Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-01T23:08:06.976Z Has data issue: false hasContentIssue false

Part V - Numerical and Quantitative Abilities

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agrillo, C. & Petrazzini, M. E. M. (2021). Numerical competence in fish. In Kaufmann, A. B., Call, J., & Kaufmann, J. C. (Eds.), The Cambridge Handbook of Animal Cognition (pp. 580601). Cambridge: Cambridge University Press.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11, 495503.CrossRefGoogle ScholarPubMed
Agrillo, C. & Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 8291.Google Scholar
Agrillo, C., Petrazzini, M. E. M., & Bisazza, A. (2014). Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Animal Cognition, 17, 307316.Google Scholar
Alston, L. & Humphreys, G. W. (2004). Subitization and attentional engagement by transient stimuli. Spatial Vision, 17, 1750.CrossRefGoogle ScholarPubMed
Baker, J. M. Shivik, J., & Jordan, K. (2011). Tracking of food quantity by coyotes (Canis latrans). Behavioural Processes, 88, 7275.Google Scholar
Baker, J. M., Morath, J., Rodson, K. S., & Jordan, K. (2012). A shared system of representation governing quantity discrimination in canids. Frontiers in Psychology, 3, 16.Google Scholar
Bensky, M. K., Gosling, S. D., & Sinn, D. L. (2013). The world from a dog’s point of view: A review and synthesis of dog cognition research. Advances in the Study of Behavior, 45, 209406.Google Scholar
Beran, M. J. (2001). Summation and numerousness judgments of sequentially presented sets of items by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 115(2), 181191.Google Scholar
Beran, M. J. (2004). Chimpanzees (Pan troglodytes) respond to non visible sets after one-by-one addition and subtraction of items. Journal of Comparative Psychology, 118, 2536.Google Scholar
Beran, M. J. (2007). Rhesus monkeys (Macaca mulatta) enumerate large and small sequentially presented sets of items using analog, numerical representations. Journal of Experimental Psychology: Animal Behavior Processes, 33, 5563.Google ScholarPubMed
Beran, M. J. (2008). Monkeys (Macaca mulatta and Cebus apella) track, enumerate, and compare multiple sets of moving items. Journal of Experimental Psychology: Animal Behavior Processes, 34, 6374.Google Scholar
Beran, M. J. (2010). Chimpanzees (Pan troglodytes) accurately compare poured liquid quantities. Animal Cognition, 13, 641649.Google Scholar
Beran, M. J. (2012). Quantity judgments of auditory and visual stimuli by chimpanzees. Journal of Experimental Psychology, Animal Behavior Processes, 38, 2329.Google Scholar
Beran, M. J. & Beran, M. M. (2004). Chimpanzees remember the results of one-by-one addition of food items to sets over extended periods of time. Psychological Science, 15, 9499. 10.1111/j.0963-7214.2004.01502004.xGoogle Scholar
Beran, M. J., Evans, T. A., & Harris, E. H. (2008). Perception of food amounts by chimpanzees based on the number, size, contour length and visibility of items. Animal Behaviour, 75, 17931802.Google Scholar
Beran, M. J. & Parrish, A. E. (2016). Going for More: Discrete and Continuous Quantity Judgments by Nonhuman Animals. In Henik, A (Ed.), Continuous Issues in Numerical Cognition (pp. 175192). Cambridge, MA: Academic Press.Google Scholar
Beran, M. J., James, B. T., Whitman, W., & Parrish, A. E. (2016). Chimpanzees can point to smaller amounts of food to accumulate larger amounts but they still fail the reverse-reward contingency task. Journal of Experimental Psychology: Animal Learning & Cognition, 42, 347358.Google ScholarPubMed
Bonnani, R., Natoli, E., Cafazzo, S., & Valsecchi, P. (2011). Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Animal Cognition, 14, 103115.CrossRefGoogle Scholar
Boysen, S. T. & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.Google Scholar
Boysen, S. T. & Berntson, G. G. (1995). Quantity judgments: Perceptual vs. cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 8286.Google Scholar
Boysen, S. T., Mukobi, K. L., & Berntson, G. G. (1999). Overcoming response-bias using symbolic representation of number by chimpanzees (Pan troglodytes). Animal Learning & Behavior, 27, 229235.CrossRefGoogle Scholar
Boysen, S. T., Berntson, G. G., & Mukobi, K. L. (2001). Size matters: The impact of item size and quantity on array choice by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 115(1), (106110).Google Scholar
Ditz, H. M. & Nieder, A. (2015). Neurons selective to the number of visual items in the corvid songbird endbrain. PNAS, 112, 78277832.Google Scholar
Cantlon, J. F. & Brannon, E. M. (2006). Shared system for ordering small and larger numbers in monkeys and humans. Psychological Science, 17, 402407.CrossRefGoogle Scholar
Cantlon, J. F. & Brannon, E. M. (2007) How much does number matter to a monkey (Mucaca mulatta)? Journal of Experimental Psychology: Animal Behavior Processes, 33, 3241. 10;1037/0097-77403.33.1.32Google Scholar
Cantlon, J. F., Merritt, D. J., & Brannon, E. M. (2016). Monkeys display classic signatures of human symbolic arithmetic. Animal Cognition, 19, 405415.Google Scholar
Davis, H. & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and a new research agenda. Behavioral & Brain Sciences, 11, 561615.CrossRefGoogle Scholar
Ditz, H. & Nieder, A. (2015). Neurons selective to the number of visual items in the corvidsongbird endbrain. Proceedings of the National Academy of Sciences, 112, 78277832.CrossRefGoogle Scholar
Drucker, C. B. & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 5767.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of numbers. Trends in Cognitive Science, 8, 307314.Google Scholar
Gallistel, C. R. & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Science, 4, 5965.Google Scholar
Gese, E. M. (2001). Territorial defense by coyotes (Canis latrans) in Yellowstone National Park, Wyoming: Who, how, where, when and why. Canadian Journal of Zoology, 79, 980987.Google Scholar
Gomez-Laplaza, L. M. & Gerlai, R. (2011). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s Law. Animal Cognition, 14, 19.CrossRefGoogle ScholarPubMed
Hanus, D. & Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pgymaeus): The effect of presenting whole sets versus item-by-item. Journal of Comparative Psychology, 121, 241249.Google Scholar
Johnson-Ulrich, Z. & Vonk, J. (2018). Spatial representation of magnitude in humans (Homo sapiens), Western lowland gorillas (Gorilla gorilla gorilla), and American black bears (Ursus americanus). Animal Cognition, 21, 531550.Google Scholar
Kitchen, D. M. (2004). Alpha male black howler monkeys’ responses to loud calls: Effect of numeric odds, male companion behaviour and reproductive investment. Animal Behaviour, 67, 125139.Google Scholar
Krusche, P., Uller, C., & Dicke, U. (2010). Quantity discrimination in salamanders. Journal of Experimental Biology, 213, 18221828Google Scholar
Lucon-Xiccato, T., Gatto, E., & Bisazza, A. (2018). Quantity discrimination by treefrogs. Animal Behaviour, 139, 6169. doi.org/10.1016/j.anbehav.2018.03.005Google Scholar
MacDonald, D. W. & Carr, G. M. (1995). Variation in Dog Society: Between Resource Dispersion and Social Flux. In Serpell, J. (Ed.), The Domestic Dog: Its Evolution, Behaviour and Interactions with People (pp. 199216). Cambridge: Cambridge University Press.Google Scholar
Matsuzawa, T. (1985). Use of numbers by a chimpanzeeNature3155759.Google Scholar
Mehlis, M., Thünken, T., Bakker, T. C. M., & Frommen, J. G. (2015). Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks. Animal Cognition, 18, 11251131.CrossRefGoogle ScholarPubMed
Moll, F. W. & Nieder, A. (2014). The long and short of it: Rule-based relative length discrimination in carrion crows (Corvus corone). Behavioural Processes, 107, 142149.Google Scholar
Mou, Y. & van Marle, K. (2014). Two core systems of numerical representation in infants. Developmental Review, 34, 125.Google Scholar
Nieder, A. (2013). Coding of abstract quantity by “number neurons” of the primate brain. Journal of Comparative Psychology, 199, 116.Google Scholar
Parrish, A. E., James, B. T., & Beran, M. J. (2017). Exploring whether nonhuman primates show a bias to overestimate dense quantities. Journal of Comparative Psychology, 131, 5968.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2014). Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Animal Cognition, 15, 711717.Google Scholar
Petrazzini, M. E. M., Agrillo, C., Izard, V., & Bisazza, A. (2016). Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments? Journal of Comparative Psychology, 130, 380390.Google Scholar
Rose, G. J. (2018). The numerical abilities of anurans and their neural correlates: Insights from neuroethological studies of acoustic communication. Philosophical Transactions of the Royal Society B: Biological Sciences. 373, 20160512.Google Scholar
Rugani, R., Vallortigara, G., Konstantinos, P., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 30, 534536.Google Scholar
Rugani, R. & Rosa-Salva, O. (2021). Spatial -numerical association in nonhuman animals. In Kaufmann, A. B., Call, J., & Kaufmann, J. C. (Eds.), The Cambridge Handbook of Animal Cognition (pp. 602620). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rumbaugh, D. M., Savage-Rumbaugh, S., & Hegel, M. T. (1987). Summation in the chimpanzee. Journal of Experimental Psychology: Animal Behaviour Processes, 13, 107115. doi.org/10.1037.0097-7403.13.2.107Google ScholarPubMed
Sillero-Zubiri, C. & Macdonald, D. W. (1998). Scent marking and territorial behaviour of Ethiopian wolves (Canis simensis). Journal of Zoology, 245, 351361. doi.org/10.1111/j.1469-7998.1998.tb00110.xGoogle Scholar
Stancher, G., Rugani, R., Regolin, L., & Vallortigara, G. (2015). Numerical discrimination by frogs (Bombina orientalis). Animal Cognition, 18, 219229.Google Scholar
Suller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in a species of basal vertebrate. Animal Cognition, 6, 105112.Google Scholar
Utrata, E., Virányi, Z. & Range, Fr. (2012). Quantity discrimination in wolves (Canis lupus). Frontiers in Psychology, 3, 19.Google Scholar
Vonk, J. (2014). Quantity matching by an orangutan (Pongo abelii). Animal Cognition, 17, 297306.Google Scholar
Vonk, J. & Beran, M.J. (2012). Bears count, too: Quantity estimation in black bears (Ursus americanus). Animal Behaviour, 84, 231238.CrossRefGoogle ScholarPubMed
Vonk, J., Torgerson-White, L., McGuire, M., Thueme, M., Thomas, J., & Beran, M. J. (2014). Quantity estimation and comparison in western lowland gorillas (Gorilla gorilla gorilla). Animal Cognition, 17, 755765. doi.org/10.1007/s1007-013-0707-yGoogle Scholar
West, R. E. & Young, R. J. (2002). Do domestic dogs show any evidence of being able to count? Animal Cognition, 5, 183186.Google Scholar

References

Agrillo, C. & Bisazza, A. (2018). Understanding the origin of number sense: A review of fish studies. Philosophical Transactions of the Royal Society B, 373, e20160511.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimenation of quantity in female mosquitofish. Animal Cognition, 11(3), 495503.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2009). Use of number by fish. PLoS One, 4(3), e4786.Google Scholar
Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PLoS One, 5(12), e15232.Google Scholar
Agrillo, C., Piffer, L., & Bisazza, A. (2011). Number versus continuous quantity in numerosity judgments by fish. Cognition, 119, 281287.Google Scholar
Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012a). Evidence for two numerical systems that are similar in humans and guppies. PLoS One, 7(2), e31923.Google Scholar
Agrillo, C., Miletto Petrazzini, M. E., Piffer, L., Dadda, M., & Bisazza, A. (2012b). A new training procedure for studying discrimination learning in fish. Behavioural Brain Research, 230(2), 343348.Google Scholar
Agrillo, C., Miletto Petrazzini, M. E., Tagliapietra, C., & Bisazza, A. (2012c). Inter-specific differences in numerical abilities among teleost fish. Frontiers in Psychology, 3, 483. doi: 10.3389/fpsyg.2012.00483Google Scholar
Agrillo, C. & Bisazza, A. (2014). Spontaneous versus trained numerical abilities: A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 8291.Google Scholar
Agrillo, C., Parrish, A. E., & Beran, M. J. (2016). How illusory is the solitaire illusion? Assessing the degree of misperception of numerosity in adult humans. Frontiers in Psychology, 7, 1663.Google Scholar
Beran, M. J., Perdue, B. M., Parrish, A. E., & Evans, T. A. (2012). Do social conditions affect capuchin monkeys’ (Cebus apella) choices in a quantity judgment task? Frontiers in Psychology, 3, 492.Google Scholar
Beran, M. J., McIntyre, J. M., Garland, A., & Evans, T. A. (2013). What counts for “counting”? Chimpanzees (Pan troglodytes) respond appropriately to relevant and irrelevant information in a quantity judgment task. Animal Behaviour, 85, 987993.Google Scholar
Berger, J. (1978). Group-size, foraging, and antipredator ploys: An analysis of bighorn sheep decisions. Behavioural Ecology and Sociobiology, 4, 9199.Google Scholar
Biro, D. & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193199.Google Scholar
Bisazza, A., Piffer, L., Serena, G., & Agrillo, C. (2010). Ontogeny of numerical abilities in fish. PLoS One, 5(11), e15516.Google Scholar
Bisazza, A., Tagliapietra, C., Bertolucci, C., Foà, A., & Agrillo, C. (2014a). Non-visual numerical discrimination in a blind cavefish (Phreatichthys andruzzii). Journal of Experimental Biology, 217, 19021909.Google Scholar
Bisazza, A., Agrillo, C., & Lucon-Xiccato, T. (2014b). Extensive training extends numerical abilities of guppies. Animal Cognition, 17(6), 14131419.Google Scholar
Bogale, B. A., Kamata, N., Mioko, K., & Sugita, S. (2011). Quantity discrimination in jungle crows, Corvus macrorhynchos. Animal Behaviour, 82(4), 635641.CrossRefGoogle Scholar
Bogale, B. A., Aoyama, M., & Sugita, S. (2014). Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Animal Behaviour, 94, 7378.Google Scholar
Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scalePsychological Science, 12(3), 238243. doi: 10.1111/1467-9280.00342Google Scholar
Brock, A. J., Sudwarts, A., Daggett, J., Parker, M. O., & Brennan, C. H. (2017). A fully automated computer based Skinner box for testing learning and memory in zebrafish. bioRxiv, doi: 10.1101/110478Google Scholar
Buckingham, J. N., Wong, B. B. M., & Rosenthal, G. G. (2007). Shoaling decisions in female swordtails: How do fish gauge group size? Behaviour, 144, 13331346.Google Scholar
Cantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5, 29122919.Google Scholar
Chittka, L. & Geiger, K. (1995). Can honey bees count landmarks? Animal Behaviour, 49, 159164.Google Scholar
Chivers, D. P. & Smith, R. J. F. (1994). The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. Journal of Fish Biology, 44, 273285.Google Scholar
Chivers, D. P. & Smith, R. J. F. (1995). Fathead minnows, Pimephales promelas, learn to recognize chemical stimuli from high risk habitats by the presence of alarm substance. Behaviorual Ecology, 6, 155158.Google Scholar
Dadda, M., Piffer, L., Agrillo, C., & Bisazza, A. (2009). Spontaneous number representation in mosquitofish. Cognition, 112(2), 343348.Google Scholar
Davis, H. (1984). Discrimination of the number three by a raccoon (Procyon lotor). Animal Learning and Behaviour, 12, 409413.Google Scholar
Davis, H. & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychology Bulletin, 92, 547571.Google Scholar
Davis, H. & Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence and a new research agenda. Behavioral and Brain Sciences, 11, 561579.Google Scholar
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neuroscience, 21(8), 355361.Google Scholar
Emmerton, J. & Renner, J. C. (2009). Local rather than global processing of visual arrays in numerosity discrimination by pigeons (Columba livia). Animal Cognition, 12, 511526.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (1972). The solitaire illusion: An illusion of numerosity. Perception & Psychophysics, 11, 409410.Google Scholar
Garland, A., Low, J., & Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15(6), 11291140.Google Scholar
Garland, A., Beran, M.J., McIntyre, J., & Low, J. (2014). Relative quantity judgments between discrete spatial arrays by chimpanzees (Pan troglodytes) and New Zealand robins (Petroica longipes). Journal of Comparative Psychology, 28(3), 307317.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2011a). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Animal Cognition, 14(1), 19.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2011b). Spontaneous discrimination of small quantities: Shoaling preferences in angelfish (Pterophyllum scalare). Animal Cognition, 14(4), 565574.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2013). Quantification abilities in angelfish (Pterophyllum scalare): The influence of continuous variables. Animal Cognition, 16(3), 373383.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2015). Angelfish (Pterophyllum scalare) discriminate between small quantities: A role of memory. Journal of Comparative Psychology, 129, 7883.Google Scholar
Gómez-Laplaza, L. M., Diaz-Sotelo, E., & Gerlai, R. (2018). Quantity discrimination in angelfish, Pterophyllum scalare: A novel approach with food as the discriminant. Animal Behaviour, 142, 1930.Google Scholar
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J., & Zhang, S. (2009). Number-based visual generalisation in the honeybee. PLoS One, 4(1), e4263.Google Scholar
Hager, M. C. & Helfman, G. S. (1991). Safety in numbers: Shoal size choice by minnows under predatory threat. Behaviour Ecology and Sociobiology, 29, 271276.Google Scholar
Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London B, 267(1445), 829833.Google Scholar
Hauser, M. D., Dehaene, S., Dehaene-Lambertz, G., & Patalano, A. L. (2002). Spontaneous number discrimination of multi-format auditory stimuli in cotton-top tamarins (Saguinus oedipus). Cognition, 86, B23B32.Google Scholar
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences USA, 106, 1038210385.Google Scholar
Jaakkola, K., Fellner, W., Erb, L., Rodriguez, M., & Guarino, E. (2005). Understanding of the concept of numerically “less” by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 286303.Google Scholar
Jordan, K. E., Maclean, E. L., & Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108, 617625.Google Scholar
Judge, P. G., Evans, T. A., & Vyas, D. K. (2005). Ordinal representation of numeric quantities by brown capuchin monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behaviour Processes, 31, 7994.Google Scholar
Krause, J. & Godin, J. G. J. (1995). Predator preferences for attacking particular group sizes: Consequences for predator hunting success and prey predation risk. Animal Behaviour, 50, 465473.Google Scholar
Landeau, L. & Terborgh, J. (1986). Oddity and the “confusion effect” in predation. Animal Behaviour, 34(5), 13721380.Google Scholar
Lemaitre, J. F., Ramm, S. A., Hurst, J. L., & Stockley, P. (2011). Social cues of sperm competition influence accessory reproductive gland size in a promiscuous mammal. Proceedings of the Royal Society of London B, 278, 11711176.Google Scholar
Lindström, K. & Ranta, E. (1993). Social preferences by male guppies, Poecilia reticulata, based on shoal size and sex. Animal Behaviour, 46, 10291031.Google Scholar
Lucon-Xiccato, T., Miletto Petrazzini, M. E., Agrillo, C., & Bisazza, A. (2015). Guppies discriminate between two quantities of food items but prioritize item size over total amount. Animal Behaviour, 107, 183191.CrossRefGoogle Scholar
Lucon-Xiccato, T., Dadda, M., Gatto, E., & Bisazza, A. (2017). Development and testing of a rapid method for measuring shoal size discrimination. Animal Cognition, 20(2), 149157.Google Scholar
Mehlis, M., Thünken, T., Bakker, T. C. M., & Frommen, J. G. (2015). Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks. Animal Cognition, 18, 11251131.Google Scholar
Miletto Petrazzini, M. E., Agrillo, C., Izard, V., & Bisazza, A. (2015a). Relative versus absolute numerical representation in fish: Can guppies represent ‘fourness’? Animal Cognition, 18(5), 10071117.CrossRefGoogle ScholarPubMed
Miletto Petrazzini, M. E., Lucon-Xiccato, T., Agrillo, C., & Bisazza, A. (2015b). Use of ordinal information by fish. Scientific Reports, 5, (111)Google Scholar
Miletto Petrazzini, M. E., Agrillo, C., Izard, V., & Bisazza, A. (2016). Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments? Journal of Comparative Psychology, 130(4), 380390.Google Scholar
Miletto Petrazzini, M. E., Parrish, A. E., Beran, M. J., & Agrillo, C. (2018). Exploring the Solitaire Illusion in guppies (Poecilia reticulata). Journal of Comparative Psychology, 132(1), 4857.Google Scholar
Miletto Petrazzini, M. E., Pecunioso, A., Dadda, M., & Agrillo, C. (2019) The impact of brain lateralization and anxiety-like behavior in an extensive operant conditioning task in zebrafish (Danio rerio). Symmetry, 11(11), 1395.CrossRefGoogle Scholar
Milinski, M. (1977a). Experiments on the selection by predators against spatial oddity of their prey. Zeitschrift für Tierpsychologie, 43, 311325.Google Scholar
Milinski, M. (1977b). Do all members of a swarm suffer the same predation? Zeitschrift für Tierpsychologie, 45, 373388.Google Scholar
Morgan, M. J. & Godin, J. G. J. (1985). Antipredator benefits of schooling in a cyprinodontid fish, the banded killifish (Fundulus diaphanus). Zeitschrift für Tierpsychologie, 70, 236246.Google Scholar
Parrish, A. E., Agrillo, C., Perdue, B. M., & Beran, M. J. (2016). The elusive illusion: Do children (Homo sapiens) and capuchin monkeys (Cebus apella) see the solitaire illusion? Journal of Experimental Child Psychology, 142, 8395.Google Scholar
Pepperberg, I. M. (2006). Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. Journal Comparative Psychology, 120(1), 111.Google Scholar
Potrich, D., Sovrano, V. A., Stancher, G., & Vallortigara, G. (2015). Quantity discrimination by zebrafish (Danio rerio). Journal of Comparative Psychology, 129, 388339.CrossRefGoogle ScholarPubMed
Potrich, D., Rugani, R., Sovrano, V. A., Regolin, L., & Vallortigara, G. (2019). Use of numerical and spatial information in ordinal counting by zebrafish. Scientific Report, 9, 18323.Google Scholar
Pritchard, V. L. Lawrence, J. Butlin, R. K., & Krause, J. (2001). Shoal choice in zebrafish, Danio rerio: The influence of shoal size and activity. Animal Behaviour, 62, 10851088.Google Scholar
Roberts, G. (1996). Why individual vigilance declines as group size increases. Animal Behaviour, 51, 10771086.Google Scholar
Roberts, W. A. & Mitchell, S. (1994). Can a pigeon simultaneously process temporal and numerical information? Journal of Experimental Psychology: Animal Behaviour Processes, 20, 6678.Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): Identification of ordinal position. Journal of Experimental Psychology: Animal Behavior Processes, 33, 2131.Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2008). Discrimination of small numerosities in young chicks. Journal of Experimental Psychology: Animal Behavior Processes, 34(3), 388399.Google Scholar
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society of London, B, 276(1666), 24512460.Google Scholar
Schaller, G. B. (1972). The Serengeti Lion. A Study of Predator-Prey Relations. Chicago: Chicago University Press.Google Scholar
Smith, C. C. & Sargent, R. C. (2006). Female fitness declines with increasing female density but not male harassment in the western mosquitofish, Gambusia affinis. Animal Behaviour, 71, 401407.Google Scholar
Stancher, G., Sovrano, V. A., Potrich, D., & Vallortigara, G. (2013). Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Animal Cognition, 16(2), 307312.CrossRefGoogle ScholarPubMed
Suzuki, K. & Kobayashi, T. (2000). Numerical competence in rats (Rattus norvegicus): Davis & Bradford (1986) extended. Journal of Comparative Psychology, 114(1), 7385.Google Scholar
Tokita, M., Ashitani, Y., & Ishiguchi, A. (2013). Is approximate numerical judgment truly modality-independent? Visual, auditory, and cross-modal comparisons. Attention, Perception, and Psychophysics, 75, 18521861.Google Scholar
Vonk, J. & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231238.Google Scholar
Wertheimer, M. (1923). Laws of Organization in Perceptual Forms. A Source Book of Gestalt Psychology. London, UK: Routledge.Google Scholar
West, R. E., & Young, R. J. (2002). Do domestic dogs show any evidence of being able to count? Animal Cognition, 5(3), 183186.CrossRefGoogle ScholarPubMed
Xiong, W., Yi, L. C., Tang, Z., Zhao, X., & Fu, S. J. (2018). Quantity discrimination in fish species: Fish use non-numerical continuous quantity traits to select shoals. Animal Cognition, 21, 813820.Google Scholar

References

Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: Evidence for a snarc-like effect. PLoS One, 9, e90373. doi: 10.1371/journal.pone.0090373Google Scholar
Albert, M. L. (1973). A simple test of visual neglect. Neurology, 23(6), 658664.CrossRefGoogle ScholarPubMed
Berkay, D., Çavdaroğlu, B., & Balcı, F. (2016). Probabilistic numerical discrimination in mice. Animal Cognition, 19, 351365. doi: 10.1007/s10071-015-0938-1Google Scholar
Biro, D. & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals and the introduction of zero. Animal Cognition, 4, 193199. doi: 10.1007/s100710100086Google Scholar
Brugger, P. (2015). Chicks with a number sense. Science, 347(6221), 477478. doi: 10.1126/science.aaa4854Google Scholar
Cantlon, J. F. & Brannon, E. M. (2007). How much does number matter to a monkey? Journal of Experimental Psychology: Animal Behavior Processes, 33, 3241. doi: 10.1037/0097-7403.33.1.32Google Scholar
Carey, S. (2004). Bootstrapping and the origin of concept. Daedalus, 133, 5968. doi: 10.1162/001152604772746701Google Scholar
Carey, S. (2009). The Origin of Concepts. New York: Oxford University Press.Google Scholar
Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both small and large numbers. Psychonomic Bulletin and Review, 8, 698707. doi: 10.3758/bf03196206Google Scholar
Daisley, J. N., Mascalzoni, E., Rosa-Salva, O., Rugani, R., & Regolin, L. (2009). Lateralization of social cognition in the domestic chicken (Gallus gallus). Philosophical Transactions of the Royal Society of London – B, 364, 965981. doi: 10.1098/rstb.2008.0229Google Scholar
Davis, H. & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and new research agenda. Behavioural and Brain Sciences, 11, 561-615. doi: 10.1017/S0140525X00053437Google Scholar
Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics, Revised and Updated Edition. New York: Oxford University Press.Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371396. doi: 10.1037/0096-3445.122.3.371Google Scholar
Deng, C. & Rogers, L. J. (1998). Bilaterally projecting neurons in the two visual pathways of chicks. Brain Research, 794, 281290.Google Scholar
Diekamp, B., Regolin, L., Güntürkün, O., & Vallortigara, G. (2005). A left-sided visuospatial bias in birds. Current Biology, 15, R372R373.Google Scholar
Ditz, H. M., & Nieder, A. (2015). Neurons selective to the number of visual items in the corvid songbird endbrain. Proceedings of the National Academy of Sciences of the USA, 112(25), 78277832. doi: 0.1073/pnas.1504245112Google Scholar
Drucker, C. B. & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 5767.Google Scholar
Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S., & Kleinschmidt, A. (2009). Deciphering cortical number coding from human brain activity patterns. Current Biology, 19, 16081615.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307314. doi: 10.1016/j.tics.2004.05.002Google Scholar
Fontanari, L., Rugani, R., Regolin, L., & Vallortigara, G. (2011). Object individuation in three-day old chicks: Use of property and spatiotemporal information. Developmental Science, 14(5), 12351244. doi: http://dx.doi.org/10.1111/j.1467-7687.2011.01074.xGoogle Scholar
Fontanari, L., Rugani, R., Regolin, L., & Vallortigara, G. (2014). Use of kind information for object individuation in young domestic chicks. Animal Cognition, 17(4), 925935. doi: 10.1007/s10071-013-0725-9Google Scholar
Gallistel, C. R. & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374. doi: 10.1016/0010-0277(92)90050-rCrossRefGoogle ScholarPubMed
Galton, F. (1880). Visualised numerals. Nature, 21, 252256. doi: 10.1038/021252a0Google Scholar
Gazes, R. P., Diamond, R. F. L., Hope, J. M., Caillaud, D., Stoinski, T. S., & Hampton, R. R. (2017). Spatial representation of magnitude in gorillas and orangutans. Cognition, 168, 312319.Google Scholar
Hardy, O., Leresche, N., & Jassik-Gerschenfeld, D. (1984). Postsynaptic potentials in neurons of the pigeon’s optic tectum in response to afferent stimulation from the retina and other visual structures. Brain Research, 311, 6567. doi: 10.1016/0006-8993(84)91399-4Google Scholar
Harvey, B. M., Klein, B. P. Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 11231126. doi: 10.1126/science.1239052Google Scholar
Jarvis, E. D., Güntürkün, O., András Csillag, L. B., Karten, H., Kuenze, W. et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience 6, 151159.Google Scholar
Kawai, N. & Matsuzawa, T. (2000). Numerical memory span in a chimpanzee. Nature 403, 3940. doi: 10.1038/47405Google Scholar
Moyer, R. S. & Landaeuer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 15191520. doi: 10.1038/2151519a0CrossRefGoogle ScholarPubMed
Ocklenburg, S. (2017). Tachistoscopic Viewing and Dichotic Listening. In Rogers, L. J. & Vallortigara, G. (Eds.), Lateralized Brain Functions (pp. 328). New York: Springer Verlag.Google Scholar
Ocklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3, 19. doi: 10.3389/fpsyg.2012.00005Google Scholar
Park, J. & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 20132019. doi: 10.1177/0956797613482944Google Scholar
Piazza, M. Izard, V. Pinel, P. Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547555.Google Scholar
Rashid, N. & Andrew, R. J. (1989). Right hemisphere advantages for topographical orientation in the domestic chick. Neuropsychologia, 27, 937948. doi: 10.1016/0028-3932(89)90069-9Google Scholar
Regolin, L. (2006). The case of the line-bisection: When both humans and chickens wander left. Cortex, 42, 101103. doi: 10.1016/S0010-9452(08)70330-7Google Scholar
Regolin, L., Garzotto, B., Rugani, R., & Vallortigara, G. (2005a). Working memory in the chick: Parallel and lateralized mechanisms for encoding of object- and position-specific information. Behavioural Brain Research, 157, 19. doi: 10.1016/j.bbr.2004.06.012Google Scholar
Regolin, L., Rugani, R., Pagni, P., & Vallortigara, G. (2005b). Delayed search for a social and a non-social goal object by the young domestic chick (Gallus gallus). Animimal Behaviour, 70, 855864. doi: 10.1016/j.anbehav.2005.01.014Google Scholar
Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology83, 274278.Google Scholar
Robert, F. & Cuénod, M. (1969). Electrophysiology of the intertectal commissures in the pigeon. I. Analysis of the pathways. Experimental Brain Research, 9, 116122.Google Scholar
Rogers, L. J., Vallortigara, G., & Andrew, R. J. (2013). Divided Brains: The Biology and Behavior of Brain Asymmetries. Cambridge, UK: Cambridge University Press.Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental competence in 5-day-old domestic chicks: Identification of ordinal position. Journal of Experimental Psychology: Animal Behaviour Processes, 33(1), 2131. doi: 10.1037/0097-7403.33.1.21Google Scholar
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B, 276, 24512460. doi: 10.1098/rspb.2009.0044Google Scholar
Rugani, R., Kelly, M. D., Szelest, I., Regolin, L., & Vallortigara, G. (2010a). It is only humans that count from left to right? Biology Letters, 6, 290292. doi: 10.1098/rsbl.2009.0960Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2010b). Imprinted numbers: Newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 13(5), 790797. doi: 10.1111/j.1467-7687.2009.0Google Scholar
Rugani, R., Vallortigara, G., Vallini, B., & Regolin, L. (2011a). Asymmetrical number-space mapping in the avian brain. Neurobiology of Learning and Memory, 95, 231238. doi: http://dx.doi.org/10.1016/j.nlm.2010.11.012Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2011b). Summation of large numerousness by newborn chicks. Frontiers of Comparative Psychology, 7(2), 179. doi: 10.3389/fpsyg.2011.00179Google Scholar
Rugani, R., Cavazzana, A., Vallortigara, G., & Regolin, L. (2013). One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animimal Cognition, 16, 557564. doi: 10.1007/s10071-012-0593-8Google Scholar
Rugani, R., Rosa-Salva, O., & Regolin, L. (2014). Lateralized mechanisms for encoding of object. Behavioral evidence from an animal model: The domestic chick (Gallus gallus). Frontiers of Comparative Psychology, 5, 150. doi: 10.3389/fpsyg.2014.00150Google Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015a). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534536. doi: 10.1126/science.aaa1379Google Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015b). Comments to number-space mapping in the newborn chick resembles humans’ mental number line. Science, 348, 1438.CrossRefGoogle ScholarPubMed
Rugani, R., Vallortigara, G., & Regolin, L. (2015c). At the root of the left-right asymmetries in spatial numerical processing: From domestic chicks to human subjects. Journal of Cognitive Psychology, 27(4), 388399. doi: 10.1080/20445911.2014.941846Google Scholar
Rugani, R., Vallortigara, G., & Regolin, L. (2016). Mapping number to space in the two hemispheres of the avian brain. Neurobiology of Learning and Memory, 133, 1318. doi: 10.1016/j.nlm.2016.05.010Google Scholar
Rugani, R., Castiello, U., Priftis, K., Spoto, A., & Sartori, L. (2017). What is a number? The interplay between number and continuous magnitudes. Behavioural and Brain Sciences, 40(e187), 3940. doi: 10.1017/S0140525X16002259Google Scholar
Scarf, D., Hayne, H., & Colombo, M. (2011). Pigeons on par with primates in numerical competence. Science, 334, 1664. doi: 10.1126/science.1213357Google Scholar
Shaki, S. & Fischer, M. (2008). Reading space into numbers: A cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590599. doi: 10.1016/j.cognition.2008.04.001Google Scholar
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328331. doi: 10.3758/PBR.16.2.328Google Scholar
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the USA, 110, 1811618120. doi: 10.1073/pnas.1302751110Google Scholar
Theiss, M. P. H., Hellmann, B., & Güntürkün, O. (2003). The architecture of an inhibitory sidepath within the avian tectofugal system. NeuroReport, 14, 879882.Google Scholar
Tommasi, L. & Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemisphere of the avian brain. Behavioural Neuroscience, 115, 602613. doi: 10.1037/0735-7044.115.3.602Google Scholar
Tommasi, L., Gagliardo, A., Andrew, R. J., & Vallortigara, G. (2003). Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. European Journal of Neuroscience, 17, 16951702.Google Scholar
Triki, Z. & Bshary, R. (2018). Cleaner fish Labroides dimidiatus discriminate numbers but fail a mental number line test. Animal Cognition, 21, 99107.Google Scholar
Vallortigara, G. (2012). Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 29, 213236. doi: 10.1080/02643294.2012.654772Google Scholar
Vallortigara, G., Chiandetti, C., Sovrano, V. A., Rugani, R., & Regolin, L. (2010a). Animal Cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 882893. doi: 10.1002/wcs.75Google Scholar
Weidner, C., Reperant, J., Miceli, D., Haby, M., & Rio, J. P. (1985). An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxide, fluorescence and degeneration techniques. Brain Research, 340, 99108.Google Scholar
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165190. doi: 10.1163/1568537054068660Google Scholar
Zeier, H. J. & Karten, H. J. (1973). Connections of the anterior commissure in the pigeon (Columba livia). Journal of Comparative Neurology, 150, 201216.Google Scholar

References

Astley, S. L. & Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18(2), 193207.Google Scholar
Astley, S. L. & Wasserman, E. A. (1999). Superordinate category formation in pigeons: Association with a common delay or probability of food reinforcement makes perceptually dissimilar stimuli functionally equivalent. Journal of Experimental Psychology: Animal Behavior Processes, 25(4), 415432. https://doi.org/10.1037/0097-7403.25.4.415Google Scholar
Astley, Suzette L., Peissig, Jessie J., & Wasserman, Edward A. (2001). Superordinate categorization via learned stimulus equivalence: Quantity of reinforcement, hedonic value, and the nature of the mediator. Journal of Experimental Psychology: Animal Behavior Processes, 27(3), 252268. https://doi.org/10.1037/0097-7403.27.3.252Google Scholar
Aust, U. & Huber, L. (2001). The role of item- and category-specific information in the discrimination of people versus nonpeople images by pigeons. Animal Learning and Behavior, 29(2), 107119.Google Scholar
Aust, U. & Huber, L. (2002). Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Animal Learning and Behavior, 30(2), 165176.Google Scholar
Aust, U. & Huber, L. (2003). Elemental versus configural perception in a people-present/people-absent discrimination task by pigeons. Learning and Behavior, 31(3), 213224.Google Scholar
Aust, U. & Huber, L. (2010). The role of skin-related information in pigeons’ categorization and recognition of humans in pictures. [Article]. Vision Research, 50(19), 19411948. doi: 10.1016/j.visres.2010.07.012Google Scholar
Azizi, A. H., Pusch, R., Koenen, C., Klatt, S., Broker, F., Thiele, S., … Cheng, S. (2019). Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). [Article]. Behavioural Brain Research, 356, 423434. doi: 10.1016/j.bbr.2018.05.014Google Scholar
Belguermi, A., Bovet, D., Pascal, A., Prévot-Julliard, A.-C., Jalme, M. S., Rat-Fischer, L., & Leboucher, G. (2011). Pigeons discriminate between human feeders. Animal Cognition, 14(6), 909914. doi: http://dx.doi.org/10.1007/s10071-011-0420-7Google Scholar
Bhatt, R. S., Wasserman, E. A., Reynolds, W. F., & Knauss, K. S. (1988). Conceptual behavior in pigeons: Categorization of both familiar and novel examples from four classes of natural and artifical stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 219234.Google Scholar
Castro, L. & Wasserman, E. A. (2017). Feature predictiveness and selective attention in pigeons’ categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 43(3), 231242. doi: http://dx.doi.org/10.1037/xan0000146Google Scholar
Cerella, J. (1979). Visual classes and natural categories in the pigeon. Journal of Experimental Psychology: Human Perception and Performance, 5(1), 6877.Google Scholar
Cook, R. G., Levison, D. G., Gillet, S. R., & Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomic Bulletin and Review, 12(2), 350358.Google Scholar
Cook, R. G., Wright, A. A., & Drachman, E. E. (2013). Categorization of birds, mammals, and chimeras by pigeons. Behavioural Processes, 93, 98110. doi: 10.1016/j.beproc.2012.11.006Google Scholar
Dittrich, L., Adam, R., Unver, E., & Güntürkün, O. (2010). Pigeons identify individual humans but show no sign of recognizing them in photographs. Behavioural Processes, 83(1), 8289. doi: http://dx.doi.org/10.1016/j.beproc.2009.10.006Google Scholar
Ellis, A. E. & Oakes, L. M. (2006). Infants flexibly use different dimensions to categorize objects. Developmental Psychology, 42(6), 10001011. doi: http://dx.doi.org/10.1037/0012-1649.42.6.1000Google Scholar
Frank, A. J. & Wasserman, E. A. (2005). Associative symmetry in the pigeon after successive matching‐to‐sample training. Journal of the Experimental Analysis of Behavior, 84, 147165https://doi.org/10.1901/jeab.2005.115-04Google Scholar
Ghosh, N., Lea, S. E. G., & Noury, M. (2004). Transfer to intermediate forms following concept discrimination by pigeons: Chimeras and morphs. Journal of Experimental Analysis of Behavior, 82(2), 125141.Google Scholar
Gibson, B. M., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005). Applying Bubbles to localize features that control pigeons’ visual discrimination behavior. Journal of Experimental Psychology: Animal Behavior Processes, 31(3), 376382.Google Scholar
Goto, K., Lea, S. E. G., Wills, A. J., & Milton, F. (2011). Interpreting the effects of image manipulation on picture perception in pigeons (Columba livia) and humans (Homo sapiens). Journal of Comparative Psychology, 125(1), 4860. doi: 10.1037/a0020791 10.1037/a0020791.supp (Supplemental)Google Scholar
Herrnstein, R. J. & de Villiers, P. A. (1980). Fish as Natural Category for People and Pigeons. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory Vol. 14, (5995), New York: Academic Press. (Reprinted from: IN FILE).Google Scholar
Herrnstein, R. J. & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146(3643), 549551.Google Scholar
Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 285302.Google Scholar
Huber, L. & Lenz, R. (1993). A test of the linear feature model of polymorphous concept discrimination with pigeons. Quarterly Journal of Experimental Psychology, 46B(1), 118.Google Scholar
Huber, L. & Lenz, R. (1996). Categorization of prototypical stimulus classes by pigeons. Quarterly Journal of Experimental Psychology, 49B (2), 111133.Google Scholar
Huber, L., Troje, N. F., Loidolt, M., Aust, U., & Grass, D. (2000). Natural categorization through multiple feature learning in pigeons. Quarterly Journal of Experimental Psychology, 53B(4), 341357.Google Scholar
Jitsumori, M. (1993). Category discrimination of artificial polymorphous stimuli based on feature learning. Journal of Experimental Psychology: Animal Behavior Processes, 19(3), 244254.Google Scholar
Jitsumori, M. (1996). A prototype effect and categorization of artificial polymorphous stimuli in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 22(4), 405419.Google Scholar
Jitsumori, M., Ohkita, M., & Ushitani, T. (2011). The learning of basic-level categories by pigeons: The prototype effect, attention, and effects of categorization. Learning & Behavior, 39(3), 271287. doi: 10.3758/s13420-011-0028-4Google Scholar
Johnson, K. E. & Mervis, C. B. (1997). Effects of varying levels of expertise on the basic level of categorization. Journal of Experimental Psychology: General, 126(3), 248277.Google Scholar
Keller, F. S. & Schoenfeld, W. N. (1950). Principles of Psychology: A Systematic Text in the Science of Behavior. New York Appleton-Century-Crofts, Inc.Google Scholar
Kirkpatrick, K., Bilton, T., Hansen, B. C., & Loschky, L. C. (2014). Scene gist categorization by pigeons. Journal of Experimental Psychology: Animal Learning and Cognition, 40(2), 162177. doi: 10.1037/xan0000014Google Scholar
Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2004). Pigeons concurrently categorize photographs at both basic and superordinate levels. Psychonomic Bulletin and Review, 11(6), 11111117.Google Scholar
Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2006). Effects of stimulus manipulations on visual categorization in pigeons. Behavioural Processes, 72, 224233.Google Scholar
Lazareva, O. F. & Wasserman, E. A. (2009). Effects of stimulus duration and choice delay on visual categorization in pigeons. Learning and Motivation, 40, 132146. doi: 10.1016/j.lmot.2008.10.003Google Scholar
Lazareva, O. F., Soto, F., & Wasserman, E. A. (2010). Effect of between-category similarity on basic-level superiority in pigeons. Behavioural Processes, 85, 236245.Google Scholar
Lazareva, O. F., & Wasserman, E. A. (2017). Categories and Concepts in Animals In Byrne, J. H. (Ed.), Learning and Memory: A Comprehensive Reference (2nd ed.) (pp. 111139). Oxford: Academic Press.Google Scholar
Lea, S. E. G. (1984). In what Sense Do Pigeons Learn Concepts? In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal Cognition (pp. 263277). Hillsdale, NJ: Erlbaum. (Reprinted from: IN FILE).Google Scholar
Lea, S. E. G., Poser-Richet, V., & Meier, C. (2015). Pigeons can learn to make visual category discriminations using either low or high spatial frequency information. Behavioural Processes, 112, 8187. doi: http://dx.doi.org/10.1016/j.beproc.2014.11.012Google Scholar
Lea, S. E. G., Pothos, E. M., Wills, A. J., Leaver, L. A., Ryan, C. M. E., & Meier, C. (2018). Multiple feature use in pigeons’ category discrimination: The influence of stimulus set structure and the salience of stimulus differences. Journal of Experimental Psychology. Animal Learning and Cognition, 44(2), 114127. doi: http://dx.doi.org/10.1037/xan0000169Google Scholar
Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal of Experimental Analysis of Behavior, 21(3), 475483.Google Scholar
Makino, H. & Jitsumori, M. (2007). Discrimination of artificial categories structured by family resemblances: A comparative study in people (Homo sapiens) and pigeons (Columba livia). Journal of Comparative Psychology, 121(1), 2233. doi: 10.1037/0735-7036.121.1.22Google Scholar
Mareschal, D., Quinn, P. C., & Lea, S. E. G. (2010). The Making of Human Concepts, New York: Oxford University Press.Google Scholar
Markman, E. M. (1989). Categorization and Naming in Children: Problems of Induction. Cambridge, MA: The MIT Press.Google Scholar
Nicholls, E., Ryan, C. M. E., Bryant, C. M. L., & Lea, S. E. G. (2011). Labeling and family resemblance in the discrimination of polymorphous categories by pigeons. Animal Cognition, 14(1), 2134. doi: 10.1007/s10071-010-0339-4Google Scholar
Poole, J. & Lander, D. G. (1971). The pigeon’s concept of pigeon. Psychonomic Science, 25(3), 157158.Google Scholar
Premack, D. (1976). Intelligence in Ape and Man. Hillsdale, NJ: John Wiley & Sons.Google Scholar
Quinn, P. C. & Eimas, P. D. (1998). Evidence for a global categorical representation of humans by young infants. Journal of Experimental Child Psychology, 69(3), 151174.Google Scholar
Roberts, W. A. & Mazmanian, D. S. (1988). Concept learning at different levels of abstraction by pigeons, monkeys, and people. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 247260.Google Scholar
Rosch, E. & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7(4), 573605.Google Scholar
Soto, F. A. & Wasserman, E. A. (2010). Error-driven learning in visual categorization and object recognition: A common-elements model. Psychological Review, 117(2), 349381. doi: 10.1037/a0018695Google Scholar
Soto, F. A. & Wasserman, E. A. (2012). Visual object categorization in birds and primates: Integrating behavioral, neurobiological, and computational evidence within a ‘general process’ framework. Cognitive, Affective & Behavioral Neuroscience, 12(1), 220240. doi: 10.3758/s13415-011-0070-xGoogle Scholar
Stephan, C., Wilkinson, A., & Huber, L. (2012). Have we met before? Pigeons recognise familiar human faces. [Article]. Avian Biology Research, 5(2), 7580. doi: 10.3184/175815512x13350970204867Google Scholar
Tanaka, J. W. & Taylor, M. (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23(3), 457482.Google Scholar
Urcuioli, P. J., Wasserman, E. A., & Zentall, T. R. (2014). Associative concept learning in animals: Issues and opportunities. Journal of the Experimental Analysis of Behavior, 101(1), 165170. doi: 10.1002/jeab.62Google Scholar
Wasserman, E. A. (2016). Conceptualization in pigeons: The evolution of a paradigm. Behavioural Processes, 123, 414. doi: 10.1016/j.beproc.2015.09.010Google Scholar
Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual behavior in pigeons: Categories, subcategories, and pseudocategories. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 235246.Google Scholar
Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Nonsimilarity-based conceptualization in pigeons via secondary or mediated generalization. Psychological Science, 3(6), 374378.Google Scholar
Wasserman, E. A., Brooks, D. I., & McMurray, B. (2015). Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning? Cognition, 136, 99122. doi: 10.1016/j.cognition.2014.11.020Google Scholar
Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept.Cognition, 104(2), 315344. doi: 10.1016/j.cognition.2006.07.004Google Scholar
Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. R., & Rattermann, M. J. (2008). Concept learning in animals. Comparative Cognition and Behavior Reviews, 3, 1345.Google Scholar
Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014). Associative concept learning in animals. Journal of the Experimental Analysis of Behavior, 101(1), 130151. doi: http://dx.doi.org/10.1002/jeab.55Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×