Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T00:40:16.767Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2023

Steven M. Manson
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abebe, R., Barocas, S., Kleinberg, J. et al. (2020). Roles for Computing in Social Change. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, New York: Association for Computing Machinery, pp. 252260.CrossRefGoogle Scholar
Acemoglu, D., & Restrepo, P. (2018). Artificial Intelligence, Automation, and Work. In Agrawal, A., Gans, J., & Goldfarb, A., eds., The Economics of Artificial Intelligence: An Agenda, Chicago: University of Chicago Press, pp. 197236.Google Scholar
Adams, L. G. (2014). Putting together a scientific team: Collaborative science. Trends in Microbiology, 22(9), 483485.Google Scholar
Agnew, J., Gillespie, T., Gonzalez, J., & Min, B. (2008). Baghdad nights: Evaluating the US military “surge” using nighttime light signatures. Environment and Planning A, 40(10), 22852295.Google Scholar
Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Artificial intelligence: The ambiguous labor market impact of automating prediction. Journal of Economic Perspectives, 33(2), 3150.Google Scholar
Ahlqvist, O. (2008). Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 US National Land Cover Database changes. Remote Sensing of Environment, 112(3), 12261241.Google Scholar
Akkineni, V., Aydin, B., Naduvil-Vadukootu, S., & Angryk, R. (2016). Predictive Spatio-Temporal Query Processor on Resilient Distributed Datasets. In 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 5058.Google Scholar
Al-Ali, A. R., Zualkernan, I. A., Rashid, M., Gupta, R., & Alikarar, M. (2017). A smart home energy management system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics, 63(4), 426434.Google Scholar
Al-Ekabi, C. (2015). The Evolution of Europe’s Launcher and Flagship Space Initiatives. In Al-Ekabi, C., ed., European Autonomy in Space, Cham: Springer, pp. 145.Google Scholar
Alonso, W., & Starr, P. (1987). The Politics of Numbers, New York: Russell Sage Foundation.Google Scholar
Altheide, D. L. (2006). Terrorism and the politics of fear. Cultural Studies ↔ Critical Methodologies, 6(4), 415439.Google Scholar
Amodei, D., Hernandez, D., Sastry, G. et al. (2019). AI and Compute. Accessed January 1, 2020, https://openai.com/blog/ai-and-compute/.Google Scholar
Andersen, R. (2020). The Panopticon Is Already Here. The Atlantic Monthly, September. Accessed July 23, 2022, www.theatlantic.com/magazine/archive/2020/.Google Scholar
Anderson, C. (2008). The End of Theory. Wired, June 23, 2008. Accessed July 23, 2022, www.wired.com/2008/06/pb-theory/.Google Scholar
Anderson, G. J., & Lucas, D. D. (2018). Machine learning predictions of a multiresolution climate model ensemble. Geophysical Research Letters, 45(9), 42734280.Google Scholar
Anderson, R. P., Araújo, M. B., Guisan, A. et al. (2016). Final Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling, Copenhagen: Global Biodiversity Information Facility.Google Scholar
Anthony, R. E., Ringler, A. T., Wilson, D. C., & Wolin, E. (2018). Do low‐cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D. Seismological Research Letters, 90(1), 219228.Google Scholar
Antle, J. M., Jones, J. W., & Rosenzweig, C. (2017). Next generation agricultural system models and knowledge products: Synthesis and strategy. Agricultural Systems, 155, 179185.Google Scholar
Aronova, E., Baker, K. S., & Oreskes, N. (2010). Big science and big data in biology: From the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) Network, 1957–Present. Historical Studies in the Natural Sciences, 40(2), 183224.Google Scholar
Arora, P. (2016). Bottom of the data pyramid: Big data and the Global South. International Journal of Communication, 10, 16811699.Google Scholar
Arribas-Bel, D., Kourtit, K., Nijkamp, P., & Steenbruggen, J. (2015). Cyber cities: Social media as a tool for understanding cities. Applied Spatial Analysis and Policy, 8(3), 231247.Google Scholar
Arribas-Bel, D., Patino, J. E., & Duque, J. C. (2017). Remote sensing-based measurement of living environment deprivation: Improving classical approaches with machine learning. PLOS ONE, 12(5), e0176684.Google Scholar
Arts, K., van der Wal, R., & Adams, W. M. (2015). Digital technology and the conservation of nature. Ambio, 44(4), 661673.Google Scholar
Ash, J., Kitchin, R., & Leszczynski, A. (2016). Digital turn, digital geographies? Progress in Human Geography, 42(1), 2543.Google Scholar
Ashton, K. (2009). That “Internet of things” thing. RFID Journal, 22(7), 97114.Google Scholar
Athey, S. (2019). The Impact of Machine Learning on Economics. In Goldfarb, A., Gans, J., & Agrawal, A., eds., The Economics of Artificial Intelligence: An Agenda, Chicago: University of Chicago Press, pp. 507547.CrossRefGoogle Scholar
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685725.Google Scholar
August, T., Harvey, M., Lightfoot, P. et al. (2015). Emerging technologies for biological recording. Biological Journal of the Linnean Society, 115(3), 731749.CrossRefGoogle Scholar
Azzari, G., & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 6474.Google Scholar
Bagrow, J. P., Wang, D., & Barabási, A.-L. (2011). Collective response of human populations to large-scale emergencies. PLOS ONE, 6(3), e17680.Google Scholar
Baker, K. S., Benson, B. J., Henshaw, D. L. et al. (2000). Evolution of a multisite network information system: The LTER Information Management Paradigm. BioScience, 50(11), 963978.Google Scholar
Balk, D., Storeygard, A., Levy, M. et al. (2005). Child hunger in the developing world: An analysis of environmental and social correlates. Food Policy, 30(5–6), 584611.Google Scholar
Bantwal Rao, M., Jongerden, J., Lemmens, P., & Ruivenkamp, G. (2015). Technological mediation and power: Postphenomenology, critical theory, and autonomist Marxism. Philosophy & Technology, 28(3), 449474.CrossRefGoogle Scholar
Baraniuk, R. G. (2011). More is less: Signal processing and the data deluge. Science, 331(6081), 717719.Google Scholar
Baro, E., Degoul, S., Beuscart, R., & Chazard, E. (2015). Toward a literature-driven definition of big data in healthcare. BioMed Research International, 2015, 639021.Google Scholar
Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104, 671732.Google Scholar
Barth, K.-H. (2003). The politics of seismology: Nuclear testing, arms control, and the transformation of a discipline. Social Studies of Science, 33(5), 743781.Google Scholar
Bartholome, E., & Belward, A. S. (2005). GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 19591977.Google Scholar
Bassil, K. L., Sanborn, M., Lopez, R., & Orris, P. (2015). Integrating environmental and human health databases in the Great Lakes basin: Themes, challenges and future directions. International Journal of Environmental Research and Public Health, 12(4), 36003614.Google Scholar
Bates, J. (2014). The strategic importance of information policy for the contemporary neoliberal state: The case of Open Government Data in the United Kingdom. Government Information Quarterly, 31(3), 388395.Google Scholar
Bates, J. (2017). Big Data, Open Data and the Climate Risk Market. In Brevini, B. & Murdock, G., eds., Carbon Capitalism and Communication: Confronting Climate Crisis, Cham: Springer, pp. 8393.Google Scholar
Bates, J., & Goodale, P. (2017). Making data flow for the climate risk market. Television & New Media, 18(8), 753768.Google Scholar
Batty, M. (2013). The New Science of Cities, Cambridge, MA: MIT Press.Google Scholar
Batty, M., Axhausen, K. W., Giannotti, F. et al. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481518.Google Scholar
Baumann, P., Mazzetti, P., Ungar, J. et al. (2016). Big data analytics for Earth sciences: The EarthServer approach. International Journal of Digital Earth, 9(1), 329.Google Scholar
Ben-Nun, T., & Hoefler, T. (2019). Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4), 143.Google Scholar
Bengtsson, L., Gaudart, J., Lu, X. et al. (2015). Using mobile phone data to predict the spatial spread of cholera. Scientific Reports, 5(1), 15.Google Scholar
Bernards, N. (2022). Colonial financial infrastructures and Kenya’s uneven fintech boom. Antipode, 54(3), 708728.Google Scholar
Berry, D. M. (2011). The computational turn: Thinking about the digital humanities. Culture Machine, 12, 122.Google Scholar
Bettencourt, L., & West, G. (2010). A unified theory of urban living. Nature, 467(7318), 912913.Google Scholar
Bhandari Neupane, J., Neupane, R. P., Luo, Y. et al. (2019). Characterization of leptazolines A–D, polar oxazolines from the cyanobacterium leptolyngbya sp., reveals a glitch with the “Willoughby–Hoye” scripts for calculating NMR chemical shifts. Organic Letters, 21(20), 84498453.Google Scholar
Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183212.Google Scholar
Birenboim, A., & Shoval, N. (2016). Mobility research in the age of the smartphone. Annals of the American Association of Geographers, 106(2), 283291.Google Scholar
Bishop, B. W., & Hank, C. (2018). Earth Science Data Management: Mapping Actual Tasks to Conceptual Actions in the Curation Lifecycle Model. In Chowdhury, G., McLeod, J., Gillet, V., & Willett, P., eds., Transforming Digital Worlds, iConference 2018, Cham: Springer, pp. 598608.Google Scholar
Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). At Risk: Natural Hazards, People’s Vulnerability, and Disasters, New York: Routledge.Google Scholar
Blond, N., Boersma, K. F., Eskes, H. J. et al. (2007). Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. Journal of Geophysical Research: Atmospheres, 112(10), D10311.Google Scholar
Blumenstock, J. E., & Eagle, N. (2012). Divided we call: Disparities in access and use of mobile phones in Rwanda. Information Technologies & International Development, 8(2), 116.Google Scholar
Boakes, E. H., Gliozzo, G., Seymour, V. et al. (2016). Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Scientific Reports, 6(1), 33051.Google Scholar
Boeckhout, M., Zielhuis, G. A., & Bredenoord, A. L. (2018). The FAIR guiding principles for data stewardship: Fair enough? European Journal of Human Genetics, 26(7), 931936.Google Scholar
Boellstorff, T., Helmreich, S., Jones, G. M. et al. (2016). For whom the ontology turns: Theorizing the digital real. Current Anthropology, 57(4), 387407.Google Scholar
Bollacker, K. D. (2010). Computing science: Avoiding a digital dark age. American Scientist, 98(2), 106110.Google Scholar
Bolstad, P., & Manson, S. M. (2022). GIS Fundamentals: A First Text on Geographic Information Systems, White Bear Lake, MN: Eider Press.Google Scholar
Bongirwar, V. (2020). Stochastic event set generation for tropical cyclone using machine-learning approach guided by environmental data. International Journal of Climatology, 40(15), 62656281.Google Scholar
Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M., & Rampini, A. (2016). On predicting and improving the quality of Volunteer Geographic Information projects. International Journal of Digital Earth, 9(2), 134155.Google Scholar
Borgman, C. L. (2019). The lives and after lives of data. Harvard Data Science Review, 1(1), https://doi.org/10.1162/99608f92.9a36bdb6.Google Scholar
Borgman, C. L., Wallis, J. C., & Mayernik, M. S. (2012). Who’s got the data? Interdependencies in science and technology collaborations. Computer Supported Cooperative Work (CSCW), 21(6), 485523.Google Scholar
Boschetti, A., & Massaron, L. (2018). Python Data Science Essentials: A Practitioner’s Guide Covering Essential Data Science Principles, Tools, and Techniques, Birmingham: Packt Publishing Ltd.Google Scholar
Botts, M. , Percivall, G. , Reed, C. , & Davidson, J. (2008). OGC Sensor Web Enablement: Overview and High Level Architecture. In Nittel, S, Labrinidis, A, & Stefanidis, A, eds., International Conference on GeoSensor Networks, Heidelberg: Springer, pp. 175190.Google Scholar
Boudon, R. (1991). What middle-range theories are. Contemporary Sociology, 20(4), 519522.Google Scholar
Boulos, M. N. K., Resch, B., Crowley, D. N. et al. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. International Journal of Health Geographics, 10(1), 67.Google Scholar
Bouveyron, C., Celeux, G., Murphy, T. B., & Raftery, A. E. (2019). Model-Based Clustering and Classification for Data Science: With Applications in R, Cambridge: Cambridge University Press.Google Scholar
boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information Communication and Society, 15(5), 662679.Google Scholar
Brackstone, G. (1999). Managing data quality in a statistical agency. Survey Methodology, 25(2), 139150.Google Scholar
Brady, H. E. (2019). The challenge of big data and data science. Annual Review of Political Science, 22(1), 297323.Google Scholar
Braman, S. (2006). Change of State: Information, Policy, and Power, Cambridge, MA: MIT Press.Google Scholar
Braun, B. (2004). Querying posthumanisms. Geoforum, 3(35), 269273.Google Scholar
Brayne, S. (2017). Big data surveillance: The case of policing. American Sociological Review, 82(5), 9771008.Google Scholar
British Academy. (2012). Society Counts: Quantitative Skills in the Social Sciences and Humanities, London: British Academy.Google Scholar
Brodie, M. L. (1984). On the Development of Data Models. In Brodie, M. L., Mylopoulos, J., & Schmidt, J. W., eds., On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Programming Languages, New York: Springer, pp. 1947.Google Scholar
Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, New York: WW Norton & Company.Google Scholar
Buckland, M. K. (1991). Information as thing. Journal of the American Society for Information Science, 42(5), 351360.Google Scholar
Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106, 249259.Google Scholar
Buenemann, M., Martius, C., Jones, J. W. et al. (2011). Integrative geospatial approaches for the comprehensive monitoring and assessment of land management sustainability: Rationale, potentials, and characteristics. Land Degradation & Development, 22(2), 226239.Google Scholar
Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Conference on Fairness, Accountability and Transparency, Maastricht: ML Research Press, pp. 7791.Google Scholar
Burns, R. (2015). Rethinking big data in digital humanitarianism: Practices, epistemologies, and social relations. GeoJournal, 80(4), 477490.Google Scholar
Burton, A. C., Neilson, E., Moreira, D. et al. (2015). Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675685.Google Scholar
Busch, J., & Ferretti-Gallon, K. (2017). What drives deforestation and what stops it? A meta-analysis. Review of Environmental Economics and Policy, 11(1), 323.Google Scholar
Butler, R., Lay, T., Creager, K. et al. (2004). The global seismographic network surpasses its design goal. Eos, Transactions American Geophysical Union, 85(23), 225229.Google Scholar
Buzzelli, M. (2020). Modifiable Areal Unit Problem. In Kobayashi, A., ed., International Encyclopedia of Human Geography, Amsterdam: Elsevier, pp. 169173.Google Scholar
Caldwell, P. M., Bretherton, C. S., Zelinka, M. D. et al. (2014). Statistical significance of climate sensitivity predictors obtained by data mining. Geophysical Research Letters, 41(5), 18031808.Google Scholar
Campbell, A. T., Eisenman, S. B., Lane, N. D. et al. (2008). The rise of people-centric sensing. IEEE Internet Computing, 12(4), 1221.Google Scholar
Campbell, J. B., & Salomonson, V. V. (2010). Remote Sensing: A Look to the Future. In Bossler, J. D., Jensen, J. R, McMaster, R. B., & Rizos, C., eds., Manual of Geospatial Science and Technology, Boca Raton, FL: CRC Press, pp. 487509.Google Scholar
Carolan, M. (2017). Publicising food: Big data, precision agriculture, and co-experimental techniques of addition. Sociologia Ruralis, 57(2), 135154.CrossRefGoogle Scholar
Carson, C. (1998). Fostering the fundamental principles of official statistics. Statistical Journal of the UN Economic Commission for Europe, 15(3–4), 213220.Google Scholar
Casana, J. (2020). Global-scale archaeological prospection using CORONA satellite imagery: Automated, crowd-sourced, and expert-led approaches. Journal of Field Archaeology, 45(suppl. 1), S89S100.Google Scholar
Cass, S. (2019). Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE Spectrum, 56(5), 1617.Google Scholar
Castell, N., Dauge, F. R., Schneider, P. et al. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293302.Google Scholar
Cavallo, A., & Rigobon, R. (2016). The Billion Prices Project: Using online prices for measurement and research. Journal of Economic Perspectives, 30(2), 151178.Google Scholar
Chang, E. K. M., & Guo, Y. (2007). Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophysical Research Letters, 34(14), 547572.Google Scholar
Chang, W. L., & Grady, N. (2015). NIST Big Data Interoperability Framework: Volume 1, Big Data Definitions, Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Chapman, L., Bell, C., & Bell, S. (2017). Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology, 37(9), 35973605.Google Scholar
Charalabidis, Y., Zuiderwijk, A., Alexopoulos, C. et al. (2018). The Open Data Landscape. In Charalabidis, Y., Zuiderwijk, A., Alexopoulos, C. et al., eds., The World of Open Data: Concepts, Methods, Tools and Experiences, Cham: Springer, pp. 19.Google Scholar
Checkland, P., & Holwell, S. (2006). Data, Capta, Information and Knowledge. In Hinton, M., ed., Introducing Information Management: The Business Approach, London: Routledge, pp. 4755.Google Scholar
Chen, F., & Neill, D. B. (2015). Human rights event detection from heterogeneous social media graphs. Big Data, 3(1), 3440.Google Scholar
Chen, J., Chen, J., Liao, A. et al. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 727.Google Scholar
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171209.Google Scholar
Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514525.Google Scholar
Chen, Z., Pan, H., Liu, C., & Jiang, Z. (2018). Agricultural Remote Sensing and Data Science in China. In Batarseh, F. A. & Yang, R., eds., Federal Data Science: Transforming Government and Agricultural Policy Using Artificial Intelligence, Cambridge, MA: Academic Press, pp. 95108.Google Scholar
Chen, Z., & Liu, B. (2016). Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(3), 1145.Google Scholar
Chipman, H. A., & Joseph, V. R. (2016). A conversation with Jeff Wu. Statistical Science, 31(4), 624636.Google Scholar
Christie, M. (2004). Data collection and the ozone hole. History of Meteorology, 1, 99105.Google Scholar
Christin, D., Reinhardt, A., Kanhere, S. S., & Hollick, M. (2011). A survey on privacy in mobile participatory sensing applications. Journal of Systems and Software, 84(11), 19281946.Google Scholar
Cinnamon, J. (2022). On data cultures and the prehistories of smart urbanism inAfrica’s Digital City.Urban Geography, 43(forthcoming), https://doi.org/10.1080/02723638.2022.2049096.Google Scholar
Cirac-Claveras, G. (2018). The weather privateers: Meteorology and commercial satellite data. Information & Culture, 53(3/4), 271302.Google Scholar
Clark, W. R., & Golder, M. (2015). Big data, causal inference, and formal theory: Contradictory trends in political science? PS: Political Science & Politics, 48(1), 6570.Google Scholar
Clerx, M., Cooling, M. T., Cooper, J. et al. (2020). CellML 2.0. Journal of Integrative Bioinformatics, 17(2–3), 20200021.CrossRefGoogle ScholarPubMed
Cleveland, W. S. (2001). Data science: An action plan for expanding the technical areas of the field of statistics. International Statistical Review, 69(1), 2126.Google Scholar
Combi, C., & Pozzi, G. (2019). Clinical information systems and artificial intelligence: Recent research trends. Yearbook of Medical Informatics, 28(1), 8394.Google Scholar
Connors, J. P., Lei, S., & Kelly, M. (2012). Citizen science in the age of neogeography: Utilizing volunteered geographic information for environmental monitoring. Annals of the Association of American Geographers, 102(6), 12671289.Google Scholar
Cooper, C. B., Hochachka, W. M., & Dhondt, A. A. (2012). The Opportunities and Challenges of Citizen Science as a Tool for Ecological Research. In Dickinson, J. L. & Bonney, R. E., eds., Citizen Science: Public Participation in Environmental Research, Ithaca, NY: Cornell University Press, pp. 99113.Google Scholar
Cooper, M. (2010). Turbulent worlds. Theory, Culture & Society, 27(2–3), 167190.Google Scholar
Cooper, N., Hsing, P.-Y., Croucher, M. et al. (2017). A Guide to Reproducible Code in Ecology and Evolution, London: British Ecological Society.Google Scholar
Costanza, R., D’Arge, R., de Groot, R. et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253260.Google Scholar
Couclelis, H. (2003). The certainty of uncertainty: GIS and the limits of geographic knowledge. Transactions in GIS, 7(2), 165175.Google Scholar
Coveney, P. V., Dougherty, E. R., & Highfield, R. R. (2016). Big data need big theory too. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2080), 20160153.Google Scholar
Cowan, J. D. (1995). Fault and Failure Tolerance, Chicago: The University of Chicago.Google Scholar
Crabtree, A., Tolmie, P., & Knight, W. (2017). Repacking “privacy” for a networked world. Computer Supported Cooperative Work (CSCW), 26(4), 453488.Google Scholar
Craglia, M., de Bie, K., Jackson, D. et al. (2012). Digital earth 2020: Towards the vision for the next decade. International Journal of Digital Earth, 5(1), 421.Google Scholar
Crall, A. W., Newman, G. J., Stohlgren, T. J. et al. (2011). Assessing citizen science data quality: An invasive species case study. Conservation Letters, 4(6), 433442.Google Scholar
Crawford, C. J., Manson, S. M., Bauer, M. E., & Hall, D. K. (2013). Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sensing of Environment, 135, 224233.Google Scholar
Crawford, K., & Finn, M. (2015). The limits of crisis data: Analytical and ethical challenges of using social and mobile data to understand disasters. GeoJournal, 80(4), 491502.Google Scholar
Crawl, D., Singh, A., & Altintas, I. (2016). Kepler webview: A lightweight, portable framework for constructing real-time web interfaces of scientific workflows. Procedia Computer Science, 80, 673679.Google Scholar
Crews, K. A., & Walsh, S. J. (2009). Remote Sensing and the Social Sciences. In Warner, T. A., Nellis, M. D., & Foody, G. M., eds., The SAGE Handbook of Remote Sensing, London: SAGE Publications, pp. 437445.Google Scholar
Crosas, M., King, G., Honaker, J., & Sweeney, L. (2015). Automating open science for big data. The Annals of the American Academy of Political and Social Science, 659(1), 260273.Google Scholar
Crutcher, M., & Zook, M. (2009). Placemarks and waterlines: Racialized cyberscapes in post-Katrina Google Earth. Geoforum, 40(4), 523534.Google Scholar
Cuff, D., Hansen, M., & Kang, J. (2008). Urban sensing: Out of the woods. Communications of the ACM, 51(3), 2433.Google Scholar
Cutcher-Gershenfeld, J., Baker, K. S., Berente, N. et al. (2016). Build it, but will they come? A geoscience cyberinfrastructure baseline analysis. Data Science Journal, 15, 8.Google Scholar
Cuzzocrea, A., Song, I.-Y., & Davis, K. C. (2011). Analytics over Large-scale Multidimensional Data: The Big Data Revolution! In Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP, Glasgow: Association for Computing Machinery, pp. 101104.Google Scholar
d’Alessandro, B., O’Neil, C., & LaGatta, T. (2017). Conscientious classification: A data scientist’s guide to discrimination-aware classification. Big Data, 5(2), 120134.Google Scholar
Datta, A. (2015). New urban utopias of postcolonial India: “Entrepreneurial urbanization” in Dholera smart city, Gujarat. Dialogues in Human Geography, 5(1), 322.Google Scholar
Davies, J., Studer, R., & Warren, P. (2006). Semantic Web Technologies: Trends and Research in Ontology-Based Systems, Hoboken, NJ: John Wiley & Sons.Google Scholar
De-Arteaga, M., Herlands, W., Neill, D. B., & Dubrawski, A. (2018). Machine learning for the developing world. ACM Transactions on Management Information Systems (TMIS), 9(2), 9.Google Scholar
de Bruijn, J. A., de Moel, H., Jongman, B. et al. (2019). A global database of historic and real-time flood events based on social media. Scientific Data, 6(1), 311.Google Scholar
de Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and evolution of modern computing paradigms: Cloud, IoT, Edge, and Fog. IEEE Access, 7, 150936150948.Google Scholar
de Longueville, B., Annoni, A., Schade, S., Ostlaender, N., & Whitmore, C. (2010). Digital Earth’s nervous system for crisis events: Real-time sensor web enablement of volunteered geographic information. International Journal of Digital Earth, 3(3), 242259.Google Scholar
de Nazelle, A., Seto, E., Donaire-Gonzalez, D. et al. (2013). Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environmental Pollution, 176, 9299.Google Scholar
de Vries, K. (2010). Identity, profiling algorithms and a world of ambient intelligence. Ethics and Information Technology, 12(1), 7185.Google Scholar
Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107113.Google Scholar
DeFries, R. (2008). Terrestrial vegetation in the coupled human-earth system: Contributions of remote sensing. Annual Review of Environment and Resources, 33(1), 369390.Google Scholar
Degrossi, L. C., Porto de Albuquerque, J., Santos Rocha, R. dos, & Zipf, A. (2018). A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Transactions in GIS, 22(2), 542560.Google Scholar
D’Ignazio, C. , & Klein, L. (2020). Data Feminism. Cambridge, MA: MIT Press.Google Scholar
Del Vicario, M., Bessi, A., Zollo, F. et al. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554559.Google Scholar
DeMasi, O., Paxton, A., & Koy, K. (2020). Ad hoc efforts for advancing data science education. PLOS Computational Biology, 16(5), e1007695.Google Scholar
Determann, L., Ruan, Z. J., Gao, T., & Tam, J. (2021). China’s draft Personal Information Protection Law. Journal of Data Protection & Privacy, 4(3), 235259.Google Scholar
Devarajan, S. (2013). Africa’s statistical tragedy. Review of Income and Wealth, 59(S1), S9S15.Google Scholar
Deville, P., Linard, C., Martin, S. et al. (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences, 111(45), 1588815893.Google Scholar
di Modica, G., & Tomarchio, O. (2022). A hierarchical hadoop framework to process geo-distributed big data. Big Data and Cognitive Computing, 6(1), 5.Google Scholar
Dias, M. B., & Brewer, E. (2009). How computer science serves the developing world. Communications of the ACM, 52(6), 7480.Google Scholar
Diebold, F. X. (2012). A Personal Perspective on the Origin(s) and Development of “Big Data”: The Phenomenon, the Term, and the Discipline, second version, Philadelphia: Penn Institute for Economic Research (PIER).Google Scholar
Dijkgraaf, R. (2021). The Uselessness of Useful Knowledge. Quanta, October 20. Accessed August 11, 2022, www.quantamagazine.org/science-has-entered-a-new-era-of-alchemy-good-20211020/.Google Scholar
Ditmer, M. A., Vincent, J. B., Werden, L. K. et al. (2015). Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Current Biology, 25(17), 22782283.Google Scholar
Do, H. X., Westra, S., Leonard, M., & Gudmundsson, L. (2020). Global-scale prediction of flood timing using atmospheric reanalysis. Water Resources Research, 56(1), e2019WR024945.Google Scholar
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241258.Google Scholar
Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745766.Google Scholar
Dunnette, M. D. (1966). Fads, fashions, and folderol in psychology. American Psychologist, 21(4), 343352.Google Scholar
Duporge, I., Isupova, O., Reece, S., Macdonald, D. W., & Wang, T. (2020). Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sensing in Ecology and Conservation, 7, 369381.Google Scholar
Dusek, V. (2006). Philosophy of Technology: An Introduction, Oxford: Blackwell Publishing Ltd.Google Scholar
Edwards, P. N., Jackson, S. J., Chalmers, M. K. et al. (2013). Knowledge Infrastructures: Intellectual Frameworks and Research Challenges, Ann Arbor, MI: Deep Blue.Google Scholar
Ehrlich, P. R., Kareiva, P. M., & Daily, G. C. (2012). Securing natural capital and expanding equity to rescale civilization. Nature, 486(7401), 6873.Google Scholar
Elahi, S. (2009). Privacy and consent in the digital era. Information Security Technical Report, 14(3), 113118.Google Scholar
Eldawy, A., & Mokbel, M. F. (2016). The era of big spatial data: A survey. Foundations and Trends in Databases, 6(3–4), 305316.Google Scholar
Eldawy, A., Mokbel, M. F., & Jonathan, C. (2016). HadoopViz: A MapReduce Framework for Extensible Visualization of Big Spatial Data. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 601612.Google Scholar
Elfenbein, A. (2020). The Gist of Reading, Stanford, CA: Stanford University Press.Google Scholar
Elliott, K. C., Cheruvelil, K. S., Montgomery, G. M., & Soranno, P. A. (2016). Conceptions of good science in our data-rich world. BioScience, 66(10), 880889.Google Scholar
Entwisle, B., Hofferth, S. L., & Moran, E. F. (2017). Quilting a time-place mosaic: Concluding remarks. The Annals of the American Academy of Political and Social Science, 669(1), 190198.Google Scholar
Esch, T., Heldens, W., Hirner, A. et al. (2017). Breaking new ground in mapping human settlements from space: The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 3042.Google Scholar
Espey, J. (2019). Sustainable development will falter without data. Nature, 571(7765), 299300.Google Scholar
Essawy, B. T., Goodall, J. L., Xu, H., & Gil, Y. (2017). Evaluation of the OntoSoft ontology for describing metadata for legacy hydrologic modeling software. Environmental Modelling & Software, 92, 317329.Google Scholar
Essl, A., Ortner, A., Haas, R., & Hettegger, P. (2017). Machine Learning Analysis for a Flexibility Energy Approach towards Renewable Energy Integration with Dynamic Forecasting of Electricity Balancing Power. In 14th International Conference on the European Energy Market (EEM), Santa Clara, CA: Institute of Electrical and Electronics Engineers, https://doi.org/10.1109/EEM.2017.7981877.Google Scholar
Fadiya, S. O., Saydam, S., & Zira, V. V. (2014). Advancing big data for humanitarian needs. Procedia Engineering, 78, 8895.Google Scholar
Faghmous, J. H., & Kumar, V. (2014a). A big data guide to understanding climate change: The case for theory-guided data science. Big Data, 2(3), 155163.Google Scholar
Faghmous, J. H., & Kumar, V. (2014b). Spatio-temporal Data Mining for Climate Data: Advances, Challenges, and Opportunities. In Data Mining and Knowledge Discovery for Big Data, New York: Springer, pp. 83116.Google Scholar
Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293314.Google Scholar
Fan, J., Li, R., Zhang, C.-H., & Zou, H. (2020). Statistical Foundations of Data Science, Boca Raton, FL: CRC press.Google Scholar
Farnes, J., Mort, B., Dulwich, F., Salvini, S., & Armour, W. (2018). Science pipelines for the square kilometre array. Galaxies, 6(4), 120.Google Scholar
Favaretto, M., de Clercq, E., & Elger, B. S. (2019). Big data and discrimination: Perils, promises and solutions. A systematic review. Journal of Big Data, 6(1), 12.Google Scholar
Feenberg, A. (2002). Questioning Technology, New York: Routledge.Google Scholar
Feenberg, A. (2009). What Is Philosophy of Technology? In Jones, A. & de Vries, M. J., eds., International Handbook of Research and Development in Technology Education, Leiden: Brill | Sense, pp. 159166.Google Scholar
Feenberg, A. (2017). Technosystem, Cambridge, MA: Harvard University Press.Google Scholar
Filho, C. R. D. S., Zullo Jr., J., & Elvidge, C. (2004). Brazil’s 2001 energy crisis monitored from space. International Journal of Remote Sensing, 25(12), 24752482.Google Scholar
Fiske, S. T., & Hauser, R. M. (2014). Protecting human research participants in the age of big data. Proceedings of the National Academy of Sciences, 111(38), 1367513676.Google Scholar
Fleming, L., Haines, A., Golding, B. et al. (2014). Data mashups: Potential contribution to decision support on climate change and health. International Journal of Environmental Research and Public Health, 11(2), 17251746.Google Scholar
Fleming, L., Tempini, N., Gordon-Brown, H. et al. (2017). Big Data in Environment and Human Health. In Oxford Research Encyclopedia of Environmental Science, Oxford: Oxford University Press, https://doi.org/10.1093/acrefore/9780199389414.013.541.Google Scholar
Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 1(1), 314.Google Scholar
Fohringer, J., Dransch, D., Kreibich, H., & Schröter, K. (2015). Social media as an information source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 15(12), 27252738.Google Scholar
Fox, G., & Chang, W. L. (2018). NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements, Version 2, Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Fox, J., Rindfuss, R. R., Walsh, S. J., & Mishra, V. (2003). People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS, Boston: Kluwer Academic Publishers.Google Scholar
Francis, J. G., & Francis, L. P. (2014). Privacy, confidentiality, and justice. Journal of Social Philosophy, 45(3), 408431.Google Scholar
Franklin, R. S., Delmelle, E. C., Andris, C. et al. (2022). Making space in geographical analysis. Geographical Analysis, 54(forthcoming), https://doi.org/10.1111/gean.12325.Google Scholar
Fraser, A. (2019). Land grab/data grab: Precision agriculture and its new horizons. The Journal of Peasant Studies, 46(5), 893912.Google Scholar
Frew, J., & Dozier, J. (1997). Data management for Earth system science. SIGMOD Record, 26(1), 2731.Google Scholar
Friendly, M. (2007). A.-M. Guerry’s “Moral Statistics of France”: Challenges for multivariable spatial analysis. Statistical Science, 22(3), 368399.Google Scholar
Fritz, S., & Lee, L. (2005). Comparison of land cover maps using fuzzy agreement. International Journal of Geographical Information Science, 19(7), 787807.Google Scholar
Future Earth. (2014). Future Earth Strategic Research Agenda 2014, Paris: International Council for Science.Google Scholar
Future Earth. (2019). Annual Report 2017–2018, Paris: International Council for Science.Google Scholar
Gabrys, J., Pritchard, H., & Barratt, B. (2016). Just good enough data: Figuring data citizenships through air pollution sensing and data stories. Big Data & Society, 3(2), https://doi.org/10.1177/2053951716679677.Google Scholar
Gahegan, M. (2020). Fourth paradigm GIScience? Prospects for automated discovery and explanation from data. International Journal of Geographical Information Science, 34(1), 121.Google Scholar
Gallego, J., Rivero, G., & Martínez, J. (2021). Preventing rather than punishing: An early warning model of malfeasance in public procurement. International Journal of Forecasting, 37(1), 360377.Google Scholar
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137144.Google Scholar
Ganguly, A. R., Kodra, E. A., Agrawal, A. et al. (2014). Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques. Nonlinear Processes in Geophysics, 21(4), 777795.Google Scholar
Gantz, J., & Reinsel, D. (2010). The Digital Universe Decade – Are You Ready?, Needham, MA: International Data Corporation (sponsored by EMC).Google Scholar
Gavish, M., & Donoho, D. (2012). Three dream applications of verifiable computational results. Computing in Science & Engineering, 14(4), 2631.Google Scholar
Gebru, T., Morgenstern, J., Vecchione, B. et al. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 8692.Google Scholar
Gelaro, R., McCarty, W., Suárez, M. J. et al. (2017). The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Journal of Climate, 30(14), 54195454.Google Scholar
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock? Geophysical Research Letters, 45(11), 57425751.Google Scholar
Ghermandi, A. (2018). Integrating social media analysis and revealed preference methods to value the recreation services of ecologically engineered wetlands. Ecosystem Services, 31, 351357.Google Scholar
Ghermandi, A., & Sinclair, M. (2019). Passive crowdsourcing of social media in environmental research: A systematic map. Global Environmental Change, 55, 3647.Google Scholar
Gibreel, O., & Hong, A. (2017). A holistic analysis approach to social, technical, and socio-technical aspect of e-government development. Sustainability, 9(12), 2181.Google Scholar
Gil, Y., Garijo, D., Mishra, S., & Ratnakar, V. (2016). OntoSoft: A Distributed Semantic Registry for Scientific Software. In 2016 IEEE 12th International Conference on e-Science (e-Science), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 331336.Google Scholar
Giorgi, F. (2019). Thirty years of regional climate modeling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124(11), 56965723.Google Scholar
Glavovic, B. C., Smith, T. F., & White, I. (2021). The tragedy of climate change science. Climate and Development, 14(forthcoming), https://doi.org/10.1080/17565529.2021.2008855.Google Scholar
Global Earth Observation System of Systems (GEOSS). (2005). 10-Year Implementation Plan Reference Document, Noordwijk: ESA Publications Division. Accessed August 11, 2022, https://earthobservations.org/documents/10-YearPlanReferenceDocument.pdf.Google Scholar
Gogolenko, S., Groen, D., Suleimenova, D. et al. (2020). Towards Accurate Simulation of Global Challenges on Data Centers Infrastructures via Coupling of Models and Data Sources. In Krzhizhanovskaya, V. V, Závodszky, G., Lees, M. H. et al., eds., Computational Science – ICCS 2020, Cham: Springer, pp. 410424.Google Scholar
Gomes, C. P. (2009). Computational sustainability: Computational methods for a sustainable environment, economy, and society. The Bridge, 39(4), 513.Google Scholar
González‐Bailón, S. (2013). Social science in the era of big data. Policy & Internet, 5(2), 147160.Google Scholar
Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779782.Google Scholar
Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211221.Google Scholar
Goodchild, M. F. (2013). The quality of big (geo)data. Dialogues in Human Geography, 3(3), 280284.Google Scholar
Goodchild, M. F., & Li, W. (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35), e2015759118.Google Scholar
Gorelick, N., Hancher, M., Dixon, M. et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 1827.Google Scholar
Graafland, C. E., Gutiérrez, J. M., López, J. M., Pazó, D., & Rodríguez, M. A. (2020). The probabilistic backbone of data-driven complex networks: An example in climate. Scientific Reports, 10(1), 11484.Google Scholar
Graham, M. (2018). Rethinking the Geoweb and Big Data: Future Research Directions. In Thatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 231236.Google Scholar
Graham, M., de Sabbata, S., & Zook, M. A. (2015). Towards a study of information geographies: (Im)mutable augmentations and a mapping of the geographies of information. Geo: Geography and Environment, 2(1), 88105.Google Scholar
Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255261.Google Scholar
Grainger, A. (2009). Measuring the planet to fill terrestrial data gaps. Proceedings of the National Academy of Sciences, 106(49), 2055720558.Google Scholar
Granger, C. W. J. (1988). Causality, cointegration, and control. Journal of Economic Dynamics and Control, 12(2), 551559.Google Scholar
Graves, A., Wayne, G., Reynolds, M. et al. (2016). Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471476.Google Scholar
Gray, M. L., & Suri, S. (2017). The humans working behind the AI curtain. Harvard Business Review, 9(1), 25.Google Scholar
Greenfield, A. (2010). Everyware: The Dawning Age of Ubiquitous Computing, Berkeley, CA: New Riders.Google Scholar
Gregory, M. J., Kimerling, A. J., White, D., & Sahr, K. (2008). A comparison of intercell metrics on discrete global grid systems. Computers, Environment and Urban Systems, 32(3), 188203.Google Scholar
Griffin, G. P., Mulhall, M., Simek, C., & Riggs, W. W. (2020). Mitigating bias in big data for transportation. Journal of Big Data Analytics in Transportation, 2(1), 4959.Google Scholar
Grimm, V., Berger, U., DeAngelis, D. L. et al. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 27602768.Google Scholar
Grimm, V., Railsback, S. F., Vincenot, C. E. et al. (2020). The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial Societies and Social Simulation, 23(2), 7.Google Scholar
Grolinger, K., Hayes, M., Higashino, W. A. et al. (2014). Challenges for Mapreduce in Big Data. In 2014 IEEE World Congress on Services, Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 182189.Google Scholar
Grommé, F., Ruppert, E., & Cakici, B. (2018). Data Scientists: A New Faction of the Transnational Field of Statistics. In Knox, H. & Nafus, D., eds., Ethnography for a Data-Saturated World, Manchester: Manchester University Press, pp. 3361.Google Scholar
Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational Communication and Technology, 29(2), 75.Google Scholar
Guerry, A.-M. (1833). Essai sur la statistique morale de la France, Paris: Arrondissements des Académies et des Cours Royales de France.Google Scholar
Gundersen, O. E., & Kjensmo, S. (2018). State of the art: Reproducibility in artificial intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 16441651.Google Scholar
Guo, L., & Lin, H. (2016). Critical zone research and observatories: Current status and future perspectives. Vadose Zone Journal, 15(9), 114.Google Scholar
Guo, P. J. (2014). CDE: Automatically Package and Reproduce Computational Experiments. In Stodden, V., Leisch, F., & Peng, R. D., eds., Implementing Reproducible Research, Boca Raton, FL: CRC Press, pp. 79112.Google Scholar
Gurstein, M. (2003). Effective use: A community informatics strategy beyond the digital divide. First Monday, 8(12), 1107.Google Scholar
Habegger, B. (2010). Strategic foresight in public policy: Reviewing the experiences of the UK, Singapore, and the Netherlands. Futures, 42(1), 4958.Google Scholar
Hackett, E. J., Parker, J. N., Conz, D., Rhoten, D., & Parker, A. (2008). Ecology Transformed: NCEAS and Changing Patterns of Ecological Research. In Scientific Collaboration on the Internet, Cambridge, MA: MIT Press, pp. 277296.Google Scholar
Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 514.Google Scholar
Haerder, T., & Reuter, A. (1983). Principles of transaction-oriented database recovery. ACM Computing Surveys (CSUR), 15(4), 287317.Google Scholar
Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design, 37(4), 682703.Google Scholar
Haklay, M. (2013). Neogeography and the delusion of democratisation. Environment and Planning A, 45(1), 5569.Google Scholar
Hall, J. L., Boucher, R. H., Buckland, K. N. et al. (2015). MAGI: A new high-performance airborne thermal-infrared imaging spectrometer for earth science applications. IEEE Transactions on Geoscience and Remote Sensing, 53(10), 54475457.Google Scholar
Hampton, S. E., Strasser, C. A., Tewksbury, J. J. et al. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11(3), 156162.Google Scholar
Han, J., Yang, Z., Zhang, Q. et al. (2019). A method of insulator faults detection in aerial images for high-voltage transmission lines inspection. Applied Sciences, 9(10), 2009.Google Scholar
Hansen, M. M., Miron-Shatz, T., Lau, A. Y. S., & Paton, C. (2014). Big data in science and healthcare: A review of recent literature and perspectives. Yearbook of Medical Informatics, 23(1), 2126.Google Scholar
Hao, K. (2021). How Facebook and Google fund global misinformation. MIT Technology Review, November. Accessed August 11, 2022, www.technologyreview.com/2021/11/20/1039076/facebook-google-disinformation-clickbait/.Google Scholar
Hart, J. K., & Martinez, K. (2006). Environmental sensor networks: A revolution in the Earth system science? Earth-Science Reviews, 78(3), 177191.Google Scholar
Harvey, F. (2013). To Volunteer or to Contribute Locational Information? Towards Truth in Labeling for Crowdsourced Geographic Information. In Crowdsourcing Geographic Knowledge, Cham: Springer, pp. 3142.Google Scholar
Hassall, C., Owen, J., & Gilbert, F. (2017). Phenological shifts in hoverflies (Diptera: Syrphidae): Linking measurement and mechanism. Ecography, 40(7), 853863.Google Scholar
Hastings, J., Glauer, M., Memariani, A., Neuhaus, F., & Mossakowski, T. (2021). Learning chemistry: Exploring the suitability of machine learning for the task of structure-based chemical ontology classification. Journal of Cheminformatics, 13(1), 23.Google Scholar
Haynes, D., Ray, S., Manson, S. M., & Soni, A. (2015). High Performance Analysis of Big Spatial Data. In Big Data: 2015 IEEE International Conference on Big Data, Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 19531957.Google Scholar
Henke, N., Bughin, J., Chui, M. et al. (2016). The Age of Analytics: Competing in a Data-Driven World. Brussels: McKinsey Global Institute.Google Scholar
Henrickson, L., & McKelvey, B. (2002). Foundations of “new” social science: Institutional legitimacy from philosophy, complexity science, postmodernism, and agent-based modeling. Proceedings of the National Academy of Sciences, 99(90003), 72887295.Google Scholar
Hernán, M. A., Hsu, J., & Healy, B. (2019). A second chance to get causal inference right: A classification of data science tasks. CHANCE, 32(1), 4249.Google Scholar
Hey, A. J. G., Tansley, S., & Tolle, K. M. (2009). The Fourth Paradigm: Data-Intensive Scientific Discovery, Redmond, WA: Microsoft Research.Google Scholar
Hidalgo, C. A. (2014). Saving big data from big mouths. Scientific American, 311(2), 6467.Google Scholar
Higgins, S. (2008). The DCC curation lifecycle model. Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital Libraries, 3(1), 453.Google Scholar
Hilbert, M. (2016). Big data for development: A review of promises and challenges. Development Policy Review, 34(1), 135174.Google Scholar
Hilbert, M., & López, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 6065.Google Scholar
Hinckley, E.-L. S., Anderson, S. P., Baron, J. S. et al. (2016). Optimizing available network resources to address questions in environmental biogeochemistry. BioScience, 66(4), 317326.Google Scholar
Hindman, M. (2015). Building better models: Prediction, replication, and machine learning in the social sciences. The Annals of the American Academy of Political and Social Science, 659(1), 4862.Google Scholar
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1984). Understanding Robust and Exploratory Data Analysis, New York: John Wiley & Sons.Google Scholar
Hobbie, J. E., Carpenter, S. R., Grimm, N. B., Gosz, J. R., & Seastedt, T. R. (2003). The US Long Term Ecological Research Program. BioScience, 53(1), 2132.Google Scholar
Hochachka, W. M., Alonso, H., Gutiérrez-Expósito, C., Miller, E., & Johnston, A. (2021). Regional variation in the impacts of the COVID-19 pandemic on the quantity and quality of data collected by the project eBird. Biological Conservation, 254, 108974.Google Scholar
Hofer, B. (2015). Uses of online geoprocessing technology in analyses and case studies: A systematic analysis of literature. International Journal of Digital Earth, 8(11), 901917.Google Scholar
Hogan, B. (2018). Social media giveth, social media taketh away: Facebook, friendships, and APIs. International Journal of Communication, 12, 592611.Google Scholar
Hollands, R. G. (2015). Critical interventions into the corporate smart city. Cambridge Journal of Regions, Economy and Society, 8(1), 6177.Google Scholar
Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9), 1365.Google Scholar
Holm, P., Goodsite, M. E., Cloetingh, S. et al. (2013). Collaboration between the natural, social and human sciences in global change research. Environmental Science & Policy, 28, 2535.Google Scholar
Holst, A. (2021). Big Data, Hamburg: Statista.Google Scholar
Hong, A., Kim, B., & Widener, M. (2020). Noise and the city: Leveraging crowdsourced big data to examine the spatio-temporal relationship between urban development and noise annoyance. Environment and Planning B: Urban Analytics and City Science, 47(7), 12011218.Google Scholar
Houborg, R., & McCabe, M. F. (2018). A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing planet, landsat and modis data. Remote Sensing of Environment, 209, 211226.Google Scholar
Houser, C., Lehner, J., & Smith, A. (2022). The field geomorphologist in a time of artificial intelligence and machine learning. Annals of the American Association of Geographers, 112(5), 12601277.Google Scholar
Hu, F., Yang, C., Schnase, J. L. et al. (2018). ClimateSpark: An in-memory distributed computing framework for big climate data analytics. Computers & Geosciences, 115, 154166.Google Scholar
Huang, Q., Cervone, G., & Zhang, G. (2017). A cloud-enabled automatic disaster analysis system of multi-sourced data streams: An example synthesizing social media, remote sensing and Wikipedia data. Computers, Environment and Urban Systems, 66, 2337.Google Scholar
Hulley, G. C., Duren, R. M., Hopkins, F. M. et al. (2016). High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES). Atmospheric Measurement Techniques, 9(5), 23932408.Google Scholar
Hung, M., Lauren, E., Hon, E. S. et al. (2020). Social network analysis of COVID-19 sentiments: Application of artificial intelligence. Journal of Medical Internet Research, 22(8), e22590.Google Scholar
Hutson, M. (2018). AI researchers allege that machine learning is alchemy. Science, 360(6388), 861.Google Scholar
Hutton, C., Wagener, T., Freer, J. et al. (2016). Most computational hydrology is not reproducible, so is it really science? Water Resources Research, 52(10), 75487555.Google Scholar
Hyvärinen, O., & Saltikoff, E. (2010). Social media as a source of meteorological observations. Monthly Weather Review, 138(8), 31753184.Google Scholar
Iliadis, A., & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society, 3(2), https://doi.org/10.1177/2F2053951716674238.Google Scholar
Ilyas, M., & Mahgoub, I. (2018). Smart Dust: Sensor Network Applications, Architecture and Design, Boca Raton, FL: CRC press.Google Scholar
International Telecommunication Union (ITU). (2019). Report on the Implementation of the Strategic Plan and the Activities of the Union for 2018–2019, Geneva: ITU.Google Scholar
International Telecommunication Union (ITU). (2021). Measuring Digital Development: Facts and figures 2021, Geneva: ITU.Google Scholar
Ioannidis, J. P. A. (2008). Measuring co-authorship and networking-adjusted scientific impact. PLOS ONE, 3(7), e2778.Google Scholar
Ioannidis, J. P. A. (2013). Informed consent, big data, and the oxymoron of research that is not research. The American Journal of Bioethics, 13(4), 4042.Google Scholar
Isdahl, R., & Gundersen, O. E. (2019). Out-of-the-Box Reproducibility: A Survey of Machine Learning Platforms. In 2019 15th International Conference on eScience (eScience), San Diego, CA: Institute of Electrical and Electronics Engineers, pp. 8695.Google Scholar
Ishwarappa, , & Anuradha, J. (2015). A brief introduction on big data 5Vs characteristics and hadoop technology. Procedia Computer Science, 48, 319324.Google Scholar
Jacobs, A. (2009). The pathologies of big data. Communications of the ACM, 52(8), 3644.Google Scholar
Jacobs, N., Burgin, W., Fridrich, N. et al. (2009). The Global Network of Outdoor Webcams: Properties and Applications. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York: Association for Computing Machinery, pp. 111120.Google Scholar
Jagadish, H. V. (2015). Big data and science: Myths and reality. Big Data Research, 2(2), 4952.Google Scholar
Jain, P., Gyanchandani, M., & Khare, N. (2016). Big data privacy: A technological perspective and review. Journal of Big Data, 3(1), 25.Google Scholar
Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625636.Google Scholar
Janowicz, K., Hitzler, P., Li, W. et al. (2022). Know, know where, KnowWhereGraph: A densely connected, cross‐domain knowledge graph and geo‐enrichment service stack for applications in environmental intelligence. AI, 43(1), 3039.Google Scholar
Janssen, M. A. (2017). The practice of archiving model code of agent-based models. Journal of Artificial Societies and Social Simulation, 20(1), 2.Google Scholar
Janssen, M., Estevez, E., & Janowski, T. (2014). Interoperability in big, open, and linked data: Organizational maturity, capabilities, and data portfolios. IEEE Annals of the History of Computing, 47(10), 4449.Google Scholar
Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429449.Google Scholar
Jean, N., Burke, M., Xie, M. et al. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790794.Google Scholar
Jefferson, B. (2020). Digitize and Punish: Racial Criminalization in the Digital Age, Minneapolis: University of Minnesota Press.Google Scholar
Jeffery, K., Pursula, A., & Zhao, Z. (2020). ICT Infrastructures for Environmental and Earth Sciences. In Zhao, Z. & Hellström, M., eds., Towards Interoperable Research Infrastructures for Environmental and Earth Sciences, New York: Springer, pp. 1729.Google Scholar
Jensen, J. R. (1986). Introductory Digital Image Processing: A Remote Sensing Perspective, Columbus: University of South Carolina Press.Google Scholar
Jensen, R. (2007). The digital provide: Information (technology), market performance, and welfare in the South Indian fisheries sector. The Quarterly Journal of Economics, 122(3), 879924.Google Scholar
Johnson, K. (2022). The Census Is Broken. Can AI Fix It? Wired, April 8. Accessed July 23, 2022, www.wired.com/story/us-census-undercount-ai-satellites.Google Scholar
Jones, P., Drury, R., & McBeath, J. (2011). Using GPS-enabled mobile computing to augment qualitative interviewing: Two case studies. Field Methods, 23(2), 173187.Google Scholar
Jongman, B., Wagemaker, J., Romero, R. B., & De Perez, C. E. (2015). Early flood detection for rapid humanitarian response: Harnessing near real-time satellite and Twitter signals. ISPRS International Journal of Geo-Information, 4(4), 22462266.Google Scholar
Joppa, L. N. (2017). The case for technology investments in the environment. Nature, 552, 325329.Google Scholar
Jurado Lozano, P. J., & Regan, A. (2018). Land Surface Satellite Remote Sensing Gap Analysis. In Themistocleous, K., Hadjimitsis, D. G., Michaelides, S., Ambrosia, V., & Papadavid, G., eds., Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos: SPIE, p. 10773.Google Scholar
Kalil, T. (2012). Big Data Is a Big Deal. Accessed September 1, 2019, https://obamawhitehouse.archives.gov/blog/2012/03/29/big-data-big-deal.Google Scholar
Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 2337.Google Scholar
Kandt, J., & Batty, M. (2021). Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities, 109, 102992.Google Scholar
Kaplan, F. (2016). Dark Territory: The Secret History of Cyber War, New York: Simon and Schuster.Google Scholar
Karasti, H., & Baker, K. S. (2008). Digital data practices and the long term ecological research program growing global. International Journal of Digital Curation, 3(2), 4258.Google Scholar
Karpatne, A., Atluri, G., Faghmous, J. H. et al. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 23182331.Google Scholar
Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: Issues, challenges, tools and Good practices. In 2013 Sixth International Conference on Contemporary Computing (IC3), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 404409.Google Scholar
Katz, L. (2019). Evaluation of the Moore–Sloan Data Science Environments, New York: Alfred P. Sloan Foundation.Google Scholar
Kawale, J., Chatterjee, S., Ormsby, D. et al. (2012). Testing the Significance of Spatio-Temporal Teleconnection Patterns. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD ’12, Beijing: Association for Computing Machinery, pp. 642650.Google Scholar
Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., & Fotheringham, A. S. (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135147.Google Scholar
Keeler, B. L., Wood, S. A., Polasky, S. et al. (2015). Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes. Frontiers in Ecology and the Environment, 13(2), 7681.Google Scholar
Kelley, M. (2018). Framing Digital Exclusion in Technologically Mediated Urban Spaces. In Thatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 178193.Google Scholar
Kelling, S., Hochachka, W. M., Fink, D. et al. (2009). Data-intensive science: A new paradigm for biodiversity studies. BioScience, 59(7), 613620.Google Scholar
Khoury, M. J., & Ioannidis, J. P. A. (2014). Big data meets public health. Science, 346(6213), 10541055.Google Scholar
Kientz, J. A. (2019). In praise of small data: When you might consider N-of-1 studies. GetMobile: Mobile Computing and Communications, 22(4), 58.Google Scholar
Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 7885.Google Scholar
King, E., & Martin, N. (2015). Turning Data into Action, Washington, DC: US Agency for International Development.Google Scholar
King, G. (2011). Ensuring the data-rich future of the social sciences. Science, 331(6018), 719721.Google Scholar
Kirkpatrick, R. (2012). Big data for development. Big Data, 1(1), 34.Google Scholar
Kitchin, R. (2014a). The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences, Newbury Park, CA: Sage Publications.Google Scholar
Kitchin, R. (2014b). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 114.Google Scholar
Kitchin, R., & Dodge, M. (2011). Code/Space: Software and Everyday Life, Cambridge, MA: MIT Press.Google Scholar
Kitchin, R., & Lauriault, T. P. (2015). Small data in the era of big data. GeoJournal, 80(4), 463475.Google Scholar
Kitchin, R., & McArdle, G. (2016). What makes big data, big data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1), https://doi.org/10.1177/2053951716631130.Google Scholar
Kitzes, J., Turek, D., & Deniz, F. (2017). The Practice of Reproducible Research: Case Studies and Lessons from the Data-Intensive Sciences, Oakland: University of California Press.Google Scholar
Klemens, B. (2021). Keeping science reproducible in a world of custom code and data. Ars Technica. Accessed https://arstechnica.com/science/2021/11/keeping-science-reproducible-in-a-world-of-custom-code-and-data/. Code and data: https://zenodo.org/badge/latestdoi/412662986.Google Scholar
Klocke, D., Pincus, R., & Quaas, J. (2011). On constraining estimates of climate sensitivity with present-day observations through model weighting. Journal of Climate, 24(23), 60926099.Google Scholar
Knight, W. (2017). The dark secret at the heart of AI. Technology Review, 120(3), 5461.Google Scholar
Knox, H., & Nafus, D. (2018). Introduction: Ethnography for a Data-Saturated World. In Knox, H. & Nafus, D., eds., Ethnography for a Data-Saturated World, Manchester: Manchester University Press, pp. 130.Google Scholar
Kohler, R. E. (2002). Place and practice in field biology. History of Science, 40(2), 189210.Google Scholar
König, C., Weigelt, P., Schrader, J. et al. (2019). Biodiversity data integration: The significance of data resolution and domain. PLOS Biology, 17(3), e3000183.Google Scholar
Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2010). Smart objects as building blocks for the internet of things. IEEE Internet Computing, 14(1), 4451.Google Scholar
Kotsev, A., Pantisano, F., Schade, S., & Jirka, S. (2015). Architecture of a service-enabled sensing platform for the environment. Sensors, 15(2), 44704495.Google Scholar
Kreinovich, V., & Ouncharoen, R. (2015). Fuzzy (and interval) techniques in the age of big data: An overview with applications to environmental science, geosciences, engineering, and medicine. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 23(suppl. 1), 7589.Google Scholar
Krishnan, R., Samaranayake, V. A., & Jagannathan, S. (2019). A hierarchical dimension reduction approach for big data with application to fault diagnostics. Big Data Research, 18, 100121.Google Scholar
Kroll, J. A., Barocas, S., Felten, E. W. et al. (2016). Accountable algorithms. University of Pennsylvania Law Review, 165, 633.Google Scholar
Krzyzanowski, B., & Manson, S. M. (2022). Regionalization with self-organizing maps for sharing higher resolution protected health information. Annals of the Association of American Geographers, 112, https://doi.org/10.1080/24694452.2021.2020617.Google Scholar
Kshetri, N. (2014). The emerging role of big data in key development issues: Opportunities, challenges, and concerns. Big Data & Society, 1(2), https://doi.org/10.1177/2053951714564227.Google Scholar
Kugler, T. A., & Fitch, C. A. (2018). Interoperable and accessible census and survey data from IPUMS. Scientific Data, 5(1), 180007.Google Scholar
Kugler, T. A., Grace, K., Wrathall, D. J. et al. (2019). People and pixels 20 years later: The current data landscape and research trends blending population and environmental data. Population and Environment, 41, 209234.Google Scholar
Kugler, T. A., Manson, S. M., & Donato, J. R. (2017). Spatiotemporal aggregation for temporally extensive international microdata. Computers, Environment and Urban Systems, 63, 2637.Google Scholar
Kugler, T. A., van Riper, D. C. D. C., Manson, S. M. et al. (2015). Terra populus: Workflows for integrating and harmonizing geospatial population and environmental data. Journal of Map & Geography Libraries, 11(2), 180206.Google Scholar
Kulmala, M. (2018). Build a global Earth observatory. Nature, 553, 2123.Google Scholar
L’Heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. M. (2017). Machine learning with big data: Challenges and approaches. IEEE Access, 5, 77767797.Google Scholar
La Sorte, F. A., Lepczyk, C. A., Burnett, J. L. et al. (2018). Opportunities and challenges for big data ornithology. The Condor, 120(2), 414426.Google Scholar
Ladino, J. K. (2018). What is missing? An affective digital environmental humanities. Resilience: A Journal of the Environmental Humanities, 5(2), 189211.Google Scholar
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, E253.Google Scholar
Landefeld, S. (2014). Uses of Big Data for Official Statistics: Privacy, Incentives, Statistical Challenges, and Other Issues. In International Conference on Big Data for Official Statistics, Beijing: United Nations Global Working Group (GWG) on Big Data for Official Statistics, pp. 2830.Google Scholar
Lane, N. D., Miluzzo, E., Lu, H. et al. (2010). A survey of mobile phone sensing. IEEE Communications, 48(9), 140150.Google Scholar
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6(70), 949.Google Scholar
Lappalainen, H. K., Petäjä, T., Kujansuu, J. et al. (2014). Pan Eurasian Experiment (PEEX): A research initiative meeting the grand challenges of the changing environment of the northern pan-Eurasian arctic-boreal areas. Geography, Environment, Sustainability, 7(2), 1348.Google Scholar
LaRue, M. A., Stapleton, S., Porter, C. et al. (2015). Testing methods for using high‐resolution satellite imagery to monitor polar bear abundance and distribution. Wildlife Society Bulletin, 39(4), 772779.Google Scholar
Laso Bayas, J. C., Lesiv, M., Waldner, F. et al. (2017). A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific Data, 4(1), 170136.Google Scholar
Latour, B. (1986). Visualisation and cognition: Drawing things together. Knowledge and Society Studies in the Sociology of Culture Past and Present, 6(1), 140.Google Scholar
Lauriault, T. P., Craig, B. L., Taylor, D. R. F., & Pulsifer, P. L. (2007). Today’s data are part of tomorrow’s research: Archival issues in the sciences. Archivaria, 64, 123179.Google Scholar
Lautenbacher, C. C. (2006). The Global Earth Observation System of Systems: Science serving society. Space Policy, 22(1), 811.Google Scholar
Lauvaux, T., Giron, C., Mazzolini, M. et al. (2022). Global assessment of oil and gas methane ultra-emitters. Science, 375(6580), 557561.Google Scholar
Lazaroiu, G. C., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326332.Google Scholar
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 12031205.Google Scholar
Lazer, D., Pentland, A., Adamic, L. et al. (2009). Computational social science. Science, 323(5915), 721723.Google Scholar
Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., & Le Coz, J. (2016). Gauging extreme floods on YouTube: Application of LSPIV to home movies for the post-event determination of stream discharges. Hydrological Processes, 30(1), 90105.Google Scholar
Leavitt, N. (2010). Will NoSQL databases live up to their promise? Computer, 43(2), 1214.Google Scholar
Lecocq, T., Hicks, S. P., Van Noten, K. et al. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 13381343.Google Scholar
Lee, D. B. (1973). A requiem for large-scale models. Journal of the American Institute of Planners, 39, 163178.Google Scholar
Lee, E. M. J., & O’Malley, K. G. (2020). Big fishery, big data, and little crabs: Using genomic methods to examine the seasonal recruitment patterns of early life stage dungeness crab (Cancer magister) in the California current ecosystem. Frontiers in Marine Science, 6, 836.Google Scholar
Lee, H., Seo, B., Koellner, T., & Lautenbach, S. (2019). Mapping cultural ecosystem services 2.0: Potential and shortcomings from unlabeled crowd sourced images. Ecological Indicators, 96, 505515.Google Scholar
Lehning, M., Dawes, N., Bavay, M. et al. (2009). Instrumenting the Earth: Next Generation Sensor Networks in Environmental Science. In The Fourth Paradigm: Data-Intensive Scientific Discovery, Redmond, WA: Microsoft Corporation, pp. 4551.Google Scholar
Leonelli, S. (2014). What difference does quantity make? On the epistemology of big data in biology. Big Data & Society, 1(1), https://doi.org/10.1177/2053951714534395.Google Scholar
Leonelli, S. (2019). Data governance is key to interpretation: Reconceptualizing data in data science. Harvard Data Science Review, 1(1), https://doi.org/10.1162/99608f92.17405bb6.Google Scholar
Lerman, J. (2013). Big data and its exclusions. Stanford Law Review Online, 66, 5563.Google Scholar
Leszczynski, A. (2015). Spatial big data and anxieties of control. Environment and Planning D: Society and Space, 33(6), 965984.Google Scholar
Letouzé, E. (2012). Big Data for Development: Challenges & Opportunities, New York: Global Pulse.Google Scholar
Letouzé, E., & Jütting, J. (2015). Official Statistics, Big Data, and Human Development, New York: Data-Pop Alliance.Google Scholar
Levin, N., Ali, S., Crandall, D., & Kark, S. (2019). World heritage in danger: Big data and remote sensing can help protect sites in conflict zones. Global Environmental Change, 55, 97104.Google Scholar
Levin, N., Kark, S., & Crandall, D. (2015). Where have all the people gone? Enhancing global conservation using night lights and social media. Ecological Applications, 25(8), 21532167.Google Scholar
Levitt, J. (2019). Citizenship and the census. Columbia Law Review, 119(5), 13551398.Google Scholar
Leyk, S., Gaughan, A. E., Adamo, S. B. et al. (2019). The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth System Science Data, 11(3), 13851409.Google Scholar
Li, L., Goodchild, M. F., & Xu, B. (2013). Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartography and Geographic Information Science, 40(2), 6177.Google Scholar
Li, W. (2020a). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science, 20, 7177.Google Scholar
Li, Y., Eldawy, A., Xue, J. et al. (2019). Scalable computational geometry in MapReduce. The VLDB Journal, 28(4), 523548.Google Scholar
Li, Z. (2020b). Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. In Tang, W. & Wang, S., eds., High Performance Computing for Geospatial Applications, Cham: Springer, pp. 5376.Google Scholar
Li, Z., Hu, F., Schnase, J. L. et al. (2017). A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce. International Journal of Geographical Information Science, 31(1), 1735.Google Scholar
Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.Google Scholar
Liang, F., Das, V., Kostyuk, N., & Hussain, M. M. (2018). Constructing a data-driven society: China’s social credit system as a state surveillance infrastructure. Policy & Internet, 10(4), 415453.Google Scholar
Liang, P., & Viegas, E. (2015). CodaLab Worksheets for Reproducible, Executable Papers. In Twenty-Ninth Conference on Neural Information Processing Systems, Montreal: Neural Information Processing Systems.Google Scholar
Lin, J. (2015). On building better mousetraps and understanding the human condition: Reflections on big data in the social sciences. The Annals of the American Academy of Political and Social Science, 659(1), 3347.Google Scholar
Ling, F., & Foody, G. M. (2019). Super-resolution land cover mapping by deep learning. Remote Sensing Letters, 10(6), 598606.Google Scholar
Liu, J. C.-E., & Zhao, B. (2017). Who speaks for climate change in China? Evidence from Weibo. Climatic Change, 140(3), 413422.Google Scholar
Liu, Z., Guo, H., & Wang, C. (2016). Considerations on geospatial big data. IOP Conference Series: Earth and Environmental Science, 46(1), 012058.Google Scholar
Lo, C. P., Quattrochi, D. A., & Luvall, J. C. (1997). Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18(2), 287304.Google Scholar
Loglisci, C., & Malerba, D. (2017). Leveraging temporal autocorrelation of historical data for improving accuracy in network regression. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(1), 4053.Google Scholar
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of big data technologies for use in agro-environmental science. Environmental Modelling & Software, 84, 494504.Google Scholar
Lomazzi, M., Borisch, B., & Laaser, U. (2014). The Millennium Development Goals: Experiences, achievements and what’s next. Global Health Action, 7(1), 23695.Google Scholar
Lopes, C., & Bailur, S. (2018). Gender Equality and Big Data: Making Gender Data Visible, New York: United Nations Women Innovation Facility.Google Scholar
Lövbrand, E., Stripple, J., & Wiman, B. (2009). Earth system governmentality: Reflections on science in the Anthropocene. Global Environmental Change, 19(1), 713.Google Scholar
Loveland, T. R., Sohl, T. L., Stehman, S. V et al. (2002). A strategy for estimating the rates of recent United States land-cover changes. Photogrammetric Engineering and Remote Sensing, 68(10), 10911099.Google Scholar
Lu, X., Wrathall, D. J., Sundsøy, P. R. et al. (2016). Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change, 38, 17.Google Scholar
Ludäscher, B., Altintas, I., Berkley, C. et al. (2006). Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience, 18(10), 10391065.Google Scholar
Lwasa, S. (2015). A systematic review of research on climate change adaptation policy and practice in Africa and South Asia deltas. Regional Environmental Change, 15(5), 815824.Google Scholar
Lyon, D. (2001). Surveillance Society: Monitoring Everyday Life, Philadelphia: Open University Press.Google Scholar
Maalsen, S., & Perng, S.-Y. (2016). Encountering the City at Hacking Events. In Kitchin, R. & Perng, S.-Y., eds., Code and the City, Abingdon: Routledge, pp. 190199.Google Scholar
Machlup, F. (1962). The Production and Distribution of Knowledge in the United States, Princeton, NJ: Princeton University Press.Google Scholar
MacKerron, G., & Mourato, S. (2013). Happiness is greater in natural environments. Global Environmental Change, 23(5), 9921000.Google Scholar
Maeda, E. E., & Torres, J. A. (2012). Open environmental data in developing countries: Who benefits? Ambio, 41(4), 410412.Google Scholar
Magnuson, J. J., & Bowser, C. J. (1990). A network for long-term ecological research in the United States. Freshwater Biology, 23(1), 137143.Google Scholar
Mahrenbach, L. C., Mayer, K., & Pfeffer, J. (2018). Policy visions of big data: Views from the Global South. Third World Quarterly, 39(10), 18611882.Google Scholar
Mair, S., Jones, A., Ward, J. et al. (2018). A Critical Review of the Role of Indicators in Implementing the Sustainable Development Goals. In Leal Filho, W., ed., Handbook of Sustainability Science and Research, Cham: Springer, pp. 4156.Google Scholar
Mankiewicz, R. (2000). The Story of Mathematics, Princeton, NJ: Princeton University Press.Google Scholar
Mann, S., Nolan, J., & Wellman, B. (2003). Sousveillance: Inventing and using wearable computing devices for data collection in surveillance environments. Surveillance & Society, 1(3), 331355.Google Scholar
Mannarswamy, S., & Roy, S. (2018). Evolving AI from Research to Real Life: Some Challenges and Suggestions. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm: International Joint Conferences on Artificial Intelligence Organization, pp. 51725179.Google Scholar
Manovich, L. (2011). Trending: The Promises and the Challenges of Big Social Data. In Gold, M. K., ed., Debates in the Digital Humanities, vol. 2, Minneapolis: University of Minnesota Press, pp. 460475.Google Scholar
Manson, S., An, L., Clarke, K. et al. (2020a). Methodological issues of spatial agent-based models. Journal of Artificial Societies and Social Simulation, 23(1), 3.Google Scholar
Manson, S. M. (2007). Challenges in evaluating models of geographic complexity. Environment and Planning B, 34(2), 245260.Google Scholar
Manson, S. M. (2008). Does scale exist? An epistemological scale continuum for complex human–environment systems. Geoforum, 39(2), 776788.Google Scholar
Manson, S. M. (2015). Digital Computer. In Monmonier, M., ed., Cartography in the Twentieth Century, vol. 6, Chicago: University of Chicago Press, pp. 269270.Google Scholar
Manson, S. M., & O’Sullivan, D. (2006). Complexity theory in the study of space and place. Environment and Planning A, 38(4), 677692.Google Scholar
Manson, S. M., Schroeder, J., van Riper, D., & Ruggles, S. (2020b). IPUMS NHGIS: VERSION 15.0, Minneapolis, MN: Institute for Social Research and Data Innovation, http://doi.org/10.18128/D050.V15.0.Google Scholar
Manyika, J., Chui, M., Brown, B. et al. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity, San Francisco: McKinsey Global Institute.Google Scholar
Marcus, G. (2018). Deep learning: A critical appraisal. ArXiv Preprint, ArXiv:1801.00631.Google Scholar
Mardani, A., Liao, H., Nilashi, M., Alrasheedi, M., & Cavallaro, F. (2020). A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. Journal of Cleaner Production, 275, 122942.Google Scholar
Markham, A. N. (2018). Afterword: Ethics as impact: Moving from error-avoidance and concept-driven models to a future-oriented approach. Social Media + Society, 4(3), https://doi.org/10.1177/2056305118784504.Google Scholar
Marsh, G. P. (1864). Man and Nature or, Physical Geography as Modified by Human Action, New York: Charles Scribner.Google Scholar
Marton, A., Avital, M., & Jensen, T. B. (2013). Reframing Open Big Data. In ECIS 2013 – Proceedings of the 21st European Conference on Information Systems (2013), Utrecht: Association for Information Systems, p. 146.Google Scholar
Marz, N., & Warren, J. (2015). Big Data: Principles and Best Practices of Scalable Real-Time Data Systems, New York: Manning Publications.Google Scholar
Masmoudi, M., Karray, M. H., Ben Abdallah Ben Lamine, S., Zghal, H. B., & Archimede, B. (2020). MEMOn: Modular Environmental Monitoring Ontology to link heterogeneous Earth observed data. Environmental Modelling & Software, 124, 104581.Google Scholar
Mateus, C., Potito, A., & Curley, M. (2021). Engaging secondary school students in climate data rescue through service-learning partnerships. Weather, 76(4), 113118.Google Scholar
Matsuoka, S., Sato, H., Tatebe, O. et al. (2014). Extreme big data (EBD): Next generation big data infrastructure technologies towards yottabyte/year. Supercomputing Frontiers and Innovations, 1(2), 89107.Google Scholar
Mattern, S. (2013). Methodolatry and the art of measure. Places Journal, November. Accessed September 4, 2022, https://doi.org/10.22269/131105.Google Scholar
Matthew, H. (2018). Artificial intelligence faces reproducibility crisis. Science, 359(6377), 725726.Google Scholar
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 27842817.Google Scholar
Maybury, M. T. (2012). Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring, Hoboken, NJ: John Wiley & Sons.Google Scholar
Mayer-Schönberger, V., & Cukier, K. (2013). Big Data: A Revolution That Will Transform How We Live, Work, and Think, New York: Houghton Mifflin Harcourt.Google Scholar
Mayernik, M. S., Wallis, J. C., & Borgman, C. L. (2013). Unearthing the infrastructure: Humans and sensors in field-based scientific research. Computer Supported Cooperative Work (CSCW), 22(1), 65101.Google Scholar
Mayson, S. G. (2018). Bias in, bias out. Yale Law Journal, 128, 22182300.Google Scholar
McBride, B. (2004). The Resource Description Framework (RDF) and Its Vocabulary Description Language RDFS. In Handbook on Ontologies, Heidelberg: Springer, pp. 5165.Google Scholar
McCarthy, M. T. (2016). The big data divide and its consequences. Sociology Compass, 10(12), 11311140.Google Scholar
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115137.Google Scholar
McDermott, P. (2010). Building open government. Government Information Quarterly, 27(4), 401413.Google Scholar
McDuie‐Ra, D., & Gulson, K. (2020). The backroads of AI: The uneven geographies of artificial intelligence and development. Area, 52(3), 626633.Google Scholar
McGeer, R., Berman, M., Elliott, C., & Ricci, R. (2016). The GENI Book, Cham: Springer.Google Scholar
McGovern, A., Elmore, K. L., Gagne, D. J. et al. (2017). Using artificial intelligence to improve real-time decision-making for high-impact weather. Bulletin of the American Meteorological Society, 98(10), 20732090.Google Scholar
McGregor, C., & Bonnis, B. (2017). New approaches for integration: Integration of haptic garments, big data analytics, and serious games for extreme environments. IEEE Consumer Electronics Magazine, 6(4), 9296.Google Scholar
McNulty, S. A., White, D., Hufty, M., & Foster, P. (2017). The Organization of Biological Field Stations at fifty. Bulletin of the Ecological Society of America, 98(4), 359373.Google Scholar
Meier, P. (2015). Digital Humanitarians: How Big Data Is Changing the Face of Humanitarian Response, Abingdon: Routledge.Google Scholar
Meinshausen, N., Hauser, A., Mooij, J. M. et al. (2016). Methods for causal inference from gene perturbation experiments and validation. Proceedings of the National Academy of Sciences, 113(27), 73617368.Google Scholar
Meng, X.-L. (2018). Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 US presidential election. The Annals of Applied Statistics, 12(2), 685726.Google Scholar
Meyer, H., & Pebesma, E. (2022). Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications, 13, 2208.Google Scholar
Miceli, M., Posada, J., & Yang, T. (2022). Studying up machine learning data: Why talk about bias when we mean power? Proceedings of the ACM on Human-Computer Interaction, 6, 34.Google Scholar
Michener, W. K., Allard, S., Budden, A. et al. (2012). Participatory design of DataONE: Enabling cyberinfrastructure for the biological and environmental sciences. Ecological Informatics, 11, 515.Google Scholar
Milakis, D., van Arem, B., & Van Wee, B. (2017). Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems, 21(4), 324348.Google Scholar
Miller, H. G., & Mork, P. (2013). From data to decisions: A value chain for big data. IT Professional, 15(1), 5759.Google Scholar
Miller, H. J., & Goodchild, M. F. (2015). Data-driven geography. GeoJournal, 80(4), 449461.Google Scholar
Millett, L. I., & Estrin, D. L. (2012). Computing Research for Sustainability, Washington, DC: National Academies Press.Google Scholar
Mishelevich, D. J. (1986). Artificial intelligence in medicine: The commercial realities. Software in Healthcare, 4(3), 2830.Google Scholar
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning, Cambridge, MA: MIT press.Google Scholar
Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. bin. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 10801102.Google Scholar
Moltmann, T., Turton, J., Zhang, H.-M. et al. (2019). A Global Ocean Observing System (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Frontiers in Marine Science, 6, 291.Google Scholar
Monajemi, H., Murri, R., Jonas, E. et al. (2019). Ambitious data science can be painless. Harvard Data Science Review, 1(1), https://doi.org/10.1162/99608f92.02ffc552.Google Scholar
Monroe, B. L., Pan, J., Roberts, M. E., Sen, M., & Sinclair, B. (2015). No! Formal theory, causal inference, and big data are not contradictory trends in political science. PS: Political Science & Politics, 48(1), 7174.Google Scholar
Mooney, H. A., Duraiappah, A., & Larigauderie, A. (2013). Evolution of natural and social science interactions in global change research programs. Proceedings of the National Academy of Sciences, 110(suppl. 1), 36653672.Google Scholar
Mora, L., Deakin, M., Zhang, X. et al. (2020). Assembling sustainable smart city transitions: An interdisciplinary theoretical perspective. Journal of Urban Technology, 28(1–2), 127.Google Scholar
Moran, E. F., & Lopez, M. C. (2016). Future directions in human–environment research. Environmental Research, 144(B), 17.Google Scholar
Moretti, F. (2000). Conjectures on world literature. New Left Review, 1(1), 5468.Google Scholar
Moretti, F. (2005). Graphs, Maps, Trees: Abstract Models for a Literary History, New York: Verso.Google Scholar
Morgan, S. L., & Winship, C. (2014). Counterfactuals and Causal Inference Methods and Principles for Social Research, Cambridge: Cambridge University Press.Google Scholar
Morozov, E. (2013). To Save Everything, Click Here: The Folly of Technological Solutionism, New York: Public Affairs.Google Scholar
Morrow, N., Mock, N., Papendieck, A., & Kocmich, N. (2011). Independent Evaluation of the Ushahidi Haiti Project, New Orleans, FL: Development Information Systems International.Google Scholar
Morsy, M. M., Goodall, J. L., Castronova, A. M. et al. (2017). Design of a metadata framework for environmental models with an example hydrologic application in HydroShare. Environmental Modelling and Software, 93, 1328.Google Scholar
Moses, M. E. (2013). Information technology: Slouching towards utopia. Nature, 502(7471), 299300.Google Scholar
Mueller, J. T., & Santos-Lozada, A. R. (2022). The 2020 US Census differential privacy method introduces disproportionate discrepancies for rural and non-white populations. Population Research and Policy Review, 41, 14171430.Google Scholar
Müller, B., Bohn, F., Dreßler, G. et al. (2013). Describing human decisions in agent-based models–ODD+ D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 3748.Google Scholar
Muller, C. L., Chapman, L., Johnston, S. et al. (2015). Crowdsourcing for climate and atmospheric sciences: current status and future potential. International Journal of Climatology, 35(11), 31853203.Google Scholar
Munafò, M. R., Nosek, B. A., Bishop, D. V. M. et al. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1, 21.Google Scholar
Muñoz, L., Hausner, V. H., Runge, C., Brown, G., & Daigle, R. (2020). Using crowdsourced spatial data from Flickr vs. PPGIS for understanding nature’s contribution to people in Southern Norway. People and Nature, 2(2), 437449.Google Scholar
Musen, M. A., Bean, C. A., Cheung, K.-H. et al. (2015). The center for expanded data annotation and retrieval. Journal of the American Medical Informatics Association: JAMIA, 22(6), 11481152.Google Scholar
Nadon, G., Feilberg, M., Johansen, M., & Shklovski, I. (2018). In the User We Trust: Unrealistic Expectations of Facebook’s Privacy Mechanisms. In Proceedings of the 9th International Conference on Social Media and Society, New York: Association for Computing Machinery, pp. 138149.Google Scholar
Naidoo, R., & Fisher, B. (2020). Reset Sustainable Development Goals for a pandemic world. Nature, 583(7815), 198201.Google Scholar
Nakagawa, S., & Parker, T. H. (2015). Replicating research in ecology and evolution: Feasibility, incentives, and the cost-benefit conundrum. BMC Biology, 13(1), 88.Google Scholar
NASA. (2020). NASA’s Management of Distributed Active Archive Centers, Washington, DC: NASA.Google Scholar
NASEM. (2018). Data Science for Undergraduates: Opportunities and Options, Washington, DC: National Academies Press.Google Scholar
NASEM. (2019). Reproducibility and Replicability in Science, Washington, DC: National Academies Press. www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science.Google Scholar
National Research Council (NRC). (2015). Training Students to Extract Value from Big Data: Summary of a Workshop, Washington, DC: National Academies Press.Google Scholar
Nativi, S., Mazzetti, P., Santoro, M. et al. (2015). Big data challenges in building the global earth observation system of systems. Environmental Modelling & Software, 68, 126.Google Scholar
Naur, P. (1974). Concise Survey of Computer Methods, Lund: Studentlitteratur.Google Scholar
Ndung’u, N. (2018). The M-Pesa Technological Revolution for Financial Services in Kenya: A Platform for Financial Inclusion. In Lee, D. & Deng, R. H., eds., Handbook of Blockchain, Digital Finance, and Inclusion, Volume 1: Cryptocurrency, FinTech, InsurTech, and Regulation, Cambridge, MA: Academic Press, pp. 3756.Google Scholar
Newman, H. B., Ellisman, M. H., & Orcutt, J. A. (2003). Data-intensive e-science frontier research. Communications of the ACM, 46(11), 6877.Google Scholar
Nichols, J. D., Oli, M. K., Kendall, W. L., & Boomer, G. S. (2021). Opinion: A better approach for dealing with reproducibility and replicability in science. Proceedings of the National Academy of Sciences, 118(7), e2100769118.Google Scholar
Nieuwesteeg, B., & Faure, M. (2018). An analysis of the effectiveness of the EU data breach notification obligation. Computer Law & Security Review, 34(6), 12321246.Google Scholar
Networking and Information Technology Research and Development (NITRD). (2016). The Federal Big Data Research and Development Strategic Plan, Washington, DC: National Science and Technology Council.Google Scholar
Noble, P., van Riper, D., Ruggles, S., Schroeder, J., & Hindman, M. (2011). Harmonizing disparate data across time and place: The Integrated Spatio-Temporal Aggregate Data Series. Historical Methods, 44(2), 7985.Google Scholar
Nochta, T., Wan, L., Schooling, J. M., & Parlikad, A. K. (2021). A socio-technical perspective on urban analytics: The case of city-scale digital twins. Journal of Urban Technology, 28(1–2), 263287.Google Scholar
Nosek, B. A., Alter, G., Banks, G. C. et al. (2015). Promoting an open research culture. Science, 348(6242), 14221425.Google Scholar
Noulas, A., Scellato, S., Mascolo, C., & Pontil, M. (2011). An Empirical Study of Geographic User Activity Patterns in Foursquare. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 5, Barcelona: Association for the Advancement of Artificial Intelligence, pp. 570573.Google Scholar
Novick, K. A., Biederman, J. A., Desai, A. R. et al. (2018). The AmeriFlux network: A coalition of the willing. Agricultural and Forest Meteorology, 249, 444456.Google Scholar
Nowviskie, B. (2015). Digital humanities in the Anthropocene. Digital Scholarship in the Humanities, 30(suppl. 1), i4i15.Google Scholar
Nugent, J. (2018). iNaturalist. Science Scope, 41(7), 1213.Google Scholar
Nye, B. D. (2015). Intelligent tutoring systems by and for the developing world: A review of trends and approaches for educational technology in a global context. International Journal of Artificial Intelligence in Education, 25(2), 177203.Google Scholar
O’Hara, A., Shattuck, R. M., & Goerge, R. M. (2017). Linking federal surveys with administrative data to improve research on families. The Annals of the American Academy of Political and Social Science, 669(1), 6374.Google Scholar
O’Sullivan, D. (2018). Big Data: Why (Oh Why?) This Computational Social Science? In Thatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 2138.Google Scholar
O’Sullivan, D., & Manson, S. M. (2015). Do physicists have “geography envy”? And what can geographers learn from it? Annals of the Association of American Geographers, 105(4), 704722.Google Scholar
Oliver, J. C., & McNeil, T. (2021). Undergraduate data science degrees emphasize computer science and statistics but fall short in ethics training and domain-specific context. PeerJ Computer Science, 7, e441.Google Scholar
Omrani, H. (2015). Predicting travel mode of individuals by machine learning. Transportation Research Procedia, 10, 840849.Google Scholar
Openshaw, S. (1983). The Modifiable Areal Unit Problem, Norwich: Geo Books.Google Scholar
Openshaw, S. (1984). Ecological fallacies and the analysis of areal census data. Environment and Planning A, 16(1), 1731.Google Scholar
Openshaw, S. (1992). Some suggestions concerning the development of artificial intelligence tools for spatial modeling and analysis in GIS. Annals of Regional Science, 26, 3551.Google Scholar
Organisation for Economic Co-operation and Development (OECD). (2007). OECD Principles and Guidelines for Access to Research Data from Public Funding, Paris: OECD Publishing, https://doi.org/10.1787/9789264034020-en-fr.Google Scholar
Organisation for Economic Co-operation and Development (OECD). (2013). The OECD Privacy Framework, Paris: OECD Publishing.Google Scholar
Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C., & Plieninger, T. (2018). Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecological Indicators, 94, 7486.Google Scholar
Overeem, A., Leijnse, H., & Uijlenhoet, R. (2016). Two and a half years of country‐wide rainfall maps using radio links from commercial cellular telecommunication networks. Water Resources Research, 52(10), 80398065.Google Scholar
Overpeck, J. T., Meehl, G. A., Bony, S., & Easterling, D. R. (2011). Climate data challenges in the 21st century. Science, 331(6018), 700702.Google Scholar
Paganini, M., Petiteville, I., Ward, S. et al. (2018). Satellite Earth Observations in Support of the Sustainable Development Goals: The CEOS Earth Observation Handbook, Paris: European Space Agency.Google Scholar
Pahl-Wostl, C., Giupponi, C., Richards, K. et al. (2013). Transition towards a new global change science: Requirements for methodologies, methods, data and knowledge. Environmental Science & Policy, 28, 3647.Google Scholar
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1135.Google Scholar
Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 1827.Google Scholar
Parashar, M. (2019). Transforming Science through Cyberinfrastructure, Arlington, VA: National Science Foundation.Google Scholar
Parenteau, M.-P., & Sawada, M. C. (2011). The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health. International Journal of Health Geographics, 10(1), 58.Google Scholar
Parhami, B. (2019). Data Longevity and Compatibility. In Sakr, S. & Zomaya, A. Y., eds., Encyclopedia of Big Data Technologies, New York: Springer, pp. 559563.Google Scholar
Parida, T., & Ashok, A. (2021). Consolidating Power in the Name of Progress: Techno-solutionism and Farmer Protests in India. In Kaltheuner, F., ed., Fake AI, Manchester: Meatspace Press, pp. 161169.Google Scholar
Parkinson, C. L., Ward, A., & King, M. D. (2006). Earth Science Reference Handbook, Washington, DC: National Aeronautics and Space Administration.Google Scholar
Passi, S., & Barocas, S. (2019). Problem Formulation and Fairness. In Proceedings of the Conference on Fairness, Accountability, and Transparency, New York: Association for Computing Machinery, pp. 3948.Google Scholar
Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect, New York: Basic Books.Google Scholar
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 12261227.Google Scholar
Peng, R. D. (2017). Comment on “50 Years of data science.Journal of Computational and Graphical Statistics, 26(4), 767768.Google Scholar
Pennington, D. D. (2011). Collaborative, cross-disciplinary learning and co-emergent innovation in eScience teams. Earth Science Informatics, 4(2), 5568.Google Scholar
Pepper, A. (2020). Glass panels and peepholes: Nonhuman animals and the right to privacy. Pacific Philosophical Quarterly, 101(4), 628650.Google Scholar
Pérez-Hoyos, A., Rembold, F., Kerdiles, H., & Gallego, J. (2017). Comparison of global land cover datasets for cropland monitoring. Remote Sensing, 9(11), 1118.Google Scholar
Pigliucci, M. (2009). The end of theory in science? EMBO Reports, 10(6), 534–534.Google Scholar
Planthaber, G., Stonebraker, M., & Frew, J. (2012). EarthDB: Scalable Analysis of MODIS Data Using SciDB. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, New York: Association for Computing Machinery, pp. 1119.Google Scholar
Plesser, H. E. (2018). Reproducibility vs. replicability: A brief history of a confused terminology. Frontiers in Neuroinformatics, 11, 76.Google Scholar
Poisot, T., Bruneau, A., Gonzalez, A., Gravel, D., & Peres-Neto, P. (2019). Ecological data should not be so hard to find and reuse. Trends in Ecology & Evolution, 34(6), 494496.Google Scholar
Poisson, A. C., McCullough, I. M., Cheruvelil, K. S. et al. (2019). Quantifying the contribution of citizen science to broad-scale ecological databases. Frontiers in Ecology and the Environment, 18(1), 1926.Google Scholar
Poorthuis, A. (2018). How to draw a neighborhood? The potential of big data, regionalization, and community detection for understanding the heterogeneous nature of urban neighborhoods. Geographical Analysis, 50(2), 182203.Google Scholar
Poovey, M. (1998). A History of the Modern Fact: Problems of Knowledge in the Sciences of Wealth and Society, Chicago: University of Chicago Press.Google Scholar
Porter, T. M. (1986). The Rise of Statistical Thinking, 1820–1900, Princeton, NJ: Princeton University Press.Google Scholar
Portides, D. (2017). Models and Theories. In Magnani, L. & Bertolotti, T., eds., Springer Handbook of Model-Based Science, Cham: Springer, pp. 2548.Google Scholar
Posthumus, S., Sinclair, S., & Poplawski, V. (2018). Digital and environmental humanities: Strong networks, innovative tools, interactive objects. Resilience: A Journal of the Environmental Humanities, 5(2), 156171.Google Scholar
Prasad, S. K., Aghajarian, D., McDermott, M., et al. (2017). Parallel Processing over Spatial-Temporal Datasets from Geo, Bio, Climate and Social Science Communities: A Research Roadmap. In 2017 IEEE International Congress on Big Data (BigData Congress), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 232250.Google Scholar
Prensky, M. (2009). H. sapiens digital: From digital immigrants and digital natives to digital wisdom. Innovate: Journal of Online Education, 5(3), 104264.Google Scholar
Presset, B., Laurenczy, B., Malatesta, D., & Barral, J. (2018). Accuracy of a smartphone pedometer application according to different speeds and mobile phone locations in a laboratory context. Journal of Exercise Science & Fitness, 16(2), 4348.Google Scholar
Prewitt, K. (2010). What is political interference in federal statistics? The Annals of the American Academy of Political and Social Science, 631(1), 225238.Google Scholar
Prior, L. (2016). In praise of small N, and of N = 1 in particular. Critical Public Health, 26(2), 115117.Google Scholar
Pritchett, D. (2008). BASE: An acid alternative: In partitioned databases, trading some consistency for availability can lead to dramatic improvements in scalability. Queue, 6(3), 4855.Google Scholar
Protopop, I., & Shanoyan, A. (2016). Big data and smallholder farmers: Big data applications in the agri-food supply chain in developing countries. International Food and Agribusiness Management Review, 19(A), 173190.Google Scholar
Puschmann, C., & Powell, A. (2018). Turning words into consumer preferences: How sentiment analysis is framed in research and the news media. Social Media + Society, 4(3), https://doi.org/10.1177/2056305118797724.Google Scholar
Qin, Z. Z., Sander, M. S., Rai, B. et al. (2019). Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Scientific Reports, 9(1), 15000.Google Scholar
Quinn, J., Frias-Martinez, V., & Subramanian, L. (2014). Computational sustainability and artificial intelligence in the developing world. AI Magazine, 35(3), 3647.Google Scholar
Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission: A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241262.Google Scholar
Rana, A. N. (2020). Leveraging Big Data to Advance Gender Equality, Washington, DC: World Bank.Google Scholar
Ray, S., Demke Brown, A., Koudas, N., Blanco, R., & Goel, A. K. (2015). Parallel In-Memory Trajectory-Based Spatiotemporal Topological Join. In Big Data: 2015 IEEE International Conference on Big Data, Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 361370.Google Scholar
Reed, D. A., & Dongarra, J. (2015). Exascale computing and big data. Communications of the ACM, 58(7), 5668.Google Scholar
Reichstein, M., Camps-Valls, G., Stevens, B. et al. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195204.Google Scholar
Reinsel, D., Gantz, J., & Rydning, J. (2018). Data Age 2025: The Digitization of the World from Edge to Core, Needham, MA: International Data Corporation (sponsored by Seagate).Google Scholar
Réjou-Méchain, M., Barbier, N., Couteron, P. et al. (2019). Upscaling forest biomass from field to satellite measurements: Sources of errors and ways to reduce them. Surveys in Geophysics, 40(4), 881911.Google Scholar
Retchless, D. (2018). Bringing the Big Data of Climate Change Down to Human Scale: Citizen Sensors and Personalized Visualizations in Climate Communication. In Thatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 197213.Google Scholar
Rieppel, O. (2010). New essentialism in biology. Philosophy of Science, 77(5), 662673.Google Scholar
Robinson, C., & Franklin, R. S. (2021). The sensor desert quandary: What does it mean (not) to count in the smart city? Transactions of the Institute of British Geographers, 46(2), 238254.Google Scholar
Robinson, C., Malkin, K., Jojic, N. et al. (2021). Global Land-cover mapping with weak supervision: Outcome of the 2020 IEEE GRSS Data Fusion Contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 31853199.Google Scholar
Rohde, R. A., & Hausfather, Z. (2020). The Berkeley Earth Land/Ocean Temperature Record. Earth System Science Data, 12(4), 34693479.Google Scholar
Román-Rivera, M. A., & Ellis, J. T. (2019). A synthetic review of remote sensing applications to detect nearshore bars. Marine Geology, 408, 144153.Google Scholar
Rosa, E. A., Diekmann, A., Dietz, T., & Jaeger, C. (2010). Human Footprints on the Global Environment: Threats to Sustainability, Cambridge, MA: MIT Press.Google Scholar
Rosenberg, D. (2013). Data before the Fact. In Gitelman, L., ed., Raw Data Is an Oxymoron, Cambridge, MA: MIT Press, pp. 1540.Google Scholar
Ross, C. J., Wolfe, N., Plagge, M. et al. (2019). Using Scientific Visualization Techniques to Visualize Parallel Network Simulations. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, New York: Association for Computing Machinery, pp. 197200.Google Scholar
Rowley, J. (2007). The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science, 33(2), 163180.Google Scholar
Ruddiman, W. F. (2013). The Anthropocene. Annual Review of Earth and Planetary Sciences, 41, 4568.Google Scholar
Ruggles, S. (2014). Big microdata for population research. Demography, 51(1), 287297.Google Scholar
Ruggles, S., & van Riper, D. (2022). The role of chance in the census bureau database reconstruction experiment. Population Research and Policy Review, 41, 781788.Google Scholar
Runck, B. C., Manson, S., Shook, E., Gini, M., & Jordan, N. (2019). Using word embeddings to generate data-driven human agent decision-making from natural language. GeoInformatica, 23(2), 221242.Google Scholar
Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7), 75310.Google Scholar
Ruppert, E. (2013). Rethinking empirical social sciences. Dialogues in Human Geography, 3(3), 268273.Google Scholar
Rzeszewski, M. (2018). Geosocial capta in geographical research: A critical analysis. Cartography and Geographic Information Science, 45(1), 1830.Google Scholar
Sachs, J. D. (2012). From Millennium Development Goals to Sustainable Development Goals. The Lancet, 379(9832), 22062211.Google Scholar
Sadowski, J. (2021). “Anyway, the dashboard is dead”: On trying to build urban informatics. New Media & Society, 24(forthcoming), https://doi.org/10.1177/14614448211058455.Google Scholar
Salganik, M. J., Lundberg, I., Kindel, A. T. et al. (2020). Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences, 117(15), 83988403.Google Scholar
Salmond, J. A., Tadaki, M., & Dickson, M. (2017). Can big data tame a “naughty” world? Canadian Geographer, 61(1), 5263.Google Scholar
Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247278.Google Scholar
Sánchez-Clavijo, L., Martinez, S., Acevedo-Charry, O. et al. (2021). Differential reporting of biodiversity in two citizen science platforms during COVID-19 lockdown in Colombia. Biological Conservation, 256, 109077.Google Scholar
Sandefur, J., & Glassman, A. (2015). The political economy of bad data: Evidence from African survey and administrative statistics. The Journal of Development Studies, 51(2), 116132.Google Scholar
Sanderson, J., Wiseman, L., & Poncini, S. (2018). What’s behind the ag-data logo? An examination of voluntary agricultural-data codes of practice. International Journal of Rural Law and Policy, 1(1), 6043.Google Scholar
Sarhadi, A., Burn, D. H., Yang, G., & Ghodsi, A. (2017). Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques. Climate Dynamics, 48(3–4), 13291351.Google Scholar
Savage, M., & Burrows, R. (2007). The coming crisis of empirical sociology. Sociology, 41(5), 885899.Google Scholar
Sawyer, S. (2008). Data wealth, data poverty, science and cyberinfrastructure. Prometheus, 26(4), 355371.Google Scholar
Schepaschenko, D., See, L., Lesiv, M. et al. (2015). Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sensing of Environment, 162, 208220.Google Scholar
Scher, S. (2018). Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophysical Research Letters, 45(22), 12, 616–12, 622.Google Scholar
Schneble, C. O., Elger, B. S., & Shaw, D. (2018). The Cambridge Analytica affair and internet‐mediated research. EMBO Reports, 19(8), e46579.Google Scholar
Schöpfel, J., & Azeroual, O. (2021). Rewarding Research Data Management. In Companion Proceedings of the Web Conference 2021, New York: Association for Computing Machinery, pp. 446450.Google Scholar
Schrodt, F., Kattge, J., Shan, H. et al. (2015). BHPMF: A hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 24(12), 15101521.Google Scholar
Sculley, D., Snoek, J., Wiltschko, A., & Rahimi, A. (2018). Winner’s Curse? On Pace, Progress, and Empirical Rigor. In ICLR 2018 Workshop, Vancouver: International Conference on Learning Representations. Accessed September 2, 2022, https://openreview.net/forum?id=rJWF0Fywf.Google Scholar
Sefara, T. J., Mokgonyane, T. B., Manamela, M. J., & Modipa, T. I. (2019). HMM-Based Speech Synthesis System Incorporated with Language Identification for Low-Resourced Languages. In 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), Santa Clara, CA: Institute of Electrical and Electronics Engineers.Google Scholar
Sejnowski, T. J. (2020). The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of Sciences, 117(48), 3003330038.Google Scholar
Selbst, A. D. (2021). An institutional view of algorithmic impact assessments. Harvard Journal of Law & Technology, 35(1), 117191.Google Scholar
Selinger, E., & Hartzog, W. (2015). Facebook’s emotional contagion study and the ethical problem of co-opted identity in mediated environments where users lack control. Research Ethics, 12(1), 3543.Google Scholar
Serra, Y. L., Haase, J. S., Adams, D. K. et al. (2018). The risks of contracting the acquisition and processing of the nation’s weather and climate data to the private sector. Bulletin of the American Meteorological Society, 99(5), 869870.Google Scholar
Shearmur, R. (2010). Editorial – A world without data? The unintended consequences of fashion in geography. Urban Geography, 31(8), 10091017.Google Scholar
Shearmur, R. (2015). Dazzled by data: Big Data, the census and urban geography. Urban Geography, 36(7), 965968.Google Scholar
Sheehy, C. J. (2019). Christine Baeumler’s environmental art: A pollinator garden as a life practice. Public Art Dialogue, 9(2), 193217.Google Scholar
Shetal, A., Feng, Z., & Savani, K. (2020). Using machine learning to generate novel hypotheses: Increasing optimism about COVID-19 makes people less willing to justify unethical behaviors. Psychological Science, 31(10), 12221235.Google Scholar
Shook, E., Hodgson, M. E., Wang, S. et al. (2016). Parallel cartographic modeling: A methodology for parallelizing spatial data processing. International Journal of Geographical Information Science, 30(12), 23552376.Google Scholar
Shook, E., & Turner, V. K. (2016). The socio-environmental data explorer (SEDE): A social media–enhanced decision support system to explore risk perception to hazard events. Cartography and Geographic Information Science, 43(5), 427441.Google Scholar
Shoval, N., Kwan, M.-P., Reinau, K. H., & Harder, H. (2014). The shoemaker’s son always goes barefoot: Implementations of GPS and other tracking technologies for geographic research. Geoforum, 51, 15.Google Scholar
Sieber, R., & Tenney, M. (2018). Smaller and Slower Data in an Era of Big Data. InThatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 4169.Google Scholar
Silver, D., Schrittwieser, J., Simonyan, K. et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354359.Google Scholar
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 13591366.Google Scholar
Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1), 8.Google Scholar
Singleton, A., Arribas-Bel, D., Murray, J., & Fleischmann, M. (2022). Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network. Computers, Environment and Urban Systems, 95(2022), 101802.Google Scholar
Slaughter, M. J., & McCormick, D. H. (2021). Data Is Power Washington Needs to Craft New Rules for the Digital Age. Foreign Affairs, May/June, 5460.Google Scholar
Smith, B. H. (2016). What was “close reading”? A century of method in literary studies. The Minnesota Review, 2016(87), 5775.Google Scholar
Smith, H., Medero, G. M., Crane De Narváez, S., & Castro Mera, W. (2022). Exploring the relevance of “smart city” approaches to low-income communities in Medellín, Colombia. GeoJournal, 87(forthcoming), http://dx.doi.org/10.1007/s10708-022-10574-y.Google Scholar
Smith, L. M., Barth, J. A., Kelley, D. S. et al. (2018). The ocean observatories initiative. Oceanography, 31(1), 1635.Google Scholar
Smith, M. W., Carrivick, J. L., & Quincey, D. J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40(2), 247275.Google Scholar
Smith, N. R. (2000). The global ocean data assimilation experiment. Advances in Space Research, 25(5), 10891098.Google Scholar
Snyder, J. P. (1987). Map Projections: A Working Manual, Washington, DC: United States Geological Survey.Google Scholar
Sobek, M., Cleveland, L., Flood, S. et al. (2011). Big data: Large-scale historical infrastructure from the Minnesota Population Center. Historical Methods, 44(2), 6168.Google Scholar
Solove, D. J. (2008). Understanding Privacy, Cambridge, MA: Harvard University Press.Google Scholar
Song, X.-P., Huang, C., & Townshend, J. R. (2017). Improving global land cover characterization through data fusion. Geo-Spatial Information Science, 20(2), 141150.Google Scholar
Sood, S. K., Sandhu, R., Singla, K., & Chang, V. (2018). IoT, big data and HPC based smart flood management framework. Sustainable Computing: Informatics and Systems, 20, 102117.Google Scholar
Spasser, M. A. (2000). Articulating collaborative activity: Design-in-use of collaborative publishing services in the Flora of North America Project. Scandinavian Journal of Information Systems, 12(1), 149172.Google Scholar
Spies, T. A., White, E., Ager, A. et al. (2017). Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecology and Society, 22(1), 25.Google Scholar
Stafford, R., Hart, A. G., Collins, L. et al. (2010). Eu-social science: The role of Internet social networks in the collection of bee biodiversity data. PLOS ONE, 5(12), e14381.Google Scholar
Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access for large information spaces. Information Systems Research, 7(1), 111134.Google Scholar
Steele, J. E., Sundsøy, P. R., Pezzulo, C. et al. (2017). Mapping poverty using mobile phone and satellite data. Journal of the Royal Society Interface, 14(127), 20160690.Google Scholar
Stern, P. C. (1993). A second environmental science: Human–environment interactions. Science, 260, 18971899.Google Scholar
Stewart, C. A., Roskies, R., Knepper, R. et al. (2015). XSEDE Value Added, Cost Avoidance, and Return on Investment. In Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure, St. Louis, MO: Association for Computing Machinery, p. 23.Google Scholar
Stocks, K. I., Schramski, S., Virapongse, A., & Kempler, L. (2019). Geoscientists’ perspectives on cyberinfrastructure needs: A collection of user scenarios. Data Science Journal, 18(1), 21.Google Scholar
Stodden, V., McNutt, M., Bailey, D. H. et al. (2016). Enhancing reproducibility for computational methods. Science, 354(6317), 12401241.Google Scholar
Stodden, V., Seiler, J., & Ma, Z. (2018). An empirical analysis of journal policy effectiveness for computational reproducibility. Proceedings of the National Academy of Sciences, 115(11), 25842589.Google Scholar
Stone, Z. (2019). Under the Influence of a “Super Bloom.” New York Times. May 23. Accessed August 16, 2022, www.nytimes.com/2019/03/23/style/super-bloom-california-instagram-influencer.html.Google Scholar
Strasser, B. J. (2012). Data-driven sciences: From wonder cabinets to electronic databases. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 8587.Google Scholar
Struijs, P., Braaksma, B., & Daas, P. J. (2014). Official statistics and big data. Big Data & Society, 1(1), https://doi.org/10.1177/2053951714538417.Google Scholar
Stump, C. (2021). Artificial intelligence aids intuition in mathematical discovery. Nature, 600, 4445.Google Scholar
Sudmanns, M., Tiede, D., Lang, S. et al. (2019). Big Earth data: disruptive changes in Earth observation data management and analysis? International Journal of Digital Earth, 13(7), 832850.Google Scholar
Suh, Y.-K., & Lee, K. Y. (2018). A survey of simulation provenance systems: Modeling, capturing, querying, visualization, and advanced utilization. Human-Centric Computing and Information Sciences, 8(1), 27.Google Scholar
Suhr, B., Dungl, J., & Stocker, A. (2020). Search, reuse and sharing of research data in materials science and engineering: A qualitative interview study. PLOS ONE, 15(9), e0239216.Google Scholar
Sullivan, B. L., Wood, C. L., Iliff, M. J. et al. (2009). eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation, 142(10), 22822292.Google Scholar
Sundberg, J. (2013). Decolonizing posthumanist geographies. Cultural Geographies, 21(1), 3347.Google Scholar
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction, Cambridge, MA: MIT press.Google Scholar
Swain, R. B. (2018). A Critical Analysis of the Sustainable Development Goals. In Leal Filho, W., ed., Handbook of Sustainability Science and Research, New York: Springer, pp. 341355.Google Scholar
Sward, D., Craig, W., Delegard, K. et al. (2022). Spatial University for Service and Support. In Manson, S. M., Kne, L., Krzyzanowski, B., & Lindelof, J., eds., Building the Spatial University, Cham: Springer, pp. 3154.Google Scholar
Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751752.Google Scholar
Tarboton, D. G., Idaszak, R., Horsburgh, J. S. et al. (2014). Hydro Share: Advancing Collaboration through Hydrologic Data and Model Sharing. In 7th International Congress on Environmental Modelling and Software (iEMSs 2014), San Diego, CA: International Environmental Modelling and Software Society, http://dx.doi.org/10.13140/2.1.4431.6801.Google Scholar
Tatem, A. J., Qiu, Y., Smith, D. L. et al. (2009). The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents. Malaria Journal, 8(1), 287.Google Scholar
Taylor, L., & Schroeder, R. (2015). Is bigger better? The emergence of big data as a tool for international development policy. GeoJournal, 80(4), 503518.Google Scholar
Telikani, A., Gandomi, A. H., & Shahbahrami, A. (2020). A survey of evolutionary computation for association rule mining. Information Sciences, 524, 318352.Google Scholar
That, D. H. T., Fils, G., Yuan, Z., & Malik, T. (2017). Sciunits: Reusable Research Objects. In 2017 IEEE 13th International Conference on e-Science (e-Science), Santa Clara, CA: Institute of Electrical and Electronics Engineers, pp. 374383.Google Scholar
Thatcher, J., O’Sullivan, D., & Mahmoudi, D. (2016). Data colonialism through accumulation by dispossession: New metaphors for daily data. Environment and Planning D: Society and Space, 34(6), 9901006.Google Scholar
Thenkabail, P. S. (2019). Remote Sensing Data Characterization, Classification, and Accuracies: Advances of the Last 50 Years and a Vision for the Future. In Remotely Sensed Data Characterization, Classification, and Accuracies, Boca Raton, FL: CRC Press, pp. 659696.Google Scholar
Thinyane, M., Goldkind, L., & Lam, H. I. (2018). Data collaboration and participation for Sustainable Development Goals: A case for engaging community-based organizations. Journal of Human Rights and Social Work, 3(1), 4451.Google Scholar
Thurgate, N., Lowe, A. J., Clancy, T. F., Chabbi, A., & Loescher, H. W. (2017). Australia’s Terrestrial Ecosystem Research Network: A Network of Networks Approach to Building and Maintaining Continental Ecosystem Research Infrastructures. In Chabbi, A. & Loescher, H. W., eds., Terrestrial Ecosystem Research Infrastructures: Challenges, New Developments and Perspectives, London: Routledge, pp. 427448.Google Scholar
Torney, C. J., Lloyd-Jones, D. J., Chevallier, M. et al. (2019). A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods in Ecology and Evolution, 10(6), 779787.Google Scholar
Touzé-Peiffer, L., Barberousse, A., & Le Treut, H. (2020). The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research. WIREs Climate Change, 11(4), e648.Google Scholar
Towns, J. (2018). Toward an open, sustainable national advanced computing ecosystem. Computing in Science & Engineering, 20(5), 3946.Google Scholar
Towns, J., Cockerill, T., Dahan, M. et al. (2014). XSEDE: Accelerating scientific discovery. Computing in Science & Engineering, 16(5), 6274.Google Scholar
Townsend, A. M. (2013). Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, New York: WW Norton & Company.Google Scholar
Toyama, K. (2010). Can technology end poverty? Boston Review, 36(5), 1229.Google Scholar
Travis, C., & Holm, P. (2016). The Digital Environmental Humanities: What Is It and Why Do We Need It? The NorFish Project and SmartCity Lifeworlds. In The Digital Arts and Humanities, Cham: Springer, pp. 187204.Google Scholar
Trethewie, S. (2021). New Norms and New Challenges in Food Security. In Cook, A. D. B. & Nair, T., eds., Non-Traditional Security in the Asia-Pacific, Singapore: World Scientific, pp. 9194.Google Scholar
Trilles, S., Belmonte, Ò. , Schade, S., & Huerta, J. (2017). A domain-independent methodology to analyze IoT data streams in real-time: A proof of concept implementation for anomaly detection from environmental data. International Journal of Digital Earth, 10(1), 103120.Google Scholar
Tsonis, A. A., Swanson, K. L., & Roebber, P. J. (2006). What do networks have to do with climate? Bulletin of the American Meteorological Society, 87(5), 585596.Google Scholar
Tukey, J. W. (1962). The Future of Data Analysis. Annals of Mathematical Statistics, 33(1), 167.Google Scholar
Turing, A. M. (2009). Computing Machinery and Intelligence. In Epstein, R., Roberts, G., & Beber, G., eds., Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer, Cham: Springer, pp. 2365.Google Scholar
Turnhout, E., & Lahsen, M. (2022). Transforming environmental research to avoid tragedy. Climate and Development, 14(forthcoming), https://doi.org/10.1080/17565529.2022.2062287.Google Scholar
Uhrqvist, O., & Linnér, B.-O. (2015). Narratives of the past for Future Earth: The historiography of global environmental change research. The Anthropocene Review, 2(2), 159173.Google Scholar
United Nations. (2014). Fundamental Principles of Official Statistics, New York: United Nations.Google Scholar
United Nations. (2020). Sustainable Development Goals: Guidelines for the Use of the SDG Logo Including the Colour Wheel, and 17 Icons, New York: United Nations Department of Global Communications.Google Scholar
van der Wal, R., Zeng, C., Heptinstall, D. et al. (2015). Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: A case study of reintroduced red kites. Ambio, 44(4), 612623.Google Scholar
van Ginkel, M., & Biradar, C. (2021). Drought early warning in agri-food systems. Climate, 9(9), 134.Google Scholar
van Meter, H. J. (2020). Revising the DIKW pyramid and the real relationship between data, information, knowledge and wisdom. Law, Technology and Humans, 2(2), 6980.Google Scholar
van Schaik, P., Jansen, J., Onibokun, J., Camp, J., & Kusev, P. (2018). Security and privacy in online social networking: Risk perceptions and precautionary behaviour. Computers in Human Behavior, 78, 283297.Google Scholar
VanValkenburgh, P., & Dufton, J. A. (2020). Big archaeology: Horizons and blindspots.Journal of Field Archaeology, 45(suppl. 1), S1S7.Google Scholar
Vardi, M. Y. (2022). ACM, ethics, and corporate behavior. Communications of the ACM, 65(3), 5.Google Scholar
Vardigan, M., Heus, P., & Thomas, W. (2008). Data documentation initiative: Toward a standard for the social sciences. International Journal of Digital Curation, 3(1), 107113.Google Scholar
Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), https://doi.org/10.1177/2053951717743530.Google Scholar
Venkatramanan, S., Sadilek, A., Fadikar, A. et al. (2021). Forecasting influenza activity using machine-learned mobility map. Nature Communications, 12, 726.Google Scholar
Vinuesa, R., Azizpour, H., Leite, I. et al. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11, 233.Google Scholar
Virdee, S. (2019). Racialized capitalism: An account of its contested origins and consolidation. The Sociological Review, 67(1), 327.Google Scholar
Vitak, J., Proferes, N., Shilton, K., & Ashktorab, Z. (2017). Ethics regulation in social computing research: Examining the role of institutional review boards. Journal of Empirical Research on Human Research Ethics, 12(5), 372382.Google Scholar
Vitak, J., Shilton, K., & Ashktorab, Z. (2016). Beyond the Belmont Principles. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, New York: Association for Computing Machinery, pp. 941953.Google Scholar
Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J. A., & Buytaert, W. (2015). Web technologies for environmental big data. Environmental Modelling & Software, 63, 185198.Google Scholar
Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25(11), 12681281.Google Scholar
Voosen, P. (2017). The AI detectives. Science, 357(6346), 2227.Google Scholar
VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17, 40.Google Scholar
Walford, A. (2018). “If Everything Is Information”: Archives and Collecting on the Frontiers of Data-Driven Science. In Knox, H. & Nafus, D., eds., Ethnography for a Data-Saturated World, Manchester: Manchester University Press, pp. 105127.Google Scholar
Waliser, D., Gleckler, P. J., Ferraro, R. et al. (2020). Observations for Model Intercomparison Project (Obs4MIPs): Status for CMIP6. Geoscientific Model Development, 13(7), 29452958.Google Scholar
Walker, M. A. (2015). The professionalisation of data science. International Journal of Data Science, 1(1), 716.Google Scholar
Wallace, T. R., Watkins, D., & Schwartz, J. (2018). Where We Live: A Map of Every Building in America. New York Times. October 12. Accessed August 16, 2022, www.nytimes.com/interactive/2018/10/12/us/map-of-every-building-in-the-united-states.html.Google Scholar
Waller, M. A., & Fawcett, S. E. (2013). Click here for a data scientist: Big data, predictive analytics, and theory development in the era of a maker movement supply chain. Journal of Business Logistics, 34(4), 249252.Google Scholar
Wang, C., Chen, M.-H., Schifano, E., Wu, J., & Yan, J. (2016). Statistical methods and computing for big data. Statistics and Its Interface, 9(4), 399414.Google Scholar
Wang, S. (2010). A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100(3), 535557.Google Scholar
Wang, S. (2016). CyberGIS and spatial data science. GeoJournal, 81(6), 965968.Google Scholar
Wang, V., & Shepherd, D. (2020). Exploring the extent of openness of open government data: A critique of open government datasets in the UK. Government Information Quarterly, 37(1), 101405.Google Scholar
Wang, Y., & Allen, T. R. (2008). Estuarine shoreline change detection using Japanese ALOS PALSAR HH and JERS‐1 L‐HH SAR data in the Albemarle‐Pamlico Sounds, North Carolina, USA. International Journal of Remote Sensing, 29(15), 44294442.Google Scholar
Waranch, R. S. (2017). Digital rights Ireland deja vu: Why the bulk acquisition warrant provisions of the Investigatory Powers Act 2016 are incompatible with the Charter of Fundamental Rights of the European Union. The George Washington International Law Review, 50, 209242.Google Scholar
Warf, B. (2013). Contemporary digital divides in the United States. Tijdschrift Voor Economische En Sociale Geografie, 104(1), 117.Google Scholar
Warf, B., & Sui, D. (2010). From GIS to neogeography: Ontological implications and theories of truth. Annals of GIS, 16(4), 197209.Google Scholar
Warneke, B., Last, M., Liebowitz, B., & Pister, K. S. J. (2001). Smart dust: Communicating with a cubic-millimeter computer. Computer, 34(1), 4451.Google Scholar
Watts, D. J. (2017). Should social science be more solution-oriented? Nature Human Behaviour, 1, 15.Google Scholar
Watts, V. (2013). Indigenous place-thought and agency amongst humans and non humans (First Woman and Sky Woman go on a European world tour!). Decolonization: Indigeneity, Education & Society, 2(1), 2034.Google Scholar
Weidemann, C. D., Swift, J. N., & Kemp, K. K. (2018). Geosocial Footprints and Geoprivacy Concerns. In Thatcher, J., Shears, A., & Eckert, J., eds., Thinking Big Data in Geography: New Regimes, New Research, Lincoln: University of Nebraska Press, pp. 123144.Google Scholar
Weinberger, D. (2011). Too Big to Know: Rethinking Knowledge Now That the Facts Aren’t the Facts, Experts Are Everywhere, and the Smartest Person in the Room Is the Room, New York: Basic Books.Google Scholar
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 140.Google Scholar
Weiss, S. M., & Indurkhya, N. (1998). Predictive Data Mining: A Practical Guide, San Francisco: Morgan Kaufmann Publishers.Google Scholar
Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., & Buckee, C. O. (2013). The impact of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society Interface, 10(81), 20120986.Google Scholar
Whiley, A. (2018). Data Strategy 2018–20: Valuing and Using Trusted Data and Analytics in Our Decisions, Canberra: Department of Industry, Innovation and Science.Google Scholar
White, P., & Breckenridge, R. S. (2014). Trade‐offs, limitations, and promises of big data in social science research. Review of Policy Research, 31(4), 331338.Google Scholar
Wickham, H., & Grolemund, G. (2016). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, Sebastopol, CA: O’Reilly Media, Inc.Google Scholar
Wieczorek, J., Bloom, D., Guralnick, R. et al. (2012). Darwin Core: An evolving community-developed biodiversity data standard. PLOS ONE, 7(1), e29715.Google Scholar
Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., & Pamidighantam, S. (2008). TeraGrid science gateways and their impact on science. Computer, 41(11), 3241.Google Scholar
Wilkinson, G. G. (1996). A review of current issues in the integration of GIS and remote sensing data. International Journal of Geographical Information Systems, 10(1), 85101.Google Scholar
Wilkinson, J., Scott, C. J., & Willis, D. M. (2016a). Going with the floe. Astronomy & Geophysics, 57(2), 237.Google Scholar
Wilkinson, M. D., Dumontier, M., Aalbersberg, I J. J. et al. (2016b). The FAIR Guiding principles for scientific data management and stewardship. Scientific Data, 3(1), 160018.Google Scholar
Willcock, S., Martínez-López, J., Hooftman, D. A. P. et al. (2018). Machine learning for ecosystem services. Ecosystem Services, 33, 165174.Google Scholar
Williams, J. H., DeBenedictis, A., Ghanadan, R. et al. (2012). The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science, 335(6064), 5359.Google Scholar
Williams, S. (2020). Data Action: Using Data for Public Good. Cambridge, MA: MIT Press.Google Scholar
Wiseman, L., Sanderson, J., Zhang, A., & Jakku, E. (2019). Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS – Wageningen Journal of Life Sciences, 90–91, 100301.Google Scholar
Wood, S. A., Guerry, A. D., Silver, J. M., & Lacayo, M. (2013). Using social media to quantify nature-based tourism and recreation. Scientific Reports, 3(1), 2976.Google Scholar
Wooldridge, M. (2021). A Brief History of Artificial Intelligence: What It Is, Where We Are, and Where We Are Going, New York: Flatiron Books.Google Scholar
World Commission on Environment and Development. (1987). Our Common Future, Oxford: United Nations and Oxford University Press.Google Scholar
Wright, D., Gutwirth, S., Friedewald, M., Vildjiounaite, E., & Punie, Y. (2008). Safeguards in a World of Ambient Intelligence, Berlin: Springer.Google Scholar
Wright, L. G., Onodera, T., Stein, M. M. et al. (2022). Deep physical neural networks trained with backpropagation. Nature, 601(7894), 549555.Google Scholar
Wu, C., Zhu, Q., Zhang, Y. et al. (2017). A NoSQL–SQL hybrid organization and management approach for real-time geospatial data: A case study of public security video surveillance. ISPRS International Journal of Geo-Information, 6 (1), 21.Google Scholar
Wüest, R. O., Zimmermann, N. E., Zurell, D. et al. (2020). Macroecology in the age of big data: Where to go from here? Journal of Biogeography, 47(1), 112.Google Scholar
Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., & Hermosilla, T. (2018). Land cover 2.0. International Journal of Remote Sensing, 39(12), 42544284.Google Scholar
Wyly, E. (2014). Automated (post)positivism. Urban Geography, 35(5), 669690.Google Scholar
Xie, K., Yang, D., Ozbay, K., & Yang, H. (2019). Use of real-world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure. Accident Analysis & Prevention, 125, 311319.Google Scholar
Xie, Y., Cai, J., Bhojwani, R., Shekhar, S., & Knight, J. (2020). A locally-constrained yolo framework for detecting small and densely-distributed building footprints. International Journal of Geographical Information Science, 34(4), 777801.Google Scholar
Xu, H., Russell, T., Coposky, J. et al. (2017). iRODS primer 2: Integrated rule-oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and Services, 9(3), 1131.Google Scholar
Yang, C., & Huang, Q. (2013). Spatial Cloud Computing: A Practical Approach, Boca Raton, FL: CRC Press.Google Scholar
Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017a). Big data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 1353.Google Scholar
Yang, C., Yu, M., Hu, F., Jiang, Y., & Li, Y. (2017b). Utilizing cloud computing to address big geospatial data challenges. Computers, Environment and Urban Systems, 61, 120128.Google Scholar
Yang, L., & Gilbert, N. (2008). Getting away from numbers: Using qualitative observation for agent-based modeling. Advances in Complex Systems, 11(2), 175185.Google Scholar
Yin, D., Liu, Y., Hu, H. et al. (2019). CyberGIS-Jupyter for reproducible and scalable geospatial analytics. Concurrency and Computation: Practice and Experience, 31(11), e5040.Google Scholar
Zaharia, M., Chowdhury, M., Das, T. et al. (2012). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA: USENIX Association, pp. 1528.Google Scholar
Zegura, E., DiSalvo, C., & Meng, A. (2018). Care and the Practice of Data Science for Social Good. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, New York: Association for Computing Machinery.Google Scholar
Zeng, W., Lin, C., Lin, J. et al. (2020). Revisiting the modifiable areal unit problem in deep traffic prediction with visual analytics. IEEE Transactions on Visualization and Computer Graphics, 27(2), 839848.Google Scholar
Zhang, M., Alvarez, R. M., & Levin, I. (2019). Election forensics: Using machine learning and synthetic data for possible election anomaly detection. PLOS ONE, 14(10), e0223950.Google Scholar
Zhao, L., Song, C. X., Kalyanam, R. et al. (2017). GABBs: Reusable Geospatial Data Analysis Building Blocks for Science Gateways. In Ninth International Workshop on Science Gateways, Poznan: International Workshop on Science Gateways.Google Scholar
Zhao, Z., & Hellström, M. (2020). Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges, Cham: Springer.Google Scholar
Zheng, F., Tao, R., Maier, H. R. et al. (2018). Crowdsourcing methods for data collection in geophysics: State of the art, issues, and future directions. Reviews of Geophysics, 56(4), 698740.Google Scholar
Zhou, Y., Guo, Q., Sun, H. et al. (2019). A novel data-driven approach for transient stability prediction of power systems considering the operational variability. International Journal of Electrical Power & Energy Systems, 107, 379394.Google Scholar
Žliobaitė, I., & Custers, B. (2016). Using sensitive personal data may be necessary for avoiding discrimination in data-driven decision models. Artificial Intelligence and Law, 24(2), 183201.Google Scholar
Zomaya, A. Y., & Sakr, S. (2017). Handbook of Big Data Technologies, Cham: Springer.Google Scholar
Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power, New York: Public Affairs.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Steven M. Manson, University of Minnesota
  • Book: Data Science and Human-Environment Systems
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108638838.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Steven M. Manson, University of Minnesota
  • Book: Data Science and Human-Environment Systems
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108638838.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Steven M. Manson, University of Minnesota
  • Book: Data Science and Human-Environment Systems
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108638838.008
Available formats
×