Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:29:20.105Z Has data issue: false hasContentIssue false

9 - Using Comparisons between Species and Anatomical Locations to Discover Mechanisms of Growth Plate Patterning and Differential Growth

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, V., Meyers, J. L., Weise, M., et al. (2002). The role of the resting zone in growth plate chondrogenesis. Endocrinology, 143, 18511857.Google Scholar
Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. and De Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes and Development, 16, 28132828.Google Scholar
Andrey, G., Montavon, T., Mascrez, B., et al. (2013). A switch between topological domains underlies Hoxd genes collinearity in mouse limbs. Science, 340, 1234167.CrossRefGoogle ScholarPubMed
Ballock, R. T. and O’Keefe, R. J. (2003). The biology of the growth plate. Journal of Bone and Joint Surgury American Volume, 85A, 715726.Google Scholar
Bernstein, B. E., Birney, E., Dunham, I., et al. (2012). An integrated encyclopedia of DNA elementsin the human genome. Nature, 489, 5774.Google Scholar
Bisgard, J. D. and Bisgard, M. E. (1935). Longitudinal growth of long bones. Archives of Surgery, 31, 569587.Google Scholar
Boulet, A. M. and Capecchi, M. R. (2002). Duplication of the Hoxd11 gene causes alterations in the axial and appendicular skeleton of the mouse. Developmental Biology, 249, 96107.Google Scholar
Boulet, A. M. and Capecchi, M. R. (2004). Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development, 131, 299309.Google Scholar
Bruneau, S., Johnson, K. R., Yamamoto, M., Kuroiwa, A. and Duboule, D. (2001). The mouse Hoxd13spdh mutation, a polyalanine expansion similar to human Type II synpolydactyly (Spd), disrupts the function but not the expression of other Hoxd genes. Developmental Biology, 237, 345353.Google Scholar
Capecchi, M. R. (1994). Targeted gene replacement. Scientific American, 270, 5259.Google Scholar
Capecchi, M. R. (1997). Hox genes and mammalian development. Cold Spring Harbor Symposia on Quantitative Biology, 62, 273281.Google Scholar
Carroll, S. B. (2003). Genetics and the making of Homo sapiens. Nature, 422, 849857.CrossRefGoogle ScholarPubMed
Carroll, S. B. (2008). Evo–devo and an expanding evolutionary synthesis, a genetic theory of morphological evolution. Cell, 134, 2536.Google Scholar
Chiu, C. H. and Hamrick, M. W. (2002). Evolution and development of the primate limb skeleton. Evolutionary Anthropology, 11, 94107.CrossRefGoogle Scholar
Chung, U. I., Lanske, B., Lee, K., Li, E. and Kronenberg, H. (1998). The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Procedings of the National Academy of Sciences USA, 95, 1303013035.CrossRefGoogle ScholarPubMed
Cooper, K. L., Oh, S., Sung, Y., et al. (2013). Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature, 495, 375378.CrossRefGoogle ScholarPubMed
Cotney, J., Leng, J., Yin, J., et al. (2013). The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell, 154, 185196.Google Scholar
Creyghton, M. P., Cheng, A. W., Welstead, G. G., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Procedings of the National Academy of Sciences USA, 107, 2193121936.CrossRefGoogle ScholarPubMed
Davis, A. P. and Capecchi, M. R. (1994). Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of Hoxd-11. Development, 120, 21872198.Google Scholar
Davis, A. P. and Capecchi, M. R. (1996). A mutational analysis of the 5' HoxD genes, dissection of genetic interations during limb development in the mouse. Development, 122, 11751185.Google Scholar
Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. and Capecchi, M. R. (1995). Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature, 375, 791795.Google Scholar
De Crombrugghe, B., Lefebvre, V. and Nakashima, K. (2001). Regulatory mechanisms in the pathways of cartilage and bone formation. Current Opinion in Cell Biology, 13, 721727.Google Scholar
Dennis, M. Y., Nuttle, X., Sudmant, P. H., et al. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplicaiton. Cell, 149, 912922.Google Scholar
Deschamps, J. (2004). Developmental biology. Hox genes in the limb, a play in two acts. Science, 304, 16101611.Google Scholar
Dolle, P., Izpisua-Belmonte, J. C., Falkenstein, H., Renucci, A. and Duboule, D. (1989). Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature, 342, 767772.Google Scholar
Dolle, P., Dierich, A., Lemeur, M., et al. (1993). Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell, 75, 431441.Google Scholar
Duboule, D. (2007). The rise and fall of Hox gene clusters. Development, 134, 25492560.Google Scholar
Ducy, P. (2000). Cbfa1, a molecular switch in osteoblast biology. Developmental Dynamics, 291, 461471.Google Scholar
Farnum, C. E., Tinsley, M. and Hermanson, J. W. (2008a). Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus, functional divergence is reflected in chondrocytic performance in autopodial growth plates. Cells Tissues Organs, 187, 3547.CrossRefGoogle ScholarPubMed
Farnum, C. E., Tinsley, M. and Hermanson, J. W. (2008b). Postnatal bone elongation of the manus versus pes, analysis of the chondrocytic differentiation cascade in Mus musculus and Eptesicus fuscus. Cells Tissues Organs, 187, 4858.CrossRefGoogle ScholarPubMed
Favier, B., Le Meur, M., Chambon, P. and Dolle, P. (1995). Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proceedings of the National Academy of Sciences USA, 92, 310314.CrossRefGoogle ScholarPubMed
Favier, B., Rijli, F. M., Fronmental-Remain, C., Fraulob, V. and Chambon, P. (1996). Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development, 122, 449460.Google Scholar
Felts, W. J. L. (1959). Transplantation studies of factors in skeletal organogenesis I. The subcutaneously implanted immature long-bone of the rat and mouse. American Journal of Physical Anthropology, 17, 201215.Google Scholar
Francis, C. C. (1940). The appearance of centers of ossification from 6 to 15 years. American Journal of Physical Anthropology, 27, 127138.CrossRefGoogle Scholar
Fromental-Remain, C., Warot, X., Messadecq, N., Dolle, P. and Chambon, P. (1996). Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development, 122, 29973011.Google Scholar
Gao, B., Song, H., Bishop, K., et al. (2011). Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Developmental Cell, 20, 163176.Google Scholar
Gehrke, A. R., Schneider, I., De La Calle-Mustienes, E., et al. (2015). Deep conservation of wrist and digit enhancers in fish. Procedings of the National Academy of Sciences USA, 112, 803808.Google Scholar
Gillies, C. D. (1929). The origin of the os pisiforme. Journal of Anatomy, 63, 380383.Google Scholar
Gilsanz, V. and Ratib, O. (2005). Hand Bone Age, A Digital Atlas of Skeletal Maturity. Heidelberg: Springer.Google Scholar
Glickman, A. M., Yang, J. P., Stevens, D. G. and Bowen, C. V. (2000). Epiphyseal plate transplantation between sites of different growth potential. Journal of Pediatric Orthopedics, 20, 289295.CrossRefGoogle ScholarPubMed
Goff, D. J. and Tabin, C. J. (1997). Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb bud reveals that Hox genes affect both bone condensation and growth. Development, 124, 627636.Google Scholar
Gonzalez-Martin, M. C., Mallo, M. and Ros, M. A. (2014). Long bone development requires a threshold of Hox function. Developmental Biology, 392, 454465.Google Scholar
Gross, S., Krause, Y., Wuelling, M. and Vortkamp, A. (2012). Hoxa11 and Hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice. PLoS ONE, 7, e43553.Google Scholar
Guenther, C., Pantalena-Filho, L. and Kingsley, D. M. (2008). Shaping skeletal growth by modular regulatory elements in the Bmp5 gene. PLoS Genetics, 4, e1000308.Google Scholar
Haines, R. W. (1942). The evolution of epiphyses and of endochondral bone. Biological Review, 17, 276292.CrossRefGoogle Scholar
Haines, R. W. (1969). Epiphyses and sesamoids. In: Gans, C. (ed.) Biology of Reptilia. New York, NY: Academic Press.Google Scholar
Hallgrimsson, B. and Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative Comparative Biology, 48, 373384.Google Scholar
Hallgrimsson, B., Willmore, K. and Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, Suppl. 35, 131158.CrossRefGoogle Scholar
Hamrick, M. W. (1999). A chondral modeling theory revisited. Journal of Theoretical Biology, 201, 201298.Google Scholar
Helal, B. (1978). Chronic overuse injuries of the piso-triquetral joint in racquet game players. British Journal of Sports Medicine, 12, 195198.CrossRefGoogle ScholarPubMed
Hendrikse, J. L., Parsons, T. E. and Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9, 393401.CrossRefGoogle ScholarPubMed
Hilton, M. J., Tu, X., Cook, J., Hu, H. and Long, F. (2005). Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development, 132, 43394351.Google Scholar
Hlusko, L. J. (2004). Integrating the genotype and phenotype in hominid paleontology. Proceedings of the National Academy of Sciences USA, 101, 26532657.CrossRefGoogle ScholarPubMed
Hunziker, E. B. (1994). Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique, 28, 505519.Google Scholar
Izpisua-Belmonte, J. C., Falkenstein, H., Dolle, P., Renucci, A. and Duboule, D. (1991). Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO Journal, 10, 22792289.CrossRefGoogle Scholar
Jameson, B. H., Rayan, G. M. and Acker, R. E. (2002). Radiographic analysis of pisotriquetral joint and pisiform motion. Journal of Hand Surgery American, 27, 863869.Google Scholar
Johnson, R. L. and Tabin, C. J. (1997). Molecular models for vertebrate limb development. Cell, 90, 979990.Google Scholar
Jouffroy, F. K. (1991). La “Main Sans Talon” du primate bipéde. In: Coppens, Y. (ed.) Origine(s) De La Bipedie Chez Les Hominides. Paris: Centre National de la Recherch Scientifique.Google Scholar
Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002). The human genome browser at UCSC. Genome Research, 12, 9961006.Google Scholar
Kivell, T. L. and Begun, D. R. (2007). Frequency and timing of scaphoid–centrale fusion in hominoids. Journal of Human Evolution, 52, 321340.CrossRefGoogle ScholarPubMed
Kjosness, K. M., Hines, J. E., Lovejoy, C. O. and Reno, P. L. (2014). The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. Journal of Anatomy, 225, 527538.CrossRefGoogle ScholarPubMed
Klement, B. J. and Spooner, B. S. (1992). Endochondral bone formation in embryonic mouse pre-metatarsals. Transactions of the Kansas Academy of Science, 95, 3944.CrossRefGoogle ScholarPubMed
Kobayashi, T., Chung, U. I., Schipani, E., et al. (2002). PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development, 129, 29772986.Google Scholar
Kobayashi, T., Soegiarto, D. W., Yang, Y., et al. (2005). Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. Journal of Clinical Investigation, 115, 17341742.Google Scholar
Koyama, E., Yasuda, T., Wellik, D. M. and Pacifici, M. (2010). Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization. Annals of the New York Academy of Science, 1192, 307316.Google Scholar
Koziel, L., Kunath, M., Kelly, O. G. and Vortkamp, A. (2004). Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Developmental Cell, 6, 801813.Google Scholar
Koziel, L., Wuelling, M., Schneider, S. and Vortkamp, A. (2005). Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development, 132, 52495260.Google Scholar
Kriegs, J. O., Churakov, G., Kiefmann, M., et al. (2006). Retroposed elements as archives for the evolutionary history of placental mammals s. PLoS Biology, 4, e91.Google Scholar
Krumlauf, R. (1992). Evolution of the vertebrate Hox homeobox genes. Bioessays, 14, 245252.CrossRefGoogle ScholarPubMed
Krumlauf, R. (1994). Hox genes in vertebrate development. Cell, 78, 191201.Google Scholar
Kuss, P., Kraft, K., Stumm, J., et al. (2014). Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A. Developmental Biology, 385, 8393.CrossRefGoogle ScholarPubMed
Lacroix, L. (1951). The Organization of Bones. Philadelphia, PA: The Blakiston Company.Google Scholar
Lanske, B., Karaplis, A. C., Lee, K., et al. (1996). PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science, 273, 663666.Google Scholar
Lee, K., Deeds, J. D. and Segre, G. V. (1995). Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology, 136, 453463.Google Scholar
Lee, K., Lanske, B., Karaplis, A. C., et al. (1996). Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology, 137, 51095118.Google Scholar
Lefebvre, V., Behringer, R. R. and De Crombrugghe, B. (2001). L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis and Cartilage, 9A, S69S75.Google Scholar
Lewis, O. J. (1972). Evolution of the hominoid wrist. In: Tuttle, R. H. (ed.) The Functional and Evolutionary Biology of Primates. Chicago, IL: Aldine-Atherdon.Google Scholar
Long, F. and Ornitz, D. M. (2013). Development of the endochondral skeleton. Cold Spring Harbor Perspectives in Biology, 5, a008334.Google Scholar
Long, F., Zhang, X. M., Karp, S., Yang, Y. and Mcmahon, A. P. (2001). Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development, 128, 50995108.Google Scholar
Lovejoy, C. O., Cohn, M. J. and White, T. D. (1999). Morphological analysis of the mammalian postcranium: a developmental perspective. Procedings of the National Academy of Sciences USA, 96, 1324713252.CrossRefGoogle ScholarPubMed
Maes, C. and Kronenberg, H. M. (2012). Postnatal bone growth: growth plate biology, bone formation, and remodeling. In: Glorieux, F., Pettifor, J. M. and Juppner, H. (eds.) Pediatric Bone, 2nd ed. Oxford: Elsevier.Google Scholar
Mann, R. S., Lelli, K. M. and Joshi, R. (2009). Hox specificity unique roles for cofactors and collaborators. Current Topics in Developmental Biology, 88, 63101.CrossRefGoogle ScholarPubMed
Marzke, M. W. (2010). Anthropology and comparative anatomy. In: Cooney, W. P. I. (ed.) The Wrist. Diagnosis and Operative Treatment, 2nd ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams and Wilkins.Google Scholar
Marzke, M. W., Toth, N., Schick, K., et al. (1998). EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. American Journal of Physical Anthropology, 105, 315332.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
McLean, C. Y., Reno, P. L., Pollen, A. A., et al. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 471, 216219.Google Scholar
McMahon, A. P. (2000). More suprises in the Hedgehog signaling pathway. Cell, 100, 185188.Google Scholar
Menke, D. B. (2013). Engineering subtle targeted mutations into the mouse genome. Genesis, 51, 605618.CrossRefGoogle ScholarPubMed
Menke, D. B., Guenther, C. and Kingsley, D. M. (2008). Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development, 135, 25432553.CrossRefGoogle ScholarPubMed
Minina, E., Wenzel, H. M., Kreschel, C., et al. (2001). BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development, 128, 45234534.Google Scholar
Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M. and Vortkamp, A. (2002). Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Developmental Cell, 3, 439449.Google Scholar
Moojen, T. M., Snel, J. G., Ritt, M. J., et al. (2001). Pisiform kinematics in vivo. Jouranal of Hand Surgury American, 26, 901907.Google Scholar
Napier, J. R. and Davis, P. R. (1959). The Fore-Limb Skeleton and Associated Remains of Proconsul Africanus. London: British Museum (Natural History).Google Scholar
Nelson, C. E., Morgan, B. A., Burke, A. C., et al. (1996). Analysis of Hox gene expression in the chick limb bud. Development, 122, 14491466.CrossRefGoogle ScholarPubMed
Nieto, M. A., Patel, K. and Wilkinson, D. G. (1996). In situ hybridization analysis of chick embryos in whole-mount and tissue sections. In: Bronner-Fraser, M. (ed.) Methods in Avian Embryology. San Diego, CA: Academic Press.Google Scholar
O’Bleness, M., Searles, V. B., Varki, A., Gagneux, P. and Sikela, J. M. (2012). Evolution of genetic and genomic features unique to the human lineage. Nature Reviews in Genetics, 13, 853866.Google Scholar
Ogden, J. A., Grogan, D. P., Light, T. R., Albright, J. A. and Brand, R. A. (1987). Postnatal development and growth of the muskuloskeletal system. In: The Scientific Basis of Orthopaedics. Norwalk, CN: Appleton and Lange.Google Scholar
Pareek, C. S., Smoczynski, R. and Tretyn, A. (2011). Sequencing technologies and genome sequencing. Journal of Applied Genetics, 52, 413435.CrossRefGoogle ScholarPubMed
Patel, B. A., Larson, S. G. and Stern, J. T., Jr. (2012). Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis). Journal of Experimental Biology, 215, 115123.Google Scholar
Payton, C. G. (1932). The growth in length of the long bones in the madder-fed pig. Journal of Anatomy, 66, 414425.Google Scholar
Pollard, K. S., Salama, S. R., Lambert, N., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167172.Google Scholar
Prabhakar, S., Noonan, J. P., Paabo, S. and Rubin, E. M. (2006). Accelerated evolution of conserved noncoding sequences in humans. Science, 314, 786.Google Scholar
Prabhakar, S., Visel, A., Akiyama, J. A., et al. (2008). Human-specific gain of function in a developmental enhancer. Science, 321, 13461350.CrossRefGoogle Scholar
Reno, P. L. (2006). Ossification of the mammalian metatarsal: proliferation and differentiation in the presence/absence of a defined growth plate. Kent, OH: Kent State University. 155 pp.Google Scholar
Reno, P. L. (2014). Genetic and developmental basis for parallel evolution and its significance for hominoid evolution. Evolutionary Anthropology, 23, 188200.Google Scholar
Reno, P. L. (2016). Evo–devo sheds light on mechanisms of human evolution: limb proportions and spines. In: Boughner, J. and Rolian, C. (eds.) Evolutionary Developmental Anthropology: A Postgenomic Approach to Understanding Primate and Human Evolution. Hoboken, NJ: Wiley-Blackwell, pp. 7799.Google Scholar
Reno, P. L., McCollum, M. A., Lovejoy, C. O. and Meindl, R. S. (2000). Adaptationism and the anthropoid postcranium: selection does not govern the length of the radial neck. Journal of Morphology, 246, 5967.Google Scholar
Reno, P. L., Degusta, D., Serrat, M. A., et al. (2005). Plio-pleistocene hominid limb proportions – evolutionary reversals or estimation errors? Current Anthropology, 46, 575588.CrossRefGoogle Scholar
Reno, P. L., McBurney, D. L., Lovejoy, C. O. and Horton, W. E. (2006). Ossification of the mouse metatarsal: differentiation and proliferation in the presence/absence of a defined growth plate. Anatomical Record Part A – Discoveries in Molecular Cellular and Evolutionary Biology, 288A, 104118.Google Scholar
Reno, P. L., Horton, W. E., Elsey, R. M. and Lovejoy, C. O. (2007). Growth plate formation and development in alligator and mouse metapodials: evolutionary and functional implications. Journal of Experimental Zoology Part B – Molecular and Developmental Evolution, 308B, 283296.Google Scholar
Reno, P. L., Horton, W. E., Jr. and Lovejoy, C. O. (2013). Metapodial or phalanx? An evolutionary and developmental perspective on the homology of the first ray’s proximal segment. Journal of Experimental Zoolology Part B – Molecular and Developmental Evolution, 320, 276285.Google Scholar
Reno, P. L., Kjosness, K. M. and Hines, J. E. (2016). The role of Hox in pisiform and calcaneus growth plate formation and the nature of the zeugopod/autopod boundary. Journal of Experimental Zoology Part B - Molecular and Developmental Evolution, 326, 303321.Google Scholar
Rolian, C. (2008). Developmental basis of limb length in rodents: evidence for multiple divisions of labor in mechanisms of endochondral bone growth. Evolution and Development, 10, 1528.Google Scholar
Rolian, C. (2014). Genes, development, and evolvability in primate evolution. Evolutionary Anthropology, 23, 93104.Google Scholar
Romereim, S. M. and Dudley, A. T. (2011). Cell polarity: the missing link in skeletal morphogenesis? Organogenesis, 7, 217228.Google Scholar
Sears, K. E., Behringer, R. R., Rasweiler, J. J. T. and Niswander, L. A. (2007). The evolutionary and developmental basis of parallel reduction in mammalian zeugopod elements. American Naturalist, 169, 105117.Google Scholar
Selleri, L., Depew, M. J., Jacobs, Y., et al. (2001). Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development, 128, 35433557.Google Scholar
Semaw, S., Rogers, M. J., Quade, J., et al. (2003). 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45, 169177.Google Scholar
Serrat, M. A., Lovejoy, C. O. and King, D. (2007). Age- and site-specific decline in insulin-like growth factor-I receptor expression is correlated with differential growth plate activity in the mouse hindlimb. Anatomical Record – Advances in Integrative Anatomy and Evolutionary Biology, 290, 375381.Google Scholar
Shapiro, M. D., Marks, M. E., Peichel, C. L., et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717723.Google Scholar
Small, K. M. and Potter, S. S. (1993). Homeotic transformations and limb defects in Hox A11 mutant mice. Genes and Development, 7, 23182328.Google Scholar
Smits, P., Dy, P., Mitra, S. and Lefebvre, V. (2004). Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. Journal of Cell Biology, 164, 747758.Google Scholar
Spitz, F., Gonzalez, F. and Duboule, D. (2003). A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell, 113, 405417.Google Scholar
Spitz, F., Herkenne, C., Morris, M. A. and Duboule, D. (2005). Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nature Genetics, 37, 889893.Google Scholar
St-Jacques, B., Hammerschmidt, M. and McMahon, A. P. (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes and Development, 13, 20722086.Google Scholar
Tarchini, B. and Duboule, D. (2006). Control of Hoxd genes’ collinearity during early limb development. Developmental Cell, 10, 93103.Google Scholar
Toth, N. and Schick, K. (2009). The Oldowan: the tool making of early hominins and chimpanzees compared. Annual Review of Anthropology, 38, 289305.Google Scholar
Villavicencio-Lorini, P., Kuss, P., Friedrich, J., et al. (2010). Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation. Journal of Clinical Investigation, 120, 19942004.Google Scholar
Vortkamp, A., Lee, K., Lanske, B., et al. (1996). Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 273, 613622.CrossRefGoogle ScholarPubMed
Wagner, G. P. (1989). The origin of morphological characters and the biological basis of homology. Evolution, 43, 11571171.Google Scholar
Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews in Genetics, 8, 473479.Google Scholar
Wellik, D. M. and Capecchi, M. R. (2003). Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science, 301, 363367.Google Scholar
Wilsman, N. J., Farnum, C. E., Green, E. M., Lieferman, E. M. and Clayton, M. K. (1996a). Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. Journal of Orthopaedic Research, 14, 562572.Google Scholar
Wilsman, N. J., Farnum, C. E., Leiferman, E. M., Fry, M. and Barreto, C. (1996b). Differential growth by growth plates as a function of multiple parameters of chondrocyte kinetics. Journal of Orthopaedic Research, 14, 927936.Google Scholar
Wolpert, L. (1981). Cellular basis of growth during development. British Medical Bulletin, 37, 215219.Google Scholar
Woltering, J. M. and Duboule, D. (2010). The origin of digits: expression patterns versus regulatory mechanisms. Developmental Cell, 18, 526532.Google Scholar
Woltering, J. M., Noordermeer, D., Leleu, M. and Duboule, D. (2014). Conservation and divergence of regulatory strategies at Hox loci and the origin of tetrapod digits. PLoS Biology, 12, e1001773.Google Scholar
Yang, Y., Topol, L., Lee, H. and Wu, J. (2003). Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development, 130, 10031015.Google Scholar
Yokouchi, Y., Nakazato, S., Yamamoto, M., et al. (1995). Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes in cell adhesiveness in chick limb buds. Genes and Development, 9, 25092522.Google Scholar
Yokouchi, Y., Sasaki, H. and Kuroiwa, A. (1991). Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature, 353, 443445.Google Scholar
Zakany, J. and Duboule, D. (2007). The role of Hox genes during vertebrate limb development. Current Opinions in Genetics and Development, 17, 359366.Google Scholar
Zakany, J., Kmita, M. and Duboule, D. (2004). A dual role for Hox genes in limb anterior–posterior asymmetry. Science, 304, 16691672.Google Scholar
Zhao, Y. and Potter, S. S. (2001). Functional specificity of the Hoxa13 homeobox. Development, 128, 31973207.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×