogle ScholarPubMed
Potvin, J., Goldbogen, J. A., & Shadwick, R. E. 2009. Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. Journal of the Royal Society Interface, 6, 10051025.CrossRefGoogle ScholarPubMed
Powell, F. L. 2000. Respiration. In: Whittow, G. C. (ed.), Sturkie's Avian Physiology. San Diego, CA: Academic Press.Google Scholar
Powers, S. K. & Jackson, M. J. 2008. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiologcial Reviews, 88, 12431276.CrossRefGoogle ScholarPubMed
Prince, P. A., Huin, N., & Weimerskirch, H. 1994. Diving depths of albatrosses. Antarctic Science, 6, 353354.CrossRefGoogle Scholar
Prince, P. A. & Jones, M. 1992. Maximum dive depths attained by South Georgia diving petrel Pelecanoides georgicus at Bird Island, South Georgia. Antarctic Science, 4, 433434.CrossRefGoogle Scholar
Puerta, M. L., Del Campo, A. L. G., Huecas, V., & Abelenda, M. 1991. Hematology and blood chemistry of the white pelican (Pelecanus onocrotalus). Comparative Biochemistry and Physiology Part A: Physiology, 98, 393394.CrossRefGoogle Scholar
Pugh, L. G. C. E. 1959. Carbon monoxide content of the blood and other observations on Weddell seals. Nature, 183, 7476.CrossRefGoogle ScholarPubMed
Pütz, K. & Cherel, Y. 2005. The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Marine Biology, 147, 281290.CrossRefGoogle Scholar
Pütz, K., Wilson, R. P., Charrassin, J. B., et al. 1998. Foraging strategy of king penguins (Aptnodytes patagonicus) during summer at the Crozet Islands. Ecology, 79, 19051921.CrossRefGoogle Scholar
Quinones, Q. J., Ma, Q., Zhang, Z. L., Barnes, B. M., & Podgoreanu, M. V. 2014. Organ protective mechanisms common to extremes of physiology: a window through hibernating biology. Integrative and Comparative Biology, 54, 497515.CrossRefGoogle ScholarPubMed
Qvist, J., Hill, R. D., Schneider, R. C., et al. 1986. Hemoglobin concentrations and blood gas tensions of free-diving Weddell seals. Journal of Applied Physiology, 61, 15601569.CrossRefGoogle ScholarPubMed
Qvist, J., Hurford, W. E., Park, Y. S., et al. 1993. Arterial blood gas tensions during breath-hold diving in the Korean ama. Journal of Applied Physiology, 75, 285293.CrossRefGoogle ScholarPubMed
Qvist, J., Weber, R. E., & Zapol, W. M. 1981. Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. Journal of Applied Physiology, 50, 9991005.CrossRefGoogle ScholarPubMed
Radermacher, P., Falke, K. J., Park, Y. S., et al. 1992. Nitrogen tensions in brachial vein blood of Korean ama divers. Journal of Applied Physiology, 73, 25922595.CrossRefGoogle ScholarPubMed
Ralls, K., Hatfield, B. B., & Siniff, D. B. 1995. Foraging patterns of California sea otters as indicated by telemetry. Canadian Journal of Zoology, 73, 523531.CrossRefGoogle Scholar
Ramirez, J.-M., Folkow, L. P., & Blix, A. S. 2007. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annual Review of Physiology, 69, 113143.CrossRefGoogle ScholarPubMed
Rayner, M. J., Taylor, G. A., Tompson, D. R., Torres, L. G., Sagar, P. M., & Shaffer, S. A. 2011. Migration and diving activity in three non-breeding flesh-footed shearwaters Puffinus carneipes. Journal of Avian Biology, 42, 266270.CrossRefGoogle Scholar
Reed, J. Z., Butler, P. J., & Fedak, M. A. 1994a. The metabolic characteristics of the locomotory muscles of grey seals (Halichoerus grypus), harbour seals (Phoca vitulina), and Antarctic fur seals (Arctocephalus gazella). Journal of Experimental Biology, 194, 3346.CrossRefGoogle ScholarPubMed
Reed, J. Z., Chambers, C., Fedak, M. A., & Butler, P. J. 1994b. Gas exchange of captive freely diving grey seals (Halichoerus grypus). Journal of Experimental Biology, 191, 118.CrossRefGoogle ScholarPubMed
Reed, J. Z., Chambers, C., Hunter, C. J., et al. 2000. Gas exchange and heart rate in the harbour porpoise, Phocoena phocoena. Journal of Comparative Physiology B, 170, 110.CrossRefGoogle ScholarPubMed
Reeder, B. J. 2010. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxidants & Redox Signaling, 13, 10871123.CrossRefGoogle ScholarPubMed
Reidenberg, J. S. & Laitman, J. T. 2007. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290, 745759.CrossRefGoogle ScholarPubMed
Renjun, L., Gewalt, W., Neurohr, B., & Winkler, A. 1994. Comparative studies on the behaviour of Inia geoffrensis and Lipotes vexillifer in artificial environments. Aquatic Mammals, 20, 3945.Google Scholar
Revsbech, I. G., Shen, X., Chakravarti, R., et al. 2014. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radical Biology and Medicine, 73, 349357.CrossRefGoogle ScholarPubMed
Reynafarje, B. 1963. Simplified method for the determination of myoglobin. Journal of Laboratory and Clinical Medicine, 61, 139145.Google ScholarPubMed
Reynolds, J. E. III 1981. Behavior patterns in the West Indian manatee, with emphasis of feeding and diving (Florida). Florida Scientist, 44, 232242.Google Scholar
Reynolds, J. E. III & Odell, D. K. 1991. Manatees and Dugongs. New York: Facts on File, Inc.Google Scholar
Reynolds, J. E. III & Rommel, S. A. (eds.) 1999. Biology of Marine Mammals. Washington, DC: Smithsonian Institution Press.Google Scholar
Rhode, E. A., Elsner, R., Peterson, T. M., Campbell, K. B., & Spangler, W. 1986. Pressure–volume characteristics of aortas of harbor and Weddell seals. American Journal of Physiology, 251, R174R180.Google ScholarPubMed
Rhodes, M. A., Carraway, M. S., Piantadosi, C. A., et al. 2009. Carbon monoxide, skeletal muscle oxidative stress, and mitochondrial biogenesis in humans. American Journal of Physiology: Heart and Circulatory Physiology, 297, H392H399.Google ScholarPubMed
Ribak, G., Weihs, D., & Arad, Z. 2004. How do cormorants counter buoyancy during submerged swimming? Journal of Experimental Biology, 207, 21012114.CrossRefGoogle ScholarPubMed
Ribak, G., Weihs, D., & Arad, Z. 2005a. Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. Journal of Experimental Biology, 208, 38353849.CrossRefGoogle ScholarPubMed
Ribak, G., Weihs, D., & Arad, Z. 2005b. Water retention in the plumage of diving great cormorants Phalacrocorax carbo sinensis. Journal of Avian Biology, 36, 8995.CrossRefGoogle Scholar
Richardson, R. S., Noyszewski, E. A., Kendrick, K. F., Leigh, J. J., & Wagner, P. D. 1995. Myoglobin O2 dissociation during exercise: evidence of limited O2 transport. Journal of Clinical Investigation, 96, 19161926.CrossRefGoogle Scholar
Richmond, J. P., Burns, J. M., & Rea, L. D. 2006. Ontogeny of total body oxygen stores and aerobic dive potential in the Steller sea lion (Eumetopias jubatus). Journal of Comparative Physiology B, 176, 535545.CrossRefGoogle Scholar
Ridgway, S. H. 1972. Mammals of the Sea: Biology and Medicine. Springfield, IL: Charles C. Thomas.Google Scholar
Ridgway, S. H. 1986. Diving by Cetaceans. In: Brubakk, A. O., Kanwisher, J. W. & Sundnes, G. (eds.), Diving in Animals and Man. Trondheim: Royal Norwegian Society of Science and Letters.Google Scholar
Ridgway, S. H., Bowers, C. A., Miller, D., et al. 1984. Diving and blood oxygen in the white whale. Canadian Journal of Zoology, 62, 23492351.CrossRefGoogle Scholar
Ridgway, S. H., Carder, D. A., & Clark, W. 1975a. Conditioned bradycardia in the sea lion Zalophus californianus. Nature, 256, 3738.CrossRefGoogle Scholar
Ridgway, S. H., Harrison, R. J., & Joyce, P. L. 1975b. Sleep and cardiac rhythm in the gray seal. Science, 187, 553555.CrossRefGoogle ScholarPubMed
Ridgway, S. H. & Harrison, R. J. 1981–1998. Handbook of Marine Mammals. Vols 1–6. New York: Academic Press.Google Scholar
Ridgway, S. H. & Howard, R. 1979. Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Science, 206, 11821183.CrossRefGoogle ScholarPubMed
Ridgway, S. H. & Johnston, D. G. 1966. Blood oxygen and ecology of porpoises of three genera. Science, 151, 456458.CrossRefGoogle ScholarPubMed
Ridgway, S. H. & Kohin, S. 1995. The relationship between heart mass and body mass for three cetacean genera: narrow allometry demonstrates interspecific differences. Marine Mammal Science, 11, 7280.CrossRefGoogle Scholar
Ridgway, S. H., Scronce, B. L., & Kanwisher, J. 1969. Respiration and deep diving in the bottlenose porpoise. Science, 166, 16511654.CrossRefGoogle ScholarPubMed
Rijke, A. M. 1968. The water repellency and feather structure of cormorants, Phalacrocoracidae. Journal of Experimental Biology, 48, 185189.CrossRefGoogle Scholar
Rivero, J.-L. L., Talmadge, R. J., & Edgerton, V. R. 1999. Interrelationships of myofibrillar ATPase activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. Histochemistry and Cell Biology, 111, 277287.CrossRefGoogle ScholarPubMed
Riveros-Moreno, V. & Wittenberg, J. B. 1972. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solution. Journal of Biological Chemistry, 247, 895901.CrossRefGoogle Scholar
Robinson, A. J., Kropatkin, M., & Aggeler, P. M. 1969. Hageman Factor (Factor XII) deficiency in marine mammals. Science, 166, 14201422.CrossRefGoogle ScholarPubMed
Robinson, P. W., Costa, D. P., Crocker, D. E., et al. 2012. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PloS ONE, 7, e36728.CrossRefGoogle ScholarPubMed
Robinson, P. W., Simmons, S. E., Crocker, D. E., & Costa, D. P. 2010. Measurements of foraging success in a highly pelagic marine predator, the northern elephant seal. Journal of Animal Ecology, 79, 11461156.CrossRefGoogle Scholar
Robinson, S. A. & Hindell, M. A. 1996. Foraging ecology of gentoo penguins Pygoscelis papua at Macquarie Island during the period of chick care. Ibis, 138, 722731.CrossRefGoogle Scholar
Roca, J., Agusti, A. G. N., Alonso, A., et al. 1992. Effects of training on muscle O2 transport at VO2MAX. Journal of Applied Physiology, 73, 10671076.CrossRefGoogle ScholarPubMed
Rodary, D., Bonneau, W., Le Maho, Y., & Bost, C. A. 2000. Benthic diving in male emperor penguins foraging in winter. Marine Ecology Progress Series, 207, 171181.CrossRefGoogle Scholar
Rommel, S. A. & Caplan, H. 2003. Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris). Journal of Anatomy, 202, 343353.CrossRefGoogle ScholarPubMed
Rommel, S. A., Costidis, A. M., Fernandez, A., et al. 2006. Elements of beaked whale anatomy and diving physiology and some hypothetical causes of sonar-related stranding. Journal of Cetacean Research Management, 7, 189209.CrossRefGoogle Scholar
Rommel, S. A., Early, G. A., Matassa, K. A., Pabst, D. A., & McLellan, W. A. 1995. Venous structures associated with thermoregulation of phocid seal reproductive organs. The Anatomical Record, 243, 390402.CrossRefGoogle ScholarPubMed
Rommell, S. A., Pabst, D. A., McLellan, W. A., Mead, J. A., & Potter, C. W. 1992. Anatomical evidence for a countercurrent heat exchanger associated with dolphin testes. Anatomical Record, 232, 150156.CrossRefGoogle Scholar
Rommell, S. A., Pabst, D. A., McLellan, W. A., Williams, T. M., & Friedl, W. A. 1994. Temperature regulation of the testes of the bottlenose dolphin (Tursiops truncatus): evidence from colonic temperatures. Journal of Comparative Physiology B, 164, 130134.CrossRefGoogle Scholar
Ron, Y. & Guillemette, M. 1991. Diving and foraging in the common eider. Ornis Scandinavica, 22, 349352.Google Scholar
Ronald, K., McCarter, R., & Selley, L. J. 1977. Venous circulation of the harp seal (Pagophilus groenlandicus). In: Harrison, R. J. (ed.), Functional Anatomy of Marine Mammals. New York: Academic Press.Google Scholar
Ropert-Coudert, Y., Chiaradia, A., & Kato, A. 2006. An exceptionally deep dive by a little penguin Eudyptula minor. Marine Ornithology, 34, 7174.Google Scholar
Ropert-Coudert, Y., Daunt, F., Kato, A., et al. 2009. Underwater wingbeats extend depth and duration of plunge dives in northern gannets Morus bassanus. Journal of Avian Biology, 40, 380387.CrossRefGoogle Scholar
Ropert-Coudert, Y., Grémillet, D., Kato, A., et al. 2004a. A fine-scale time budget of Cape gannets provides insights into their foraging strategies. Animal Behaviour, 67, 985992.CrossRefGoogle Scholar
Ropert-Coudert, Y., Grémillet, D., Ryan, P. G., et al. 2004b. Between air and water: the plunge dive of the Cape gannet Morus capensis. Ibis, 146, 281290.CrossRefGoogle Scholar
Ropert-Coudert, Y. & Kato, A. 2009. Diving activity of hoary-headed (Poliocephalus poliocephalus) and Australasian little (Tachybaptus novaehollandiae) grebes. Waterbirds, 32, 157161.CrossRefGoogle Scholar
Ropert-Coudert, Y., Kato, A., Naito, Y., & Cannell, B. L. 2003. Individual diving strategies in the little penguin. Waterbirds, 26, 403408.CrossRefGoogle Scholar
Rosen, D. A. & Trites, A. W. 1997. Heat increment of feeding in Steller sea lions, Eumetopias jubatus. Comparative Biochemistry and Physiology A, 118, 877881.CrossRefGoogle ScholarPubMed
Rosen, D. A. S., Winship, A. J., & Hoopes, L. A. 2007. Thermal and digestive constraints to foraging behaviour in marine mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 21512168.CrossRefGoogle ScholarPubMed
Rosser, B. W. C., Waldbillig, D. M., Wick, M., & Bandman, E. 1994. Muscle fiber types in the pectoralis of the white pelican, a soaring bird. Acta Zoologica, 75, 329336.CrossRefGoogle Scholar
Roughton, F. J. W. & Darling, R. C. 1944. The effect of carbon monoxide on the oxyhemoglobin dissociation curve. American Journal of Physiology, 141, 1731.CrossRefGoogle Scholar
Rowell, L. B. & O'Leary, D. S. 1990. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. Journal of Applied Physiology, 69, 407418.CrossRefGoogle ScholarPubMed
Rowlatt, U. 1981. The cardiac ventricles of a baleen whale (Balaenoptera acutorostrata: minke whale) and a toothed whale (Hyperoodon ampullatus: bottlenose whale). Journal of Morphology, 168, 8596.CrossRefGoogle Scholar
Rowlatt, U. & Gaskin, D. E. 1975. Functional anatomy of the heart of the harbor porpoise, Phocaena phocaena. Journal of Morphology, 146, 479493.CrossRefGoogle ScholarPubMed
Ryan, P. G. 2007. Diving in shallow water: the foraging ecology of darters (Aves: Anhingidae). Journal of Avian Biology, 38, 507514.CrossRefGoogle Scholar
Ryan, P. G. & Nel, D. C. 1999. Foraging behaviour of diving petrels Pelecanoides. Emu, 99, 7274.CrossRefGoogle Scholar
Ryan, P. G., Pichegru, L., Ropert-Coudert, Y., Grémillet, D., & Kato, A. 2010. On a wing and a prayer: the foraging ecology of breeding Cape cormorants. Journal of Zoology, 280, 2532.CrossRefGoogle Scholar
Ryg, M., Lydersen, C., Knutsen, L. Ø., et al. 1993. Scaling of insulation in seals and whales. Journal of Zoology, 230, 193206.CrossRefGoogle Scholar
Sadé, J., Handrich, Y., Bernheim, J., & Cohen, D. 2008. Pressure equilibration in the penguin middle ear. Acta Oto-laryngologica, 128, 1821.CrossRefGoogle ScholarPubMed
Saito, H., Poon, M.-C., Goldsmith, G. H., Ratnoff, O. D., & Árnason, Ú. 1976. Studies on the blood clotting and fibrinolytic system in the plasma from a sei (baleen) whale. Experimental Biology and Medicine, 152, 503507.CrossRefGoogle ScholarPubMed
Sakamoto, K. Q., Takahashi, A., Iwata, T., & Trathan, P. N. 2009. From the eye of the albatrosses: a bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean. PLoS ONE, 4, e7322.CrossRefGoogle Scholar
Sakamoto, T. & Monafo, W. W. 1989. Regional blood flow in the brain and spinal cord of hypothermic rats. American Journal of Physiology: Heart and Circulatory Physiology, 257, H785H790.Google ScholarPubMed
Saltin, B. 2007. Exercise hyperaemia: magnitude and aspects on regulation in humans. Journal of Physiology, 583, 819823.CrossRefGoogle ScholarPubMed
Saltin, B., Gagge, A. P., & Stolwijk, J. A. J. 1968. Muscle temperature during submaximal exercise in man. Journal of Applied Physiology, 25, 679688.CrossRefGoogle ScholarPubMed
Sanders, T. M., Werner, R. A., & Bloor, C. M. 1976. Visceral blood flow distribution during exercise to exhaustion in conscious dogs. Journal of Applied Physiology, 40, 927931.CrossRefGoogle ScholarPubMed
Sato, K., Daunt, F., Watanuki, Y., Takahashi, A., & Wanless, S. 2008. A new method to quantify prey acquisition in diving seabirds using wing stroke frequency. Journal of Experimental Biology, 211, 5865.CrossRefGoogle ScholarPubMed
Sato, K., Mitani, Y., Camerson, M. F., Siniff, D. B., & Naito, Y. 2003. Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. Journal of Experimental Biology, 206, 14611470.CrossRefGoogle ScholarPubMed
Sato, K., Naito, Y., Kato, A., et al. 2002. Buoyancy and maximal diving depth in penguins: do they control inhaling air volume? Journal of Experimental Biology, 205, 11891197.CrossRefGoogle ScholarPubMed
Sato, K., Shiomi, K., Marshall, G., Kooyman, G. L., & Ponganis, P. J. 2011. Stroke rates and diving air volumes of emperor penguins: implications for dive performance. Journal of Experimental Biology, 214, 28542863.CrossRefGoogle ScholarPubMed
Sato, K., Shiomi, K., Watanabe, Y., et al. 2009. Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proceedings of the Royal Society B, 277, 707714.CrossRefGoogle ScholarPubMed
Sato, K., Watanuki, Y., & Naito, Y. 2006. The minimum air volume kept in diving Adelie penguins: evidence for regulation of air volume in the respiratory system. Coastal Marine Science, 30, 439442.Google Scholar
Sato, K., Watanuki, Y., Takahashi, A., et al. 2007. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B: Biological Sciences, 274, 471477.CrossRefGoogle Scholar
Schaeffer, K. E., Allison, R. D., Dougherty, J. H. Jr, et al. 1968. Pulmonary and circulatory adjustments determining the limits of depths in breathhold diving. Science, 162, 10201023.CrossRefGoogle Scholar
Schagatay, E. 2012. Size matters: spleen and lung volumes predict performance in human apneic diving. Frontiers in Physiology. DOI: 10.3389/fphys.2012.00173.CrossRefGoogle Scholar
Scheffer, V. B. 1964. Hair patterns in seals (Pinnipedia). Journal of Morphology, 115, 291303.CrossRefGoogle ScholarPubMed
Scheid, P. 1979. Mechanisms of gas exchange in bird lungs. Reviews in Physiology, Biochemistry, and Physiology, 86, 137186.CrossRefGoogle ScholarPubMed
Scheid, P. & Piiper, J. 1987. Gas exchange and transport. In: Seller, T. J. (ed.) Bird Respiration. Boca Raton, FL: CRC Press.Google Scholar
Scheid, P., Slama, H., & Willmer, H. 1974. Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respiration Physiology, 21, 1936.CrossRefGoogle ScholarPubMed
Schenkman, K. A., Marble, D. A., Burns, D. H., & Feigl, E. O. 1997. Myoglobin oxygen dissociation by multiwavelength spectroscopy. Journal of Applied Physiology, 82, 8692.CrossRefGoogle ScholarPubMed
Schiavani, A. & Rey, A. R. 2004. Long days, long trips: foraging ecology of female rockhopper penguins Eudyptes chrysocome chrysocome at Tierra del Fuego. Marine Ecology Progress Series, 275, 231262.Google Scholar
Schmid, D., Grémillet, D. J. H., & Culik, B. M. 1995. Energetics of underwater swimming in the great cormorant (Phalacrocorax carbo sinensis). Marine Biology, 123, 875881.CrossRefGoogle Scholar
Schmidt-Nielsen, B., Murdaugh, H. V., O'Dell, R., & Bacsanyi, J. 1959. Urea excretion and diving in the seal (Phoca vitulina L.). Journal of Cellular and Comparative Physiology, 53, 393411.CrossRefGoogle Scholar
Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schmidt, A., Alard, F., & Handrich, Y. 2006. Changes in body temperature in king penguins at sea: the result of fine adjustments in peripheral heat loss. American Journal of Physiology, 291, R608R618.Google ScholarPubMed
Schneuer, M., Flachsbarth, S., Czech-Damal, N. U., et al. 2012. Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience, 223, 3544.CrossRefGoogle ScholarPubMed
Scholander, P. F. 1940. Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skrifter, 22, 1131.Google Scholar
Scholander, P. F. 1955. Counter current exchange: a principle in biology. Hvalradets Skrifter, 44, 124.Google Scholar
Scholander, P. F. 1960. Oxygen transport through hemoglobin solutions. Science, 131, 585590.CrossRefGoogle ScholarPubMed
Scholander, P. F. 1963. The master switch of life. Scientific American, 209, 92106.CrossRefGoogle ScholarPubMed
Scholander, P. F., Hammel, H. T., Lemessurier, H., Hemmingsen, E., & Garey, W. 1962. Circulatory adjustment in pearl divers. Journal of Applied Physiology, 17, 184190.CrossRefGoogle ScholarPubMed
Scholander, P. F., Hock, R., Walters, V., & Irving, L. 1950a. Adaptation to cold in Arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. The Biological Bulletin, 99, 259271.CrossRefGoogle ScholarPubMed
Scholander, P. F., Hock, R., Walters, V., Johnson, F., & Irving, L. 1950b. Heat regulation in some arctic and tropical mammals and birds. The Biological Bulletin, 99, 237258.CrossRefGoogle ScholarPubMed
Scholander, P. F. & Irving, L. 1941. Experimental investigations on the respiration and diving of the Florida manatee. Journal of Cellular and Comparative Physiology, 17, 169191.CrossRefGoogle Scholar
Scholander, P. F., Irving, L., & Grinnell, S. W. 1942a. Aerobic and anaerobic changes in seal muscle during diving. Journal of Biological Chemistry, 142, 431440.CrossRefGoogle Scholar
Scholander, P. F., Irving, L., & Grinnell, S. W. 1942b. On the temperature and metabolism of the seal during diving. Journal of Cellular and Comparative Physiology, 19, 6778.CrossRefGoogle Scholar
Scholander, P. F. & Schevill, W. E. 1955. Counter-current vascular heat exchange in the fins of whales. Journal of Applied Physiology, 8, 279282.CrossRefGoogle ScholarPubMed
Scholander, P. F., Walters, V., Hock, R., & Irving, L. 1950c. Body insulation of some artic and tropical mammals and birds. Biological Bulletin, 99, 225236.CrossRefGoogle Scholar
Schorger, A. 1947. The deep diving of the loon and old-squaw and its mechanism. The Wilson Bulletin, 59, 151159.Google Scholar
Schorr, G. S., Falcone, E. A., Moretti, D. J., & Andrews, R. D. 2014. First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS ONE. DOI: 10.1371/journal.pone.0092633.CrossRefGoogle Scholar
Schreer, J. F. & Testa, J. W. 1996. Classification of Weddell seal diving behavior. Marine Mammal Science, 12, 227250.CrossRefGoogle Scholar
Schreiber, E. A. & Burger, J. (eds.) 2002. Biology of Marine Birds. Boca Raton, FL: CRC Press.Google Scholar
Schulte-Pelkum, N., Wieskotten, S., Hanke, W., Dehnhardt, G., & Mauck, B. 2007. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 210, 781787.CrossRefGoogle ScholarPubMed
Schumacher, U. & Welsch, U. 1987. Histological, histochemical, and fine structural observations on the spleen of seals. American Journal of Anatomy, 179, 356368.CrossRefGoogle ScholarPubMed
Scott, M. S. & Chivers, S. J. 2009. Movements and diving behavior of pelagic spotted dolphins. Marine Mammal Science, 25, 137160.CrossRefGoogle Scholar
Sebert, P. (ed.) 2010. Comparative High Pressure Biology. Enfield: Science Publishers.Google Scholar
Seddon, P. J. & Vanheezik, Y. 1990. Diving depths of the yellow-eyed penguin Megadyptes antipodes. Emu, 90, 5357.CrossRefGoogle Scholar
Semenza, G. L. 2004. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Applied Physiology, 96, 11731177.CrossRefGoogle ScholarPubMed
Semenza, G. L. 2007. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochemical Journal, 405, 19.CrossRefGoogle ScholarPubMed
Sendroy, J., Dillon, R. T., & Van Slyke, D. D. 1934. Studies of gas and electrolyte equilibria in blood: XIX. The solubility and physical state of uncombined oxygen in blood. Journal of Biological Chemistry, 105, 597632.CrossRefGoogle Scholar
Sessler, D. I. 2000. Perioperative heat balance. Anesthesiology, 92, 578596.CrossRefGoogle ScholarPubMed
Sessler, D. I. M. D. 2009. Thermoregulatory defense mechanisms. Critical Care Medicine Therapeutic Temperature Management: State of the Art in the Critically Ill, 37, S203S210.CrossRefGoogle ScholarPubMed
Shadwick, R. E. & Gosline, J. M. 1994. Arterial mechanics in the fin whale suggest a unique hemodynamic design. American Journal of Physiology, 267, R805R818.Google ScholarPubMed
Shaffer, S. A. 2011. A review of seabird energetics using the doubly labeled water method. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158, 315322.CrossRefGoogle ScholarPubMed
Shaffer, S. A., Costa, D. P., Williams, T. M., & Ridgway, S. H. 1997. Diving and swimming performance of white whales, Delphinapterus leucas: an assessment of plasma lactate and blood gas levels and respiratory rates. Journal of Experimental Biology, 200, 30913099.CrossRefGoogle ScholarPubMed
Shaffer, S. A., Tremblay, Y., Weimerskirch, H., et al. 2006. Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proceedings of the National Academy of Sciences, 103, 1279912802.CrossRefGoogle Scholar
Shaffer, S. A., Weimerskirch, H., Scott, D., et al. 2009. Spatiotemporal habitat use by breeding sooty shearwaters Puffinus griseus. Marine Ecology Progress Series, 391, 209220.CrossRefGoogle Scholar
Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., et al. 2005. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. New England Journal of Medicine, 353, 15741584.CrossRefGoogle ScholarPubMed
Shelton, G. & Jones, D. R. 1965. Central blood pressure and heart output in surfaced and submerged frogs. Journal of Experimental Biology, 42, 339357.CrossRefGoogle ScholarPubMed
Shiomi, K., Sato, K., Mitamura, H., et al. 2008. Effect of ocean current on the dead-reckoning estimation of 3D dive paths of emperor penguins. Aquatic Biology, 3, 265270.CrossRefGoogle Scholar
Shiomi, K., Sato, K., & Ponganis, P. J. 2012. Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? Journal of Experimental Biology, 215, 135140.CrossRefGoogle ScholarPubMed
Shiva, S., Huang, Z., Grubina, R., et al. 2007. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circulation Research, 100, 654661.CrossRefGoogle ScholarPubMed
Shrestha, R., Mckinley, C., Showalter, R., et al. 1997. Quantitative liver function tests define the functional severity of liver disease in early-stage cirrhosis. Liver Transplantation and Surgery, 3, 166173.CrossRefGoogle ScholarPubMed
Sibley, C. G. & Monroe, B. L. Jr. 1990. Distribution and Taxonomy of Birds of the World. New Haven, CT: Yale University Press.Google Scholar
Signore, P. E. & Jones, D. R. 1995. Effect of pharmacological blockade on cardiovascular responses to voluntary and forced diving in muskrats. Journal of Experimental Biology, 198, 23072315.CrossRefGoogle ScholarPubMed
Simmins, K. 1969. Duration of dives in the red-necked grebe. British Birds, 64, 300302.Google Scholar
Simmonds, M. P. & Lopez-Jurado, L. F. 1991. Whales and the military. Nature, 351, 448.CrossRefGoogle Scholar
Simon, L., Robin, E., Elsner, R., Van Kessel, A., & Theodore, J. 1974. A biochemical basis for differences in maximal diving time in aquatic mammals. Comparative Biochemistry and Physiology B, 47, 209215.CrossRefGoogle ScholarPubMed
Simon, M., Johnson, M., & Madsen, P. T. 2012. Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. Journal of Experimental Biology, 215, 37863798.CrossRefGoogle ScholarPubMed
Simpson, J. G. & Gardner, M. B. 1972. Comparative microscopic anatomy of selected marine mammals. In: Ridgway, S. H. (ed.), Mammals of the Sea: Biology and Medicine. Springfield, IL: C.C. Thomas.Google Scholar
Simpson, J. G., Gilmartin, W. G., & Ridgway, S. H. 1970. Blood volume and other hematologic values in young elephant seals (Mirounga angustirostris). American Journal of Veterinary Research, 31, 14491452.Google ScholarPubMed
Sinnett, E. E., Kooyman, G. L., & Wahrenbrock, E. A. 1978. Pulmonary circulation of the harbor seal. Journal of Applied Physiology, 45, 718727.CrossRefGoogle ScholarPubMed
Sjare, B. L. & Smith, T. G. 1986. The relationship between behavioral activity and underwater vocalizations of the white whale, Delphinapterus leucas. Canadian Journal of Zoology, 64, 28242831.CrossRefGoogle Scholar
Skinner, L. A. & Milsom, W. K. 2004. Respiratory chemosensitivity during wake and sleep in harbour seal pups (Phoca vitulina richardsii). Physiological and Biochemical Zoology, 77, 847863.CrossRefGoogle ScholarPubMed
Skinner, M. R. & Marshall, J. M. 1996. Studies on the role of ATP, adenosine, and nitric oxide in mediating muscle vasodilatation induced in the rat by acute systemic hypoxia. Journal of Physiology, 495.2, 553560.CrossRefGoogle Scholar
Skrovan, R. C., Williams, T. M., Berry, P. S., et al. 1999. The diving physiology of bottlenose dolphins (Tursiops truncatus): II. Biomechanics and changes in buoyancy at depth. Journal of Experimental Biology, 202, 27492761.CrossRefGoogle ScholarPubMed
Sleet, R. B., Sumich, J. L., & Weber, L. J. 1981. Estimates of total blood volume and total body weight of sperm whale (Physeter catodon). Canadian Journal of Zoology, 59, 567570.CrossRefGoogle Scholar
Slijper, E. J. 1961. Foramen ovale and ductus arteriosus botalli in aquatic mammals. Mammalia, 25, 528570.CrossRefGoogle Scholar
Slijper, E. J. 1962. Whales. London: Hutchinson and Co.Google Scholar
Smith, N. D. 2012. Body mass and foraging ecology predict evolutionary patterns of skeletal pneumaticity in the diverse “waterbird” clade. Evolution, 66, 10591078.CrossRefGoogle ScholarPubMed
Smith, N. P., Barclay, C. J., & Loiselle, D. S. 2005. The efficiency of muscle contraction. Progress in Biophysics and Molecular Biology, 88, 158.CrossRefGoogle ScholarPubMed
Smith, S. A., Mitchell, J. H., & Garry, M. G. 2006. The mammalian exercise pressor reflex in health and disease. Experimental Physiology, 91, 89102.CrossRefGoogle ScholarPubMed
Smodlaka, H., Henry, R. W., Schumacher, J., & Reed, R. B. 2008. Macroscopic anatomy of the heart of the ringed seal (Phoca hispida). Anatomia, Histologia, Embryologia, 37, 3035.CrossRefGoogle ScholarPubMed
Snow, D. H., Harris, R. C., & Gash, S. P. 1985. Metabolic responses of equine muscle to intermittent maximal exercise. Journal of Applied Physiology, 58, 16891697.CrossRefGoogle ScholarPubMed
Soegaard, L. B., Hansen, M. N., Van Elk, C., Brahm, J., & Jensen, F. B. 2012. Respiratory properties of blood in the harbor porpoise, Phocoena phocoena. Journal of Experimental Biology, 215, 19381943.CrossRefGoogle ScholarPubMed
Sommer, N., Dietrich, A., Schermuly, R. T., et al. 2008. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. European Respiratory Journal, 32, 16391651.CrossRefGoogle ScholarPubMed
Sommer, L. S., Mcfarland, W. L., Galliano, R. E., Nagel, E. L., & Morgane, P. J. 1968. Hemodynamic and coronary angiographic studies in the bottlenose dolphin (Tursiops truncatus). American Journal of Physiology, 215, 14981505.CrossRefGoogle ScholarPubMed
Sparling, C. E. & Fedak, M. A. 2004. Metabolic rates of captive grey seals during voluntary diving. Journal of Experimental Biology, 207, 16151624.CrossRefGoogle ScholarPubMed
Sparling, C. E., Fedak, M. A., & Thompson, D. 2007. Eat now, pay later? Evidence of deferred food processing costs in diving seals. Biology Letters, 3, 9498.CrossRefGoogle ScholarPubMed
Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L., & Speakman, J. R. 2008. Estimating field metabolic rates of pinnipeds: doubly labelled water gets the seal of approval. Functional Ecology, 22, 245254.CrossRefGoogle Scholar
Speakman, J. R. 1998. The history and theory of the doubly labeled water technique. The American Journal of Clinical Nutrition, 68, 932S938S.Google ScholarPubMed
Spragg, R., Ponganis, P. J., Marsh, J. J., Rau, G. A., & Bernhard, W. 2004. Surfactant from diving aquatic mammals. Journal of Applied Physiology, 96, 16261632.CrossRefGoogle ScholarPubMed
Spragg, R. G., Lewis, J. F., Wurst, W., et al. 2003. Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. American Journal of Respiratory and Critical Care Medicine, 167, 15621566.CrossRefGoogle ScholarPubMed
St. Aubin, D. J., Geraci, J. R., Smith, T. G., & Smith, V. I. 1978. Blood volume determination in the ringed seal, Phoca hispida. Canadian Journal of Zoology, 56, 18851887.CrossRefGoogle ScholarPubMed
Stacey, P. J. & Hvenegaard, G. T. 2002. Habitat use and behaviour of Irrawaddy dolphins (Orcaellaa brevirostris) in the Mekong River of Laos. Aquatic Mammals, 28, 113.Google Scholar
Stahel, C. D. & Nicol, S. C. 1982. Temperature regulation in the little penguin (Eudyptula minor) in air and water. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 148, 93100.CrossRefGoogle Scholar
Stahl, W. R. 1967. Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22, 453460.CrossRefGoogle ScholarPubMed
Steinfurth, A., Vargas, F. H., Wilson, R. P., Spindler, M., & Macdonald, D. W. 2008. Space use by foraging Galapagos penguins during chick rearing. Endangered Species Research, 4, 105112.CrossRefGoogle Scholar
Stelle, L. L., Blake, R. W., & Trites, A. W. 2000. Hydrodynamic drag in Steller sea lions (Eumetopias jubatus). Journal of Experimental Biology, 203, 19151923.CrossRefGoogle ScholarPubMed
Stelle, L. L., Megill, W. M., & Kinzel, M. R. 2008. Activity budget and diving behavior of gray whales (Eschrichtius robustus) in feeding grounds off coastal British Columbia. Marine Mammal Science, 24, 462478.CrossRefGoogle Scholar
Stephenson, R. 1993. The contributions of body tissues, respiratory system, and plumage to buoyancy in waterfowl. Canadian Journal of Zoology, 71, 15211529.CrossRefGoogle Scholar
Stephenson, R. 1994. Diving energetics in the lesser scaup (Aythya affinis, Eyton). Journal of Experimental Biology, 190, 155178.CrossRefGoogle ScholarPubMed
Stephenson, R. 1995. Respiratory and plumage gas volumes in unrestrained diving ducks (Aythya affinis). Respiration Physiology, 100, 129137.CrossRefGoogle ScholarPubMed
Stephenson, R. 2005. Physiological control of diving behaviour in the Weddell seal Leptonychotes weddellii: a model based on cardiorespiratory control theory. Journal of Experimental Biology, 208, 19711991.CrossRefGoogle Scholar
Stephenson, R. & Andrews, C. A. 1997. The effect of water surface tension on feather wettability in aquatic birds. Canadian Journal of Zoology, 75, 228294.CrossRefGoogle Scholar
Stephenson, R., Butler, P., Dunstone, N., & Woakes, A. 1988. Heart rate and gas exchange in freely diving American mink (Mustela vision). Journal of Experimental Biology, 134, 435442.CrossRefGoogle ScholarPubMed
Stephenson, R., Butler, P. J., & Woakes, A. J. 1986. Diving behaviour and heart rate in tufted ducks (Aythya fuligula). Journal of Experimental Biology, 126, 341359.CrossRefGoogle ScholarPubMed
Stephenson, R., Hedrick, M. S., & Jones, D. R. 1992. Cardiovascular responses to diving and involuntary submergence in the rhinoceros auklet (Cerorhinca monocerata Pallas). Canadian Journal of Zoology, 70, 23032310.CrossRefGoogle Scholar
Stephenson, R. & Jones, D. R. 1992a. Blood flow distribution in submerged and surface-swimming ducks. Journal of Experimental Biology, 166, 285296.CrossRefGoogle ScholarPubMed
Stephenson, R. & Jones, D. R. 1992b. Metabolic responses to forced dives in Pekin duck measured by indirect calorimetry and 31P-MRS. American Journal of Physiology, 263, R1309R1317.Google ScholarPubMed
Stephenson, R., Jones, D. R., Kasserra, C. E., & Lemaire, C. 1997. The effects of skeletal muscle contractions and paralysis on the physiological responses to head immersion in Pekin duck. Comparative Biochemistry and Physiology B, 118, 767770.CrossRefGoogle Scholar
Stephenson, R., Lovvorn, J. R., Heieis, M. A., Jones, D. R., & Blake, R. W. 1989a. A hydromechanical estimate of the power requirements of diving and surface swimming in lesser scaup (Aythya affinis). Journal of Experimental Biology, 147, 507518.CrossRefGoogle Scholar
Stephenson, R., Turner, D. L., & Butler, P. J. 1989b. The relationship between diving activity and oxygen storage capacity in the tufted duck (Aythya fuligula). Journal of Experimental Biology, 141, 265275.CrossRefGoogle Scholar
Sterling, J. & Ream, R. 2004. At-sea behavior of juvenile male northern fur seals (Callorhinus ursinus). Canadian Journal of Zoology, 82, 16211637.CrossRefGoogle Scholar
Stettenheim, P. R. 2000. The integumentary morphology of modern birds: an overview. American Zoologist, 40, 461477.Google Scholar
Stewart, B. S. & Delong, R. L. 1995. Double migrations of the northern elephant seal, Mirounga angustirostris. Journal of Mammalogy, 76, 196205.CrossRefGoogle Scholar
Stewart, B. S., Harvey, J. T., & Yochem, P. K. 2001. Post-release monitoring and tracking of a rehabilitated California gray whale. Aquatic Mammals, 27, 294300.Google Scholar
Stewart, B. S., Petrov, E. A., Baranov, E. A., Timonin, A., & Ivanov, M. 1996. Seasonal movements and dive patterns of juvenile Baikal seals, Phoca sibirica. Marine Mammal Science, 12, 528542.CrossRefGoogle Scholar
Stimpert, A. K., Deruiter, S. L., Southall, B. L., et al. 2014. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar. Scientific Reports, 4. DOI: 10.1038/srep07031.CrossRefGoogle ScholarPubMed
Stirling, I. 1974. Midsummer observations on behavior of wild polar bears (Ursus maritimus). Canadian Journal of Zoology, 52, 11911198.CrossRefGoogle Scholar
Stirling, I. & van Meurs, R. 2015. Longest record dive by a polar bear. Polar Biology, 38, 13011304.CrossRefGoogle Scholar
Stockard, T. K., Heil, J., Meir, J. U., et al. 2005. Air sac PO2 and oxygen depletion during dives of emperor penguins. Journal of Experimental Biology, 208, 29732981.CrossRefGoogle Scholar
Stockard, T. K., Levenson, D. H., Berg, L., et al. 2007. Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). Journal of Experimental Biology, 210, 26072617.CrossRefGoogle ScholarPubMed
Stockin, K. A., Fairbairns, R. S., Parsons, E. C. M., & Sims, D. W. 2001. Effect of diel and seasonal cycles on the dive duration of the minke whale. Journal of the Marine Biological Association, 81, 189190.CrossRefGoogle Scholar
Storey, K. & Hochachka, P. W. 1974. Glycolytic enzymes in muscle of the Pacific dolphin: role of pyruvate kinase in aerobic–anaerobic transitions during diving. Comparative Biochemistry and Physiology B, 49, 119128.CrossRefGoogle ScholarPubMed
Strickler, T. L. 1980. The axial musculature of Pontoporia blainvillei, with comments on the organization of this system and its effect on fluke-stroke dynamics in the Cetacea. American Journal of Anatomy, 157, 4959.CrossRefGoogle ScholarPubMed
Suburo, A. M. & Scolaro, J. A. 1990. The eye of the magellanic penguin (Spheniscus magellanicus): structure of the anterior segment. American Journal of Anatomy, 189, 245252.CrossRefGoogle ScholarPubMed
Sumich, J. L. 2001. Direct and indirect measures of oxygen extraction, tidal lung volumes and respiratory rates in a rehabilitating gray whale calf. Aquatic Biology, 27, 279283.Google Scholar
Suzuki, A. T., Tsuchiya, T., Takahashi, Y., & Tamate, H. 1983. Histochemical properties of myofibers in longissimus muscle of common dolphins (Delphinus delphis). Acta Histochemistry and Cytochemistry, 16, 223231.CrossRefGoogle Scholar
Suzuki, I., Naito, Y., Folkow, L., Miyazaki, N., & Blix, A. 2009. Validation of a device for accurate timing of feeding events in marine animals. Polar Biology, 32, 667671.CrossRefGoogle Scholar
Suzuki, T. & Imai, K. 1998. Evolution of myoglobin. Cellular and Molecular Life Sciences, 54, 9791004.CrossRefGoogle ScholarPubMed
Takahashi, A., Dunn, M. J., Trathan, P. N., et al. 2004a. Krill-feeding behaviour in a chinstrap penguin Pygoscelis antarctica compared with fish-eating in Magellanic penguins Speniscus magellanicus: a pilot study. Marine Ornithology, 32, 4754.Google Scholar
Takahashi, A., Dunn, M. J., Trathan, P. N., et al. 2003. Foraging strategies of chinstrap penguins at Signy Island, Antarctica: importance of benthic feeding on Antarctic krill. Marine Ecology Progress Series, 250, 279289.CrossRefGoogle Scholar
Takahashi, A., Kokubun, N., Mori, K., & Shin, H. C. 2008. Krill-feeding behaviour of gentoo penguins as shown by animal-borne camera loggers. Polar Biology, 31, 12911294.CrossRefGoogle Scholar
Takahashi, A., Sato, K., Naito, Y., et al. 2004b. Penguin-mounted cameras glimpse underwater group behaviour. Proceedings of the Royal Society London B, Supplement, 251.5: S281S282.Google Scholar
Tamburrini, M., Condo, S. G., Di Prisco, G., & Giardina, B. 1994. Adaptation to extreme environments: structure–function relationships in emperor penguin hemoglobin. Journal of Molecular Biology, 237, 615621.CrossRefGoogle Scholar
Tamburrini, M., Romano, M., Giardina, B., & Di Prisco, G. 1999. The myoglobin of emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions. Comparative Biochemistry and Physiology B, 122, 235240.CrossRefGoogle ScholarPubMed
Tarasoff, F. J. 1972. Comparative aspects of the hind limbs of the river otter, sea otter, and seals. In: Harrison, R. J. (ed.), Functional Anatomy of Marine Mammals. London: Academic Press.Google Scholar
Tarasoff, F. J. & Kooyman, G. L. 1973. Observations on the anatomy of the respiratory system of the river otter, sea otter, and harp seal: II. The trachea and bronchial tree. Canadian Journal of Zoology, 51, 171177.CrossRefGoogle ScholarPubMed
Tawara, T. 1950. On the respiratory pigments of whale (studies on whale blood II). Scientific Reports Whales Research Institute, 3, 95101.Google Scholar
Taylor, B., Barlow, J., Pitman, R. L., et al. 2004. A call for research to assess risk of acoustic impact on beaked whale populations. Paper SC/56/E36, presented to the IWC Scientific Committee, July 2004, Sorrento, Italy.Google Scholar
Taylor, C. R., Heglund, N. C., & Maloiy, G. M. 1982. Energetics and mechanics of terrestrial locomotion: I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 121.CrossRefGoogle ScholarPubMed
Taylor, C. R., Karas, R. H., Weibel, E. R., & Hoppeler, H. 1987. Adaptive variation in the mammalian respiratory system in relation to energetic demand: II. Reaching the limits to oxygen flow. Respiration Physiology, 69, 726.CrossRefGoogle Scholar
Terrados, N., Jansson, E., Sylven, C., & Kaliser, L. 1990. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? Journal of Applied Physiology, 68, 23692372.CrossRefGoogle ScholarPubMed
Tevis, L. Jr. 1950. Summer behavior of a family of beavers in New York State. Journal of Mammalogy, 31, 4065.CrossRefGoogle Scholar
Thewissen, J. G. M., George, J., Rosa, C., & Kishida, T. 2011. Olfaction and brain size in the bowhead whale (Balaena mysticetus). Marine Mammal Science, 27, 282294.CrossRefGoogle Scholar
Thomas, D. B. & Fordyce, R. E. 2007. The heterothermic loophole exploited by penguins. Australian Journal of Zoology, 55, 317321.CrossRefGoogle Scholar
Thomas, D. B. & Fordyce, R. E. 2012. Biological plasticity in penguin heat-retention structures. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295, 249256.CrossRefGoogle ScholarPubMed
Thometz, N. M. 2014. Ontogeny of energetic demand and diving ability in the southern sea otter (Enhydra lutris nereis) and implications on diving and foraging behavior. PhD thesis, University of California Santa Cruz.CrossRefGoogle Scholar
Thometz, N. M., Murray, M., & Williams, T. M. 2015. Ontogeny of oxygen storage capacity and diving ability in the southern sea otter (Enhydra lutris nereis): costs and benefits of large lungs. Physiological and Biochemical Zoology, 88, 311327.CrossRefGoogle ScholarPubMed
Thompson, D., Duck, C. D., McConnell, B. J., & Garrett, J. 1998. Foraging behaviour and diet of lactating female southern sea lions (Oaaria flavescens) in the Falkland Islands. Journal of Zoology London, 246, 135146.CrossRefGoogle Scholar
Thompson, D. & Fedak, M. A. 1993. Cardiac responses of grey seals during diving at sea. Journal of Experimental Biology, 174, 139164.CrossRefGoogle ScholarPubMed
Thompson, D., Hammond, P. S., Nicholas, K. S., & Fedak, M. A. 1991. Movements, diving and foraging behaviour of grey seals (Halichoerus grypus). Journal of Zoology London, 224, 223232.CrossRefGoogle Scholar
Thompson, P. M., Fedak, M. A., McConnell, B. J., & Nicholas, K. S. 1989. Seasonal and sex-related variation in the activity patterns of common seals (Phoca vitulina). Journal of Applied Ecology, 26, 521535.CrossRefGoogle Scholar
Thoresen, A. C. 1989. Diving times and behavior of pigeon guillemots and marbled murrelets off Rosario, Washington. Western Birds, 20, 3337.Google Scholar
Thornton, S. J., Hochachka, P. W., Crocker, D. E., et al. 2005. Stroke volume and cardiac output in juvenile elephant seals during forced submersions. Journal of Experimental Biology, 208, 36373643.CrossRefGoogle Scholar
Thornton, S. J., Pelc, N. J., Spielman, J. R., et al. 1997. Vascular flow dynamics in a diving elephant seal (Mirounga angustirostris). International Society of Magnetic Resonance Medicine, 2, 823.Google Scholar
Thornton, S. J., Spielman, D. M., Pelc, N. J., et al. 2001. Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proceedings of the National Academy of Sciences, 98, 94139418.CrossRefGoogle ScholarPubMed
Thorson, P. H. 1993. Development of diving in the northern elephant seal. PhD thesis, University of California, Santa Cruz.CrossRefGoogle Scholar
Thorson, P. H. & Le Boeuf, B. J. 1994. Developmental aspects of diving in northern elephant seal pups. In: Le Boeuf, B. J. & Laws, R. M. (eds.), Elephant Seals: Population Ecology, Behavior, and Physiology. Berkeley, CA: University of California Press.Google Scholar
Tibbs, R., Elghetany, M. T., Tran, L., et al. 2005. Characterization of the coagulation system in healthy dolphins: the coagulation factors, natural anticoagulants, and fibrinolytic products. Comparative Clinical Pathology, 14, 9598.CrossRefGoogle Scholar
Tift, M. S., Ponganis, P. J., & Crocker, D. E. 2014. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. Journal of Experimental Biology, 217, 17521757.CrossRefGoogle Scholar
Tift, M. S., Ranalli, E. C., Houser, D. S., Ortiz, R. M., & Crocker, D. E. 2013. Development enhances hypometabolism in northern elephant seal pups (Mirounga angustirostris). Functional Ecology. DOI: 10.1111/1365-2435.12111CrossRefGoogle Scholar
Tikuisis, P. & Gerth, W. 2003. Decompression theory. In: Brubakk, A. O. & Neuman, T. S. (eds.), Bennett and Elliott's Physiology and Medicine of Diving. Edinburgh: Saunders.Google Scholar
Tinker, M. T., Costa, D. P., Estes, J. A., & Wieringa, N. 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 330342.CrossRefGoogle Scholar
Tipler, T. D., Edwards, Y. H., & Hopkinson, D. A. 1978. Developmental changes in the protein profiles of human cardiac and skeletal muscle. Annals of Human Genetics, 41, 409418.CrossRefGoogle ScholarPubMed
Torday, H. S. & Rehan, V. K. 2002. Stretch-induced surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin. American Journal of Physiology, 283, L130L135.Google Scholar
Tran, T.-K., Sailasuta, N., Kreutzer, U., et al. 1999. Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. American Journal of Physiology, 276, R1682R1690.Google ScholarPubMed
Trawa, G. 1970. Note preliminaire sur la vascularisation des membres des spheniscides. L'Oiseau et RFO, 40, 142156.Google Scholar
Tremblay, Y. & Cherel, Y. 2000. Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. Marine Ecology Progress Series, 204, 257267.CrossRefGoogle Scholar
Tremblay, Y. & Cherel, Y. 2003. Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Marine Ecology Progress Series, 251, 279297.CrossRefGoogle Scholar
Tremblay, Y., Cherel, Y., Oremus, M., Tveraa, T., & Chastel, O. 2003. Unconventional ventral attachment of time–depth recorders as a new method for investigating time budget and diving behaviour of seabirds. Journal of Experimental Biology, 206, 19291940.CrossRefGoogle ScholarPubMed
Tremblay, Y., Cook, T. R., & Cherel, Y. 2005. Time budget and diving behaviour of chick-rearing Crozet shags. Canadian Journal of Zoology, 83, 971982.CrossRefGoogle Scholar
Tremblay, Y., Guinard, E., & Cherel, Y. 1997. Maximum diving depths of northern rockhopper penguins (Eudyptes chrysocome moseleyi) at Amsterdam Island. Polar Biology, 17, 119122.CrossRefGoogle Scholar
Trillmich, F., Kooyman, G. L., Majluf, P., & Sanchez-Griñan, M. 1986. Attendance and diving behavior of South American fur seals during El Niño in 1983. In: Gentry, R. L. & Kooyman, G. L. (eds.), Fur Seals: Maternal Strategies on Land and at Sea. Princeton, NJ: Princeton University Press.Google Scholar
Truex, R. C., Nolan, F. G., Schneider, H. P., & Perlmutter, H. I. 1961. Anatomy and pathology of the whale heart with special reference to the coronary circulation. The Anatomical Record, 141, 325353.CrossRefGoogle Scholar
Tsuchimochi, H., Hayes, S. G., McCord, J. L., & Kaufman, M. P. 2009. Both central command and exercise pressor reflex activate cardiac sympathetic nerve activity in decerebrate cats. American Journal of Physiology: Heart and Circulatory Physiology, 296, H1157H1163.Google ScholarPubMed
Tsuchimochi, H., Matsukawa, K., Komine, H., & Murata, J. 2002. Direct measurement of cardiac sympathetic efferent nerve activity during dynamic exercise. American Journal of Physiology: Heart and Circulatory Physiology, 283, H1896H1906.Google ScholarPubMed
Tulsi, R. 1975. Observations on the structure of the dorsal muscle in the bottle-nose dolphin (Tursiops truncatus). Journal of Anatomy, 119, 3948.Google ScholarPubMed
Turner, A. W. & Hodgetts, V. E. 1959. The dynamic red cell storage function of the spleen in sheep. I. Relationship to fluctuations of jugular hematocrit. Australian Journal of Experimental Biology, 37, 399420.CrossRefGoogle Scholar
Turner, D. L. & Butler, P. J. 1988. The aerobic capacity of locomotory muscles in the tufted duck, Aythya fuligula. Journal of Experimental Biology, 135, 445460.CrossRefGoogle ScholarPubMed
Tyack, P. L., Johnson, M., Aguilar De Soto, N., Sturlese, A., & Madsen, P. T. 2006. Extreme diving of beaked whales. Journal of Experimental Biology, 209, 42384253.CrossRefGoogle ScholarPubMed
Tyack, P. L., Zimmer, W. M. X., Moretti, D., et al. 2011. Beaked whales respond to simulated and actual navy sonar. PloS ONE, 6, e17009.CrossRefGoogle ScholarPubMed
Ulenaers, P., Van Vessem, J., & Dhondt, A. A. 1992. Foraging of the great crested grebe in relation to food. Journal of Animal Ecology, 61, 659667.CrossRefGoogle Scholar
Underwood, L. E. & Williams, R. S. 1987. Pretranslational regulation of myoglobin gene expression. American Journal of Physiology, 252, C450C453.CrossRefGoogle ScholarPubMed
Upton, R. N. 2008. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling. Journal of Pharmacological and Toxicological Methods, 58, 198205.CrossRefGoogle ScholarPubMed
US Department of Commerce & US Navy 2001. US Dept Commerce & US Navy Joint Interim Report: Bahamas Marine Mammal Stranding Event of 15–16 March 2000. www.nmfs.noaa.gov/prot_res/overview/Interim_Bahamas_Report.pdf.Google Scholar
Valtin, H. 1973. Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health. Boston, MA: Little, Brown & Co.Google Scholar
Van Citters, R. L. & Franklin, D. L. 1969. Cardiovascular performance of Alaska sled dogs during exercise. Circulation Research, 24, 3342.CrossRefGoogle ScholarPubMed
Van Citters, R. L., Franklin, D. L., Smith, O. A. Jr., Watson, N. W., & Elsner, R. W. 1965. Cardiovascular adaptations to diving in the northern elephant seal Mirounga angustirostris. Comparative Biochemistry and Physiology, 16, 267276.CrossRefGoogle ScholarPubMed
Van Dam, R. P., Ponganis, P. J., Ponganis, K. V., Levenson, D. H., & Marshall, G. 2002. Stroke frequencies of emperor penguins diving under sea ice. Journal of Experimental Biology, 205, 37693774.CrossRefGoogle ScholarPubMed
Van Den Hoff, J. & Newbery, K. 2006. Southern giant petrels Macronectes giganteus diving on submerged carrion. Marine Ornithology, 34, 6164.Google Scholar
Van Nie, C. J. & Van Der Kamp, J. S. 1988. The closure of the foramen ovale and the ductus arteriosus in the common seal (Phoca vitulina, L. 1758) (a morphological approach). Aquatic Mammals, 14, 8285.Google Scholar
Van Opzeeland, I., Van Parijs, S., Bornemann, H., et al. 2010. Acoustic ecology of Antarctic pinnipeds. Marine Ecology Progress Series, 414, 267291.CrossRefGoogle Scholar
Vázquez-Medina, J. P., Zenteno-Savín, T., & Elsner, R. 2006. Antioxidant enzymes in ringed seal tissues: potential protection against dive-associated ischemia/reperfusion. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142, 198204.Google ScholarPubMed
Vázquez-Medina, J. P., Zenteno-Savín, T., & Elsner, R. 2007. Glutathione protection against dive-associated ischemia/reperfusion in ringed seal tissues. Journal of Experimental Marine Biology and Ecology, 345, 110118.CrossRefGoogle Scholar
Velten, B. P., Dillaman, R. M., Kinsey, S. T., McLellan, W. A., & Pabst, D. A. 2013. Novel locomotor muscle design in extreme deep-diving whales. Journal of Experimental Biology, 216, 18621871.Google ScholarPubMed
Venditti, C. C., Casselman, R., Murphy, M. S. Q., et al. 2013. Chronic carbon monoxide inhalation during pregnancy augments uterine artery blood flow and uteroplacental vascular growth in mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 305, R939R948.Google ScholarPubMed
Viamonte, M., Morgane, P., Galliano, R., Nagel, E., & McFarland, W. 1968. Angiography in the living dolphin and observations on blood supply to the brain. American Journal of Physiology: Legacy Content, 214, 12251249.CrossRefGoogle ScholarPubMed
Viles, P. H. & Shepherd, J. T. 1968. Relationship between pH, Po2, and Pco2 on the pulmonary vascular bed of the cat. American Journal of Physiology, 215, 11701176.CrossRefGoogle ScholarPubMed
Villegas-Amtmann, S. & Costa, D. P. 2010. Oxygen stores plasticity linked to foraging behaviour and pregnancy in a diving predator, the Galapagos sea lion. Functional Ecology, 24, 785795.CrossRefGoogle Scholar
Villegas-Amtmann, S., Costa, D. P., Tremblay, Y., Salazar, S., & Aurioles-Gambola, D. 2008. Multiple foraging strategies in a marine apex predator, the Galapagos sea lion Zalophus wollebaeki. Marine Ecology Progress Series, 363, 299309.CrossRefGoogle Scholar
Villouta, G., Hargreaves, R., & Rtveros, V. 1997. Haematological and clinical biochemistry findings in captive Humboldt penguins (Spheniscus humboldti). Avian Pathology, 26, 851858.CrossRefGoogle ScholarPubMed
Vogl, A. W. & Fisher, H. D. 1982. Arterial retia related to supply of the central nervous system in two small toothed whales: narwhal (Monodon monoceros) and beluga (Delphinapterus leucas). Journal of Morphology, 174, 4156.CrossRefGoogle ScholarPubMed
Vogl, A. W., Todd, M. E., & Fisher, H. D. 1981. An ultrastructural and fluorescence histochemical investigation of the innervation of retial arteries in Monodon monoceros. Journal of Morphology, 168, 109119.CrossRefGoogle ScholarPubMed
Vogt, M., Puntschart, A., Geiser, J., et al. 2001. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91, 173182.CrossRefGoogle ScholarPubMed
Wagner, P. D. 1996. Determinants of maximal oxygen transport and utilization. Annual Review of Physiology, 58, 2150.CrossRefGoogle ScholarPubMed
Wahrenbrock, E. A., Maruschak, G. F., Elsner, R., & Kenney, D. W. 1974. Respiration and metabolism in two baleen whale calves. Marine Fisheries Review, 36, 39.Google Scholar
Waldrop, T. G., Bauer, R. M., & Iwamoto, G. A. 1988. Microinjection of GABA antagonists into the posterior hypothalamus elicits locomotor activity and a cardiorespiratory activation. Brain Research, 444, 8494.CrossRefGoogle Scholar
Waldrop, T. G., Eldridge, F. L., Iwamoto, G. A., & Mitchell, J. H. 1996. Central neural control of locomotion, respiration, and circulation during exercise. In: Handbook of Physiology. Bethesda, MD: American Physiological Society.Google Scholar
Waldrop, T. G. & Iwamoto, G. A. 2006. Point:counterpoint. Supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise. Journal of Applied Physiology, 100, 10771083.CrossRefGoogle Scholar
Waldrop, T. G. & Stremel, R. W. 1989. Muscular contraction stimulates posterior hypothalamic neurons. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 256, R348R356.Google ScholarPubMed
Walker, B. G. & Boersma, P. D. 2003. Diving behavior of Magellanic penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. Canadian Journal of Zoology, 81, 14711483.CrossRefGoogle Scholar
Walls, G. 1942. The Vertebrate Eye and its Adaptive Radiation. New York: Hafner Publishing Co.Google Scholar
Wanless, S., Corfield, T., Harris, M. P., Buckland, S., & Morris, J. 1993. Diving behaviour of the shag Phalacrocorax aristotelis (Aves: Pelecaniformes) in relation to water depth and prey size. Journal of Zoology London, 231, 1125.CrossRefGoogle Scholar
Wanless, S., Finney, S. K., Harris, M. P., & Mccafferty, D. J. 1999. Effect of the diel light cycle on the diving behaviour of two bottom feeding marine birds: the blue-eyed shag Phalacrocorax atriceps and the European shag P. aristotelis. Marine Ecology Progress Series, 188, 219224.CrossRefGoogle Scholar
Wanless, S. & Harris, M. P. 1993. Use of mutually exclusive foraging areas by adjacent colonies of blue-eyed shags (Phalacrocorax atriceps) at South Georgia. Colonial Waterbirds, 16, 176182.CrossRefGoogle Scholar
Wanless, S., Harris, M. P., Burger, A. E., & Buckland, S. T. 1997. Use of time-at-depth recorders for estimating depth and diving performance of European shags. Journal of Field Ornithology, 68, 547561.Google Scholar
Wanless, S., Harris, M. P., & Morris, J. 1992. Diving behaviour and diet of the blue-eyed shag at South Georgia. Polar Biology, 12, 713719.CrossRefGoogle Scholar
Wanless, S., Morris, J. A., & Harris, M. P. 1988. Diving behaviour of guillemot Uria aalge, puffin Fratercula arctica and razorbill Alca torda as shown by radio-telemetry. Journal of Zoology, London, 216, 7381.CrossRefGoogle Scholar
Warltier, D. C., Pagel, P. S., & Kersten, J. R. 2000. Approaches to the prevention of perioperative myocardial ischemia. Anesthesiology, 92, 253.CrossRefGoogle Scholar
Watanabe, S., Sato, K., & Ponganis, P. J. 2012. Activity time budget during foraging trips of emperor penguins. PloS ONE, 7, e50357.CrossRefGoogle ScholarPubMed
Watanabe, Y., Baranov, E. A., Sato, K., Naito, Y., & Miyazaki, N. 2004. Foraging tactics of Baikal seals differ between day and night. Marine Ecology Progress Series, 279, 283289.CrossRefGoogle Scholar
Watanabe, Y., Baranov, E. A., Sato, K., Naito, Y., & Miyazaki, N. 2006. Body density affects stroke patterns in Baikal seals. Journal of Experimental Biology, 209, 32693280.CrossRefGoogle ScholarPubMed
Watanabe, Y. Y. & Takahashi, A. 2013. Linking animal-borne video to accelerometers reveals prey capture variability. Proceedings of the National Academy of Sciences, 110, 21992204.CrossRefGoogle ScholarPubMed
Watanabe, Y. Y., Takahashi, A., Sato, K., Viviant, M., & Bost, C.-A. 2011. Poor flight performance in deep-diving cormorants. Journal of Experimental Biology, 214, 412421.CrossRefGoogle ScholarPubMed
Watanuki, Y., Daunt, F., Takahashi, A., et al. 2008. Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers. Marine Ecology Progress Series, 356, 283293.CrossRefGoogle Scholar
Watanuki, Y., Kato, A., & Naito, Y. 1996. Diving performance of male and female Japanese cormorants. Canadian Journal of Zoology, 74, 10981109.CrossRefGoogle Scholar
Watanuki, Y., Kato, A., Naito, Y., Robertson, G., & Robinson, S. 1997. Diving and foraging behaviour of Adelie penguins in areas with and without fast sea-ice. Polar Biology, 17, 296304.CrossRefGoogle Scholar
Watanuki, Y., Niizuma, Y., Gabrielsen, G. W., Sato, K., & Naito, Y. 2003. Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proceedings of the Royal Society London B, 270, 483488.CrossRefGoogle ScholarPubMed
Watanuki, Y. & Sato, K. 2008. Dive angle, swim speed and wing stroke during shallow and deep dives in common murres and rhinoceros auklets. Ornithological Science, 7, 1528.CrossRefGoogle Scholar
Watanuki, Y., Takahashi, A., Daunt, F., et al. 2005. Regulation of stroke and glide in a foot-propelled avian diver. Journal of Experimental Biology, 208, 22072216.CrossRefGoogle Scholar
Watanuki, Y., Wanless, S., Harris, M., et al. 2006. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin. Journal of Experimental Biology, 209, 12171230.CrossRefGoogle Scholar
Watkins, W. A. 1978. A radio tag for big whales. Oceanus, 21, 4854.Google Scholar
Watkins, W. A. 1979. A projectile point for penetrating whale blubber. Deep Sea Research Part A: Oceanographic Research Papers, 26, 13011308.CrossRefGoogle Scholar
Watkins, W. A., Daher, M. A., Dimarzio, N. A., et al. 1999. Sperm whale surface activity from tracking by radio and satellite tags. Marine Mammal Science, 15, 11581180.CrossRefGoogle Scholar
Watkins, W. A., Daher, M. A., Fristrup, K. M., Howald, T. J., & Notarbartolo Di Sciara, G. 1993. Sperm whales tagged with transponders and tracked underwater by sonar. Marine Mammal Science, 9, 5567.CrossRefGoogle Scholar
Watkins, W. A. & Schevill, W. E. 1977. The Development and Testing of a Radio Whale Tag. Woods Hole: Woods Hole Oceanographic Institution.Google Scholar
Watkins, W. A. & Tyack, P. 1991. Reaction of sperm whales (Physeter catodon) to tagging with implanted sonar transponder and radio tags. Marine Mammal Science, 7, 409413.CrossRefGoogle Scholar
Watkins, W. A. & Wartzok, D. 1985. Sensory biophysics of marine mammals. Marine Mammal Science, 1, 219260.CrossRefGoogle Scholar
Watson, R. R., Fu, Z., & West, J. B. 2008. Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respiratory Physiology & Neurobiology, 160, 208214.CrossRefGoogle ScholarPubMed
Watson, R. R., Kanatous, S. B., Cowan, D. F., et al. 2007. Volume density and distribution of mitochondria in harbor seal (Phoca vitulina) skeletal muscle. Journal of Comparative Physiology B, 177, 8998.CrossRefGoogle ScholarPubMed
Watson, R. R., Miller, T. A., & Davis, R. W. 2003. Immunohistochemical fiber typing of harbor seal skeletal muscle. Journal of Experimental Biology, 206, 41054111.CrossRefGoogle ScholarPubMed
Watwood, S. L., Miller, P. J. O., Johnson, M., Madsen, P. T., & Tyack, P. L. 2006. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). Journal of Animal Ecology, 75, 814825.CrossRefGoogle ScholarPubMed
Webb, P. M., Andrews, R. D., Costa, D. P., & Le Boeuf, B. J. 1998. Heart rate and oxygen consumption of northern elephant seals during diving in the laboratory. Physiological Zoology, 71, 116125.CrossRefGoogle ScholarPubMed
Webb, P. W. 1988. Simple physical principles and vertebrate aquatic locomotion. American Zoologist, 28, 709725.CrossRefGoogle Scholar
Weber, R. E. 2007. High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology & Neurobiology, 158, 132.CrossRefGoogle ScholarPubMed
Weber, R. E. & Fago, A. 2004. Functional adapation and its molecular basis in vertebrate hemoglobins, neuroglobins, and cytoglobins. Respiration Physiology and Neurobiology, 144, 141159.CrossRefGoogle Scholar
Weber, R. E., Hemmingsen, E. A., & Johansen, K. 1974. Functional and biochemical studies of penguin myoglobin. Comparative Biochemistry and Physiology, 49B, 197214.Google Scholar
Weidman, J. L., Shook, D. C., & Hilberath, J. N. 2014. Cardiac resuscitation and coagulation. Anesthesiology, 120, 10091014.CrossRefGoogle ScholarPubMed
Weimerskirch, H. & Cherel, Y. 1998. Feeding ecology of short-tailed shearwaters: breeding in Tasmania and foraging in the Antarctic? Marine Ecology Progress Series, 167, 261274.CrossRefGoogle Scholar
Weimerskirch, H., Lecorre, M., Ropert-Coudert, Y., Katok, A., & Marsac, F. 2005. The three-dimensional flight of red-footed boobies: adapations to foraging in a tropical environment? Proceedings of the Royal Society B, 272, 5361.CrossRefGoogle Scholar
Weimerskirch, H. & Sagar, P. M. 1995. Diving depths of sooty shearwaters Puffinus griseus. Ibis, 138, 768788.Google Scholar
Weise, M. J. & Costa, D. P. 2007. Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. Journal of Experimental Biology, 210, 278289.CrossRefGoogle ScholarPubMed
Welch, K. C. Jr. & Altshuler, D. L. 2009. Fibertype homogeneity of the flight musculature in small birds. Comparative Biochemistry and Physiology B, 152, 324331.CrossRefGoogle Scholar
Weller, P., Jeffreys, A. J., Wilson, V., & Blanchetot, A. 1984. Organization of the human myoglobin gene. EMBO Journal, 3, 439446.CrossRefGoogle ScholarPubMed
Weller, P. A., Price, M., Isenberg, H., Edwards, Y. H., & Jeffreys, A. J. 1986. Myoglobin expression: early induction and subsequent modulation of myoglobin and myoglobin mRNA during myogenesis. Molecular and Cellular Biology, 6, 45394547.Google ScholarPubMed
Wells, R. S., Manire, C. A., Byrd, L., et al. 2009. Movements and dive patterns of a rehabilitated Risso's dolphin, Grampus griseus, in the Gulf of Mexico and Atlantic Ocean. Marine Mammal Science, 25, 420429.CrossRefGoogle Scholar
Welsch, U. & Aschauer, B. 1986. Ultrastructural observations on the lung of the emperor penguin (Aptenodytes forsteri). Cell Tissue Research, 243, 137144.CrossRefGoogle Scholar
Welsch, U. & Riedel-Sheimer, B. 1997. Histophysiological observations on the external auditory meatus, middle, and inner of the Weddell seal (Leptonychotes weddelli). Journal of Morphology, 234, 2536.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Werner, R. & Campagna, C. 1995. Diving behaviour of lactating southern sea lions (Otaria flavescens) in Patagonia. Canadian Journal of Zoology, 73, 19751982.CrossRefGoogle Scholar
Werth, A. J. 2007. Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290, 546568.CrossRefGoogle ScholarPubMed
West, J. B. 1972. Respiratory Physiology: The Essentials. Baltimore, MD: Williams & Wilkins.Google Scholar
West, J. B. 2007. Pulmonary Physiology and Pathophysiology. Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
West, J. B., Fu, X., Deerinck, T. J., et al. 2010. Structure–function studies of blood and air capillaries in chicken lung using 3D electron microscopy. Respiratory Physiology & Neurobiology, 170, 202209.CrossRefGoogle ScholarPubMed
West, J. B., Hackett, P. H., Maret, K. H., et al. 1983. Pulmonary gas exchange on the summit of Mt. Everest. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55, 678687.CrossRefGoogle Scholar
West, N. H., Bamford, O. S., & Jones, D. R. 1977. A scanning electron microscope study of the microvasculature of the avian lung. Cell and Tissue Research, 176, 553564.CrossRefGoogle ScholarPubMed
West, N. H. & Van Vliet, B. N. 1986. Factors influencing the onset and maintenance of bradycardia in mink. Physiological Zoology, 59, 451463.CrossRefGoogle Scholar
Westgate, A. J., Berggren, P., Koopman, H. N., & Gaskin, D. E. 1995. Diving behavior of harbour porpoises, Phocoena phocoena. Canadian Journal of Fisheries and Aquatic Science, 52, 10641073.CrossRefGoogle Scholar
Westgate, A. J., McLellan, W. A., Wells, R. S., et al. 2007. A new device to remotely measure heat flux and skin temperature from free-swimming dolphins. Journal of Experimental Marine Biology and Ecology, 346, 4559.CrossRefGoogle Scholar
Wheaton, W. W. & Chandel, N. S. 2011. Hypoxia 2: hypoxia regulates cellular metabolism. American Journal of Physiology: Cell Physiology, 300, C385C393.CrossRefGoogle ScholarPubMed
White, F. N., Ikeda, M., & Elsner, R. W. 1973. Andrenergic innervation of large arteries in the seal. Comparative and General Physiology, 4, 271276.CrossRefGoogle Scholar
White, F. N. & Ross, G. 1966. Circulatory changes during experimental diving in the turtle. American Journal of Physiology, 211, 518.CrossRefGoogle ScholarPubMed
White, J. R., Harkness, D. R., Isaacks, R. E., & Duffield, D. A. 1976. Some studies on blood of the Florida manatee, Trichechus manutus latirostris. Comparative Biochemistry and Physiology A, 55, 413417.CrossRefGoogle ScholarPubMed
Wickham, L. L., Bauersachs, R. M., Wenby, R. B., et al. 1990a. Red cell aggregation and viscoelasticity from blood of seals, swine and man. Biorheology, 27, 191204.CrossRefGoogle ScholarPubMed
Wickham, L. L., Costa, D. P., & Elsner, R. 1990b. Blood rheology of captive and free-ranging northern elephant seals and sea otters. Canadian Journal of Zoology, 68, 375380.CrossRefGoogle Scholar
Wickham, L. L., Elsner, R., White, F. C., & Cornell, L. H. 1989. Blood viscosity in phocid seals: possible adaptations to diving. Journal of Comparative Physiology B, 159, 153158.CrossRefGoogle ScholarPubMed
Wiedeman, M. P. 1963. Dimensions of blood vessels from distributing artery to collecting vein. Circulation Research, 12, 375378.CrossRefGoogle ScholarPubMed
Wienecke, B., Robertson, G., Kirkwood, R., & Lawton, K. 2007. Extreme dives by free-ranging emperor penguins. Polar Biology, 30, 133142.CrossRefGoogle Scholar
Wieskotten, S., Dehnhardt, G., Mauck, B., Miersch, L., & Hanke, W. 2011a. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 213, 37343740.CrossRefGoogle Scholar
Wieskotten, S., Mauck, B., Miersch, L., Dehnhardt, G., & Hanke, W. 2011b. Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). Journal of Experimental Biology, 214, 19221930.CrossRefGoogle ScholarPubMed
Wiig, O., Gjertz, I., Griffith, D., & Lydersen, C. 1993. Diving patterns of an Atlantic walrus Odobenus rosmarus rosmarus near Svalbard. Polar Biology, 13, 7172.CrossRefGoogle Scholar
Wilber, C. G. 1960. Cardiac responses of Alligator mississippiensis to diving. Comparative Biochemistry and Physiology, 1, 164166.CrossRefGoogle Scholar
Williams, C. L., Meir, J. U., & Ponganis, P. J. 2011a. What triggers the aerobic dive limit? Muscle oxygen depletion during dives of emperor penguins. Journal of Experimental Biology, 214, 18011812.CrossRefGoogle ScholarPubMed
Williams, C. L., Sato, K., Shiomi, K., & Ponganis, P. J. 2012. Muscle energy stores and stroke rates of emperor penguins: implications for muscle metabolism and dive performance. Physiological and Biochemical Zoology, 85, 120133.CrossRefGoogle ScholarPubMed
Williams, E. E., Stewart, B. S., Beauchat, C. A., Somero, G. N., & Hazel, J. R. 2001a. Hydrostatic pressure and temperature effects on the molecular order of erythrocyte membranes from deep-, shallow-, and non-diving mammals. Canadian Journal of Zoology, 79, 888894.CrossRefGoogle Scholar
Williams, L. R. & Leggett, R. W. 1989. Reference values for resting blood flow to organs of man. Clinical Physics and Physiological Measurement 10, 187217.CrossRefGoogle ScholarPubMed
Williams, R. & Bryden, M. M. 1993. Observations of blood values, heart rate and respiratory rate of leopard seals (Hydrurga leptonyx) (Carnivora: Phocidae). Australian Journal of Zoology, 41, 433439.CrossRefGoogle Scholar
Williams, T. D., Allen, D. D., Groff, J. M., & Glass, R. L. 1992a. An analysis of California sea otter (Enhydra lutris) pelage and integument. Marine Mammal Science, 8, 118.CrossRefGoogle Scholar
Williams, T. D., Briggs, D. R., Croxall, J. P., Naito, Y., & Kato, A. 1992b. Diving pattern and performance in relation to foraging ecology in the gentoo penguin, Pygoscelis papua. Journal of Zoology, London, 227, 211230.CrossRefGoogle Scholar
Williams, T. M. 1989. Swimming by sea otters: adaptations for low energetic cost locomotion. Journal of Comparative Physiology A, 164, 815824.CrossRefGoogle ScholarPubMed
Williams, T. M. 1999. The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 354, 193201.CrossRefGoogle Scholar
Williams, T. M. 2001. Intermittent swimming by mammals: a strategy for increasing energetic efficiency during diving. American Zoologist, 41, 166176.Google Scholar
Williams, T. M., Davis, R. W., Fuiman, L. A., et al. 2000. Sink or swim: strategies for cost-efficient diving by marine mammals. Science, 288, 133136.CrossRefGoogle ScholarPubMed
Williams, T. M., Friedl, W. A., Fong, M. L., et al. 1992c. Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature, 355, 821823.CrossRefGoogle ScholarPubMed
Williams, T. M., Friedl, W. A., & Haun, J. E. 1993. The physiology of bottlenose dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate concentration during exercise. Journal of Experimental Biology, 179, 3146.CrossRefGoogle ScholarPubMed
Williams, T. M., Fuiman, L. A., Horning, M., & Davis, R. W. 2004. The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. Journal of Experimental Biology, 207, 973982.CrossRefGoogle ScholarPubMed
Williams, T. M., Fuiman, L. A., Kendall, T., et al. 2015. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals. Nature Communications, 6. DOI: 10.1038/ncomms7055.CrossRefGoogle ScholarPubMed
Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A., & Kohin, S. 2001b. A killer appetite: metabolic consequences of carnivory in marine mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129, 785796.CrossRefGoogle ScholarPubMed
Williams, T. M., Haun, J. E., & Friedl, W. A. 1999. The diving physiology of bottlenose dolphins (Tursiops truncatus): I. Balancing the demands of exercise for energy conservation at depth. Journal of Experimental Biology, 202, 27392748.CrossRefGoogle ScholarPubMed
Williams, T. M. & Kooyman, G. L. 1985. Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiological Zoology, 58, 576589.CrossRefGoogle Scholar
Williams, T. M., Kooyman, G. L., & Croll, D. A. 1991. The effects of submergence on heart rate and oxygen consumption of swimming seals and sea lions. Journal of Comparative Physiology B, 160, 637644.CrossRefGoogle ScholarPubMed
Williams, T. M., Noren, S. R., & Glenn, M. 2011b. Extreme physiological adaptations as predictors of climate-change sensitivity in the narwhal, Monodon monoceros. Marine Mammal Science, 27, 334349.CrossRefGoogle Scholar
Williams, T. M., Zavanelli, M., Miller, M. A., et al. 2008. Running, swimming, and diving modifies neuroprotecting globins in the mammalian brain. Proceedings of the Royal Society B, 275, 751758.CrossRefGoogle ScholarPubMed
Willis, K., Horning, M., Rosen, D. A. S., & Trites, A. W. 2005. Spatial variation in heat flux in Steller sealions: evidence for consistent avenues of heat exchange along the body trunk. Journal of Experimental Marine Biology and Ecology, 315, 163175.CrossRefGoogle Scholar
Wilson, R. P. 1985. The jackass penguin (Spheniscus demersus) as a pelagic predator. Marine Ecology Progress Series, 25, 219227.CrossRefGoogle Scholar
Wilson, R. P., Bost, C. A., Putz, K., et al. 1997. Southern rockhopper penguin Eudyptes chrysocome chrysocome foraging at Possession Island. Polar Biology, 17, 323329.CrossRefGoogle Scholar
Wilson, R. P., Cooper, J., & Plotz, J. 1992a. Can we determine when marine endotherms feed? A case study with seabirds. Journal of Experimental Biology, 167, 267275.CrossRefGoogle Scholar
Wilson, R. P. & Gremillet, D. 1996. Body temperatures of free-living African penguins (Spheniscus demersus) and bank cormorants (Phalacrocorax neglectus). Journal of Experimental Biology, 199, 22152223.CrossRefGoogle ScholarPubMed
Wilson, R. P., Hustler, K., Ryan, P. G., Burger, A. E., & Noldeke, E. C. 1992b. Diving birds in cold water: do Archimedes and Boyle determine energetic costs? The American Naturalist, 140, 179200.CrossRefGoogle Scholar
Wilson, R. P. & Peters, G. 1999. Foraging behaviour of the chinstrap penguin Pygoscelis antarctica at Ardley Island, Antarctica. Marine Ornithology, 27, 8595.Google Scholar
Wilson, R. P., Putz, K., Gremillet, D., et al. 1995. Reliability of stomach temperature changes in determining feeding characteristics of seabirds. Journal of Experimental Biology, 198, 11151135.CrossRefGoogle ScholarPubMed
Wilson, R. P., Shepard, E. L. C., Gomez Laich, A., & Quintana, F. 2010. Pedalling downhill and freewheeling up: a penguin perspective on foraging. Aquatic Biology, 8, 193202.CrossRefGoogle Scholar
Wilson, R. P., Simeone, A., Luna-Jorquera, G., et al. 2003. Patterns of respiration in diving penguins: is the last gasp an inspired tactic? Journal of Experimental Biology, 206, 17511763.CrossRefGoogle ScholarPubMed
Wilson, R. P., Steinfurth, A., Ropert-Coudert, Y., Kato, A., & Kurita, M. 2002. Lip-reading in remote subjects: an attempt to quantify and separate ingestion, breathing, and vocalisation in free-living animals using penguins as a model. Marine Biology, 140, 1727.Google Scholar
Wilson, R. P., Vargas, F. H., Steinfurth, A., et al. 2008. What grounds some birds for life? Movement and diving in the sexually dimorphic Galapagos cormorant. Ecological Monographs, 78, 633652.CrossRefGoogle Scholar
Wilson, R. P. & Wilson, M.-P. T. 1990. Foraging ecology of breeding Spheniscus penguins. In: Davis, L. S. & Darby, J. T. (eds.), Penguin Biology. San Diego, CA: Academic Press.Google Scholar
Wilson, R. W. & Culik, B. M. 1991. The cost of a hot meal: facultative specific dynamic action may ensure temperature homeostasis in post-digestive endotherms. Comparative Biochemistry and Physiology, 100A, 151154.CrossRefGoogle Scholar
Wilson, R. W. & Liebsch, N. L. 2003. Up-beat motion in swinging limbs: new insights into assessing movement in free-living aquatic vertebrates. Marine Biology, 142, 537547.CrossRefGoogle Scholar
Wislocki, G. B. 1942. The lungs of the Cetacea, with special reference to the harbor porpoise (Phocaena phocoena, Linnaeus). The Anatomical Record, 84, 117123.CrossRefGoogle Scholar
Withers, P. C. 2001. Design, calibration and calculation for flow-through respirometry systems. Australian Journal of Zoology, 49, 445461.CrossRefGoogle Scholar
Wittenberg, B. A. 2009. Both hypoxia and work are required to enhance expression of myoglobin in skeletal muscle: focus on “Hypoxia reprograms calcium signaling and regulates myoglobin expression”. American Journal of Physiology: Cell Physiology, 296, C390C392.CrossRefGoogle ScholarPubMed
Wittenberg, B. A. & Wittenberg, J. B. 1989. Transport of oxygen in muscle. Annual Review of Physiology, 51, 857878.CrossRefGoogle ScholarPubMed
Wittenberg, J. B. 1959. Oxygen transport: a new function proposed for myoglobin. Biological Bulletin, 117, 402.Google Scholar
Wittenberg, J. B. 1970. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen supply into muscle. Physiological Reviews, 50, 559636.CrossRefGoogle Scholar
Wittenberg, J. B. & Wittenberg, B. A. 2003. Myoglobin function reassessed. Journal of Experimental Biology, 206, 20112020.CrossRefGoogle ScholarPubMed
Witteveen, B. H., Foy, R. J., Wynne, K. M., & Tremblay, Y. 2008. Investigation of foraging habits and prey selection by humpback whales (Megaptera novaeangliae) using acoustic tags and concurrent fish surveys. Marine Mammal Science, 24, 516534.CrossRefGoogle Scholar
Woakes, A. J. 1988. Metabolism in diving birds: studies in the laboratory and the field. Canadian Journal of Zoology, 66, 138141.CrossRefGoogle Scholar
Woakes, A. J. & Butler, P. J. 1983. Swimming and diving in tufted ducks, Aythya fuligula, with particular reference to heart rate and gas exchange. Journal of Experimental Biology, 107, 311329.CrossRefGoogle Scholar
Woakes, A. J., Butler, P. J., & Bevan, R. M. 1995. Implantable data logging system for heart rate and temperature: its application to estimation of field metabolic rates in Antarctic predators. Medical and Biological Engineering and Computing, 33, 145151.CrossRefGoogle ScholarPubMed
Woakes, A. J., Butler, P. J., Bevan, R. M., & Boyd, I. L. 1992. The metabolic rate of free-ranging Antarctic animals. Biotelemetry, 12, 213223.Google Scholar
Woodin, M. & Stephenson, R. 1998. Circadian rhythms in diving behavior and ventilatory response to asphyxia in canvasback ducks. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 274, R686R693.Google ScholarPubMed
Woodward, B. L. & Winn, J. P. 2006. Apparent lateralized behavior in gray whales feeding off the central British Columbia coast. Marine Mammal Science, 22, 6473.CrossRefGoogle Scholar
Woodward, J. D. & Maina, J. N. 2008. Study of the structure of the air and blood capillaries of the gas exchanges tissue of the avian lung by serial section three-dimensional reconstruction. Journal of Microscopy, 230, 8493.CrossRefGoogle Scholar
Worthy, G. A. J. & Edwards, E. F. 1990. Morphometric and biochemical factors affecting heat loss in a small temperate cetacean (Phocoena phocoena) and a small tropical cetacean (Stenella attenuata). Physiological Zoology, 63, 432442.CrossRefGoogle Scholar
Wozniak, B., & Dera, J. 2007. Light Absorption in Sea Water. New York: Springer.Google Scholar
Wright, A. K., Ponganis, K. V., McDonald, B. I., & Ponganis, P. J. 2014. Heart rates of emperor penguins diving at sea: implications for oxygen store management. Marine Ecology Progress Series, 496, 8598.CrossRefGoogle Scholar
Wright, K. L. B., Pichegru, L., & Ryan, P. G. 2011. Penguins are attracted to dimethyl sulphide at sea. Journal of Experimental Biology, 214, 25092511.CrossRefGoogle ScholarPubMed
Wright, T. J. & Davis, R. W. 2015. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals. Journal of Experimental Biology, in press.CrossRefGoogle Scholar
Wu, L. & Wang, R. 2005. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacological Reviews, 57, 585630.CrossRefGoogle ScholarPubMed
Würsig, B., Wells, R. S., & Croll, D. A. 1986. Behavior of gray whales summering near St. Lawrence Island, Bering Sea. Canadian Journal of Zoology, 64, 611621.CrossRefGoogle Scholar
Wursig, B. & Wursig, M. 1980. Behavior and ecology of the dusky dolphin, Lagenorhynchus obscurus, in the South Atlantic.. Fishery Bulletin, 77, 871890.Google Scholar
Yamamoto, M., Kato, A., Niizuma, Y., Watanuki, Y., & Naito, Y. 2011. Oxygen store and diving capacity of rhinoceros auklet Cerorhinca monocerata. Ornithological Science, 10, 2734.CrossRefGoogle Scholar
Yamato, M., Ketten, D. R., Arruda, J., Cramer, S., & Moore, K. 2012. The auditory anatomy of the minke whale (Balaenoptera acutorostrata): a potential fatty sound reception pathway in a baleen whale. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295, 991998.CrossRefGoogle Scholar
Ydesen, K. S., Wisniewska, D. M., Hansen, J. D., et al. 2014. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). Journal of Experimental Biology, 217, 22392243.CrossRefGoogle ScholarPubMed
Yeates, L. C., Carlin, K. P., Baird, M., Venn-Watson, S., & Ridgway, S. 2014. Nitric oxide in the breath of bottlenose dolphins: effects of breath hold duration, feeding, and lung disease. Marine Mammal Science, 30, 272281.CrossRefGoogle Scholar
Yeates, L. C., Williams, T. M., & Fink, T. L. 2007. Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). Journal of Experimental Biology, 210, 19601970.CrossRefGoogle ScholarPubMed
Yenari, M. A. & Han, H. S. 2012. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature Reviews Neuroscience, 13, 267278.CrossRefGoogle ScholarPubMed
Yumino, D. & Bradley, T. D. 2008. Central sleep apnea and Cheyne–Stokes respiration. Proceedings of the American Thoracic Society, 5, 226236.CrossRefGoogle ScholarPubMed
Zapol, W. M. 1987. Diving adaptations of the Weddell seal. Scientific American, 256, 100105.CrossRefGoogle ScholarPubMed
Zapol, W. M. 1996. Diving physiology of the Weddell seal. In: Fregly, M. J. & Blatteis, C. M. (eds.), Handbook of Physiology. Oxford: Oxford University Press.Google Scholar
Zapol, W. M., Liggins, G. C., Schneider, R. C., et al. 1979. Regional blood flow during simulated diving in the conscious Weddell seal. Journal of Applied Physiology, 47, 968973.CrossRefGoogle ScholarPubMed
Zavalaga, C. B., Benvenuti, S., Dall'antonia, L., & Emslie, S. D. 2007. Diving behavior of blue-footed boobies Sula nebouxii in northern Peru in relation to sex, body size and prey type. Marine Ecology Progress Series, 336, 291303.CrossRefGoogle Scholar
Zavlaga, C. B. & Jahncke, J. 1997. Maximum dive depths of the Peruvian diving-petrel. The Condor, 99, 10021004.CrossRefGoogle Scholar
Zenker, W. & Kubik, S. 1996. Brain cooling in humans: anatomical considerations. Anatomy and Embryology, 193, 113.CrossRefGoogle ScholarPubMed
Zenteno-Savín, T., Clayton-Hernández, E., & Elsner, R. 2002. Diving seals: are they a model for coping with oxidative stress? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133, 527536.Google Scholar
Zenteno-Savin, T., St. Leger, J., & Ponganis, P. J. 2010. Hypoxemic and ischemic tolerance in emperor penguins. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 152, 1823.Google ScholarPubMed
Zenteno-Savín, T., Vasquez-Medina, J. P., Cantu-Medellin, N., Ponganis, P. J., & Elsner, R. 2011. Ischemia/reperfusion in diving birds and mammals: how they avoid oxidative damage. In: Zenteno-Savín, T., Vasquez-Medina, J. P., & Abele, D. (eds.), Oxidative Stress in Aquatic Ecosystems. Oxford: Wiley-Blackwell.Google Scholar
Zierath, J. R. & Hawley, J. A. 2004. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biology, 2 .10, e348. DOI: 10.1371/journal.pbio.0020348.CrossRefGoogle ScholarPubMed
Zimmer, W. M. X., Johnson, M. P., D'Amico, A., & Tyack, P. L. 2003. Combining data from a multisensor tag and passive sonar to determine the diving behavior of a sperm whale (Physeter macrocephalus). IEEE Journal of Oceanic Engineering, 28, 1328.CrossRefGoogle Scholar
Zimmer, W. M. X. & Tyack, P. L. 2007. Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Marine Mammal Science, 23, 888925.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Paul J. Ponganis, Scripps Institution of Oceanography, University of California, San Diego
  • Book: Diving Physiology of Marine Mammals and Seabirds
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045490.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Paul J. Ponganis, Scripps Institution of Oceanography, University of California, San Diego
  • Book: Diving Physiology of Marine Mammals and Seabirds
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045490.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Paul J. Ponganis, Scripps Institution of Oceanography, University of California, San Diego
  • Book: Diving Physiology of Marine Mammals and Seabirds
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045490.015
Available formats
×