Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T08:20:58.665Z Has data issue: false hasContentIssue false

13 - Genetic factors in the etiology of bipolar disorder

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 144 - 168
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–45.CrossRefGoogle Scholar
Adli, M., Hollinde, D. L., Stamm, T., et al. Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry. 2007;62:1295–302.CrossRefGoogle ScholarPubMed
Alliey-Rodriguez, N., Zhang, D., Badner, J. A., et al. Genome-wide association study of personality traits in bipolar patients. Psychiatr Genet. 2011;21:190–4.CrossRefGoogle ScholarPubMed
Anglin, R. E., Mazurek, M. F., Tarnopolsky, M. A., et al. The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:749–59.CrossRefGoogle ScholarPubMed
Angst, J. Historical aspects of the dichotomy between manic-depressive disorders and schizophrenia. Schizophr Res. 2002;57:513.CrossRefGoogle ScholarPubMed
Anguelova, M., Benkelfat, C., Turecki, G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry. 2003;8:574–91.Google ScholarPubMed
Badner, J. A., Gershon, E. S. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7:405–11.CrossRefGoogle ScholarPubMed
Barde, Y. A. The nerve growth factor family. Prog Growth Factor Res. 1990;2, 237–48.CrossRefGoogle ScholarPubMed
Barden, N., Harvey, M., Gagne, B., et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:374–82.CrossRefGoogle ScholarPubMed
Barnett, J. H., Smoller, J. W. The genetics of bipolar disorder. Neuroscience. 2009;164:331–43.CrossRefGoogle ScholarPubMed
Baron, M. Manic-depression genes and the new millennium: poised for discovery. Mol Psychiatry. 2002;7:342–58.CrossRefGoogle ScholarPubMed
Baum, A. E., Akula, N., Cabanero, M., et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008;13:197207.CrossRefGoogle ScholarPubMed
Benedetti, F., Serretti, A., Colombo, C., et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2003;123B:23–6.CrossRefGoogle ScholarPubMed
Benedetti, F., Bernasconi, A., Lorenzi, C., et al. A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett. 2004a;355:3740.CrossRefGoogle ScholarPubMed
Benedetti, F., Serretti, A., Colombo, C., et al. A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett. 2004b;368:123–6.CrossRefGoogle ScholarPubMed
Benedetti, F., Serretti, A., Pontiggia, A., et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta-50 T/C SNP. Neurosci Lett. 2005;376:51–5.CrossRefGoogle ScholarPubMed
Blackwood, D. H., Fordyce, A., Walker, M. T., et al. Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001;69:428–33.CrossRefGoogle ScholarPubMed
Breen, G., Lewis, C. M., Vassos, E., et al. Replication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression. Nat Genet. 2011;43:35.CrossRefGoogle Scholar
Bulanova, E., Budagian, V., Orinska, Z., et al. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol. 2005;174:3880–90.CrossRefGoogle ScholarPubMed
Campos-De-Sousa, S., Guindalini, C., Tondo, L., et al. Nuclear receptor rev-erb-{alpha} circadian gene variants and lithium carbonate prophylaxis in bipolar affective disorder. J Biol Rhythms. 2010;25:132–7.CrossRefGoogle ScholarPubMed
Cardno, A. G., Rijsdijk, F. V., Sham, P. C., et al. A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry. 2002;159:539–45.CrossRefGoogle ScholarPubMed
Carola, V. and Gross, C. Mouse models of the 5-HTTLPR x stress risk factor for depression. Curr Top Behav Neurosci. 2012;12:5972.CrossRefGoogle ScholarPubMed
Carola, V., Frazzetto, G., Pascucci, T., et al. Identifying molecular substrates in a mouse model of the serotonin transporter x environment risk factor for anxiety and depression. Biol Psychiatry. 2008;63:840–6.CrossRefGoogle Scholar
Carola, V., Pascucci, T., Puglisi-Allegra, S., et al. Effect of the interaction between the serotonin transporter gene and maternal environment on developing mouse brain. Behav Brain Res. 2011;217:188–94.CrossRefGoogle ScholarPubMed
Carrard, A., Salzmann, A., Perroud, N., et al. Genetic association of the phosphoinositide-3 kinase in schizophrenia and bipolar disorder and interaction with a BDNF gene polymorphism. Brain Behav. 2011;1:119–24.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301, 386–9.CrossRefGoogle ScholarPubMed
Caspi, A., Hariri, A. R., Holmes, A., et al. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010;167, 509–27.CrossRefGoogle Scholar
Chang, H. C., Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153:1448–60.CrossRefGoogle ScholarPubMed
Chen, D. T., Jiang, X., Akula, N., et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013;18:195205.CrossRefGoogle ScholarPubMed
Chen, J., Lipska, B. K., Halim, N., et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75:807–21.CrossRefGoogle ScholarPubMed
Chen, Y. S., Akula, N., Detera-Wadleigh, S. D., et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry. 2004;9:8792; image 5.CrossRefGoogle Scholar
Chen, Y., Hancock, M. L., Role, L. W., et al. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci. 2010;30:9199–208.CrossRefGoogle ScholarPubMed
Cheng, R., Juo, S. H., Loth, J. E., et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry. 2006;11:252–60.CrossRefGoogle Scholar
Cherlyn, S. Y., Woon, P. S., Liu, J. J., et al. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev. 2010;34:958–77.CrossRefGoogle ScholarPubMed
Chubb, J. E., Bradshaw, N. J., Soares, D. C., et al. The DISC locus in psychiatric illness. Mol Psychiatry. 2008;13:3664.CrossRefGoogle ScholarPubMed
Chumakov, I., Blumenfeld, M., Guerassimenko, O., et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A. 2002;99:13675–80.CrossRefGoogle ScholarPubMed
Cichon, S., Buervenich, S., Kirov, G., et al. Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet. 2004;36:783–4; author reply 784–5.CrossRefGoogle ScholarPubMed
Cichon, S., Muhleisen, T. W., Degenhardt, F. A., et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88:372–81.CrossRefGoogle ScholarPubMed
Craddock, N., Forty, L. Genetics of affective (mood) disorders. Eur J Hum Genet. 2006;14:660–8.CrossRefGoogle ScholarPubMed
Craddock, N., O’Donovan, M. C., Owen, M. J. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet. 2005;42:193204.CrossRefGoogle ScholarPubMed
Craddock, N., Jones, L., Jones, I. R., et al. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Mol Psychiatry. 2010;15:146–53.Google ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics, Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.Google Scholar
Crow, T. J. The continuum of psychosis and its implication for the structure of the gene. Br J Psychiatry. 1986;149:419–29.CrossRefGoogle ScholarPubMed
Dantzer, R., O’Connor, J. C., Freund, G. G., et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:4656.CrossRefGoogle ScholarPubMed
Dedman, A., McQuillin, A., Kandaswamy, R., et al. Sequencing of the ANKYRIN 3 gene (ANK3) encoding ankyrin G in bipolar disorder reveals a non-conservative amino acid change in a short isoform of ankyrin G. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:328–35.CrossRefGoogle Scholar
Dejaegere, T., Serneels, L., Schafer, M. K., et al. Deficiency of Aph1B/C-gamma-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proc Natl Acad Sci U S A. 2008;105:9775–80.CrossRefGoogle ScholarPubMed
Dempster, E., Toulopoulou, T., McDonald, C., et al. Association between BDNF val66 met genotype and episodic memory. Am J Med Genet B Neuropsychiatr Genet, 2005;134B, 73–5.CrossRefGoogle ScholarPubMed
Dempster, E. L., Pidsley, R., Schalkwyk, L. C., et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20:4786–96.CrossRefGoogle ScholarPubMed
De Pradier, M., Gorwood, P., Beaufils, B., et al. Influence of the serotonin transporter gene polymorphism, cannabis and childhood sexual abuse on phenotype of bipolar disorder: a preliminary study. Eur Psychiatry. 2010;25:323–7.CrossRefGoogle ScholarPubMed
Dewachter, I., Ris, L., Jaworski, T., et al. GSK3beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiol Dis. 2009;35:193200.CrossRefGoogle ScholarPubMed
Drysdale, E., Knight, H. M., Mcintosh, A. M., et al. Cognitive endophenotypes in a family with bipolar disorder with a risk locus on chromosome 4. Bipolar Disord. 2013;15:215–22.CrossRefGoogle Scholar
Egan, M. F., Kojima, M., Callicott, J. H., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.CrossRefGoogle ScholarPubMed
Fan, J., Sklar, P. Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp. 2008;289:6072.CrossRefGoogle ScholarPubMed
Fan, M., Liu, B., Jiang, T., et al. Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatr Genet. 2010;20:17.CrossRefGoogle ScholarPubMed
Fass, DM, Schroeder, FA, Perlis, RH, et al. Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience. 2014;264:112–30.CrossRefGoogle ScholarPubMed
Fernandez, P. A., Tang, D. G., Cheng, L., et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron. 2000;28:8190.CrossRefGoogle ScholarPubMed
Ferreira, M. A., O’Donovan, M. C., Meng, Y. A., et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40:1056–8.CrossRefGoogle ScholarPubMed
Figueiredo, T. C., De Oliveira, J. R. Reconsidering the association between the major histocompatibility complex and bipolar disorder. J Mol Neurosci. 2012;47:2630.CrossRefGoogle ScholarPubMed
Flores, A. I., Mallon, B. S., Matsui, T., et al. Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci. 2000;20:7622–30.CrossRefGoogle ScholarPubMed
Fornito, A., Malhi, G. S., Lagopoulos, J., et al. In vivo evidence for early neurodevelopmental anomaly of the anterior cingulate cortex in bipolar disorder. Acta Psychiatr Scand. 2007;116:467–72.CrossRefGoogle ScholarPubMed
Fornito, A., Yucel, M., Wood, S. J., et al. Anterior cingulate cortex abnormalities associated with a first psychotic episode in bipolar disorder. Br J Psychiatry. 2009;194:426–33.CrossRefGoogle ScholarPubMed
Frank, R. A., McRae, A. F., Pocklington, A. J., et al. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One. 2011;6:e19011.CrossRefGoogle ScholarPubMed
Furlong, R. A., Ho, L., Rubinsztein, J. S., et al. Analysis of the monoamine oxidase A (MAOA) gene in bipolar affective disorder by association studies, meta-analyses, and sequencing of the promoter. Am J Med Genet. 1999;88:398406.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Gavalda, N., Perez-Navarro, E., Gratacos, E., et al. Differential involvement of phosphatidylinositol 3-kinase and p42/p44 mitogen activated protein kinase pathways in brain-derived neurotrophic factor-induced trophic effects on cultured striatal neurons. Mol Cell Neurosci. 2004;25:460–8.CrossRefGoogle ScholarPubMed
Georgieva, L., Dimitrova, A., Ivanov, D., et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64:419–27.CrossRefGoogle ScholarPubMed
Gerecke, K. M., Wyss, J. M.and Carroll, S. L. Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci. 2004;27:379–93.CrossRefGoogle ScholarPubMed
Gierdalski, M., Sardi, S. P., Corfas, G., et al. Endogenous neuregulin restores radial glia in a (ferret) model of cortical dysplasia. J Neurosci. 2005;25:8498–504.CrossRefGoogle Scholar
Ginsberg, S. D., Hemby, S. E. , Smiley, J. F. Expression profiling in neuropsychiatric disorders: emphasis on glutamate receptors in bipolar disorder. Pharmacol Biochem Behav. 2012;100:705–11.CrossRefGoogle ScholarPubMed
Goes, F. S., Willour, V. L., Zandi, P. P., et al. Family-based association study of neuregulin 1 with psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:693702.CrossRefGoogle ScholarPubMed
Gonzalez, R. The relationship between bipolar disorder and biological rhythms. J Clin Psychiatry. 2014;75(4):e323–31.Google ScholarPubMed
Green, E. K., Raybould, R., Macgregor, S., et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry. 2005;62:642–8.CrossRefGoogle ScholarPubMed
Green, E. K., Raybould, R., Macgregor, S., et al. Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case-control study of over 3000 individuals from the UK. Br J Psychiatry. 2006;188:21–5.CrossRefGoogle ScholarPubMed
Grigoroiu-Serbanescu, M., Martinez, M., Nothen, M. M., et al. Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am J Med Genet. 2001;105:765–73.CrossRefGoogle ScholarPubMed
Grol, M. W., Zelner, I. and Dixon, S. J. P2X(7)-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol Endocrinol Metab. 2012;302:E561–75.CrossRefGoogle Scholar
Grozeva, D., Kirov, G., Ivanov, D., et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry. 2010;67:318–27.CrossRefGoogle ScholarPubMed
Hamm, A., Veeck, J., Bektas, N., et al. Frequent expression loss of inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer. 2008;8:25.CrossRefGoogle ScholarPubMed
Hariri, A. R., Goldberg, T. E., Mattay, V. S., et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23:6690–4.CrossRefGoogle ScholarPubMed
Hattori, E., Liu, C., Badner, J. A., et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet. 2003;72:1131–40.CrossRefGoogle ScholarPubMed
Hayashi, A., Kasahara, T., Kametani, M., et al. Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol. 2009;12:3343.CrossRefGoogle ScholarPubMed
Hedgepeth, C. M., Conrad, L. J., Zhang, J., et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol, 1997;185:8291.CrossRefGoogle ScholarPubMed
Hennah, W., Thomson, P., McQuillin, A., et al. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry. 2009;14:865–73.CrossRefGoogle ScholarPubMed
Hobara, T., Uchida, S., Otsuki, K., et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res. 2010;44:263–70.CrossRefGoogle ScholarPubMed
Hodgkinson, C. A., Goldman, D., Jaeger, J., et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004;75:862–72.CrossRefGoogle ScholarPubMed
Horresh, I., Poliak, S., Grant, S., et al. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J Neurosci. 2008;28:14213–22.CrossRefGoogle ScholarPubMed
Hosak, L. Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry. 2007;22:276–81.CrossRefGoogle ScholarPubMed
Hosang, G. M., Uher, R., Keers, R., et al. Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J Affect Disord. 2010;125:345–9.CrossRefGoogle ScholarPubMed
Hou, S. J., Yen, F. C., Cheng, C. Y., et al. X-box binding protein 1 (XBP1) C–116G polymorphisms in bipolar disorders and age of onset. Neurosci Lett. 2004;367:232–4.CrossRefGoogle ScholarPubMed
Huang, C. C., Ko, M. L., Vernikovskaya, D. I., et al. Calcineurin serves in the circadian output pathway to regulate the daily rhythm of L-type voltage-gated calcium channels in the retina. J Cell Biochem. 2012;113:911–22.CrossRefGoogle ScholarPubMed
Hwang, J. W., Sundar, I. K., Yao, H., et al. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 2014;28:176–94.CrossRefGoogle Scholar
International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.Google ScholarPubMed
Iwamoto, K., Bundo, M.and Kato, T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet. 2005;14:241–53.CrossRefGoogle ScholarPubMed
Jan, W. C., Yang, S. Y., Chuang, L. C., et al. Exploring the associations between genetic variants in genes encoding for subunits of calcium channel and subtypes of bipolar disorder. J Affect Disord. 2014;157:80–6.CrossRefGoogle ScholarPubMed
Jeong, M. R., Hashimoto, R., Senatorov, V. V., et al. Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 2003;542:74–8.CrossRefGoogle ScholarPubMed
Jiang, H. Y., Qiao, F., Xu, X. F., et al. Meta-analysis confirms a functional polymorphism (5-HTTLPR) in the serotonin transporter gene conferring risk of bipolar disorder in European populations. Neurosci Lett. 2013;549:191–6.CrossRefGoogle ScholarPubMed
Jun, C., Choi, Y., Lim, S. M., et al. Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol. 2014;23:2835.CrossRefGoogle ScholarPubMed
Kakiuchi, C., Iwamoto, K., Ishiwata, M., et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet. 2003;35:171–5.CrossRefGoogle ScholarPubMed
Kaladchibachi, S. A., Doble, B., Anthopoulos, N., et al. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms. 2007;5:3.CrossRefGoogle ScholarPubMed
Kaminsky, Z., Tochigi, M., Jia, P., et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry. 2012;17:728–40.CrossRefGoogle ScholarPubMed
Kanai, H., Sawa, A., Chen, R. W., et al. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J. 2003;4:336–44.Google Scholar
Kanazawa, T., Glatt, S. J., Kia-Keating, B., et al. Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet. 2007;17:165–70.CrossRefGoogle ScholarPubMed
Kandaswamy, R., McQuillin, A., Sharp, S. I., et al. Genetic association, mutation screening, and functional analysis of a Kozak sequence variant in the metabotropic glutamate receptor 3 gene in bipolar disorder. JAMA Psychiatry. 2013;70:591–8.CrossRefGoogle ScholarPubMed
Kasahara, T., Kubota, M., Miyauchi, T., et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry. 2006;11:577–93.CrossRefGoogle ScholarPubMed
Kashyap, R. S., Nayak, A. R., Deshpande, P. S., et al. Inter-alpha-trypsin inhibitor heavy chain 4 is a novel marker of acute ischemic stroke. Clin Chim Acta. 2009;402:160–3.CrossRefGoogle ScholarPubMed
Kato, T., Kunugi, H., Nanko, S., et al. Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet. 2000;96:182–6.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Kato, T., Kunugi, H., Nanko, S., et al. Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord. 2001;62:151–64.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry. 2006;59:673–80.CrossRefGoogle ScholarPubMed
Kishi, T., Yoshimura, R., Fukuo, Y., et al. The CLOCK gene and mood disorders: a case-control study and meta-analysis. Chronobiol Int. 2011;28:825–33.CrossRefGoogle ScholarPubMed
Klein, P. S., Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996;93:8455–9.CrossRefGoogle ScholarPubMed
Ko, G. Y., Shi, L., Ko, M. L. Circadian regulation of ion channels and their functions. J Neurochem, 2009;110:1150–69.CrossRefGoogle ScholarPubMed
Ko, M. L., Shi, L., Grushin, K., et al. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int. 2010;27:1673–96.CrossRefGoogle ScholarPubMed
Konradi, C., Eaton, M., Macdonald, M. L., et al. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61:300–8.CrossRefGoogle ScholarPubMed
Konradi, C., Sillivan, S. E., Clay, H. B. Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis. Neurobiol Dis. 2012;45:3747.CrossRefGoogle ScholarPubMed
Kozikowski, A. P., Gunosewoyo, H., Guo, S., et al. Identification of a glycogen synthase kinase-3beta inhibitor that attenuates hyperactivity in CLOCK mutant mice. Chem Med Chem. 2011;6:1593–602.CrossRefGoogle ScholarPubMed
Kremeyer, B., Herzberg, I., Garcia, J., et al. Transmission distortion of BDNF variants to bipolar disorder type I patients from a South American population isolate. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:435–9.CrossRefGoogle ScholarPubMed
Kripke, D. F., Nievergelt, C. M., Joo, E., et al. Circadian polymorphisms associated with affective disorders. J Circadian Rhythms. 2009;7:2.CrossRefGoogle ScholarPubMed
Krug, A., Markov, V., Krach, S., et al. Genetic variation in G72 correlates with brain activation in the right middle temporal gyrus in a verbal fluency task in healthy individuals. Hum Brain Mapp. 2011;32:118–26.CrossRefGoogle Scholar
Kurnianingsih, Y. A., Kuswanto, C. N., Mcintyre, R. S., et al. Neurocognitive-genetic and neuroimaging-genetic research paradigms in schizophrenia and bipolar disorder. J Neural Transm. 2011;118:1621–39.CrossRefGoogle ScholarPubMed
Kuswanto, C. N., Woon, P. S., Zheng, X. B., et al. Genome-wide supported psychosis risk variant in ZNF804A gene and impact on cortico-limbic WM integrity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:255–62.CrossRefGoogle ScholarPubMed
Lachman, H. M., Pedrosa, E., Petruolo, O. A., et al. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:259–65.CrossRefGoogle ScholarPubMed
Lasky-Su, J. A., Faraone, S. V., Glatt, S. J., et al. Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:110–15.CrossRefGoogle ScholarPubMed
Law, A. J., Deakin, J. F. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport. 2001;12:2971–4.CrossRefGoogle ScholarPubMed
Lee, M. T., Chen, C. H., Lee, C. S., et al. Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol Psychiatry. 2011;16:548–56.CrossRefGoogle ScholarPubMed
Lee, Y. J., Kim, Y. K. The impact of glycogen synthase kinase 3beta gene on psychotic mania in bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1303–8.CrossRefGoogle ScholarPubMed
Le-Niculescu, H., Patel, S. D., Bhat, M., et al. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:155–81.CrossRefGoogle ScholarPubMed
Li, B., Woo, R. S., Mei, L., et al. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron. 2007a;54:583–97.CrossRefGoogle ScholarPubMed
Li, Y., Xu, Z., Ford, G. D., et al. Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Res. 2007b;1184:277–83.CrossRefGoogle Scholar
Lohoff, F. W., Sander, T., Ferraro, T. N., et al. Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2005;139B:51–3.CrossRefGoogle ScholarPubMed
Lotta, T., Vidgren, J., Tilgmann, C., et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–10.CrossRefGoogle ScholarPubMed
Machon, O., Backman, M., Machonova, O., et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol. 2007;311:223–37.CrossRefGoogle ScholarPubMed
Malhotra, D., McCarthy, S., Michaelson, J. J., et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72:951–63.CrossRefGoogle ScholarPubMed
Mamdani, F., Alda, M., Grof, P., et al. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:500–4.CrossRefGoogle ScholarPubMed
Mansour, H. A., Wood, J., Logue, T., et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5:150–7.CrossRefGoogle ScholarPubMed
Mansour, H. A., Talkowski, M. E., Wood, J., et al. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord. 2009;11:701–10.CrossRefGoogle ScholarPubMed
Matigian, N., Windus, L., Smith, H., et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry. 2007;12:815–25.CrossRefGoogle ScholarPubMed
Matsuo, K., Walss-Bass, C., Nery, F. G., et al. Neuronal correlates of brain-derived neurotrophic factor Val66Met polymorphism and morphometric abnormalities in bipolar disorder. Neuropsychopharmacology. 2009;34:1904–13.CrossRefGoogle ScholarPubMed
McCarthy, M. J., Nievergelt, C. M., Shekhtman, T., et al. Functional genetic variation in the Rev-Erbalpha pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav. 2011;10:852–61.CrossRefGoogle ScholarPubMed
McCarthy, M. J., Nievergelt, C. M., Kelsoe, J. R., et al. (2012). A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One. 2012;7:e32091.CrossRefGoogle ScholarPubMed
McClellan, J. M., Susser, E.and King, M. C. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry. 2007;190:194–9.CrossRefGoogle ScholarPubMed
McClung, C. A. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013;74:242–9.CrossRefGoogle ScholarPubMed
McCullumsmith, R. E., Kristiansen, L. V., Beneyto, M., et al. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res. 2007;1127:108–18.CrossRefGoogle ScholarPubMed
McInnes, L. A., Escamilla, M. A., Service, S. K., et al. A complete genome screen for genes predisposing to severe bipolar disorder in two Costa Rican pedigrees. Proc Natl Acad Sci U S A. 1996;93:13060–5.CrossRefGoogle ScholarPubMed
McMahon, F. J., Akula, N., Schulze, T. G., et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet. 2010;42:128–31.Google ScholarPubMed
McQueen, M. B., Devlin, B., Faraone, S. V., et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet. 2005;77:582–95.CrossRefGoogle ScholarPubMed
Michaelis, E. K. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998;54:369415.CrossRefGoogle ScholarPubMed
Michailov, G. V., Sereda, M. W., Brinkmann, B. G., et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science. 2004;304:700–3.CrossRefGoogle ScholarPubMed
Middleton, F. A., Mirnics, K., Pierri, J. N., et al. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2003;22:2718–29.Google Scholar
Mill, J., Tang, T., Kaminsky, Z., et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82:696711.CrossRefGoogle ScholarPubMed
Miller, S., Hallmayer, J., Wang, P. W., et al. Brain-derived neurotrophic factor val66met genotype and early life stress effects upon bipolar course. J Psychiatr Res. 2013;47:252–8.CrossRefGoogle ScholarPubMed
Moghaddam, B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry. 2002;51:775–87.CrossRefGoogle ScholarPubMed
Morris, D. W., Pearson, R. D., Cormican, P., et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014;23(12):3316–26.CrossRefGoogle ScholarPubMed
Moya, P. R., Murphy, D. L., Mcmahon, F. J., et al. Increased gene expression of diacylglycerol kinase eta in bipolar disorder. Int J Neuropsychopharmacol. 2014;13:1127–8.Google Scholar
Mueller, H. T. and Meador-Woodruff, J. H. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res. 2004;71:361–70.CrossRefGoogle ScholarPubMed
Muller, D. J., Zai, C. C., Shinkai, T., et al. Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord. 2011;13:198207.CrossRefGoogle ScholarPubMed
Munakata, K., Tanaka, M., Mori, K., et al. Mitochondrial DNA 3644T→C mutation associated with bipolar disorder. Genomics. 2004;84:1041–50.CrossRefGoogle ScholarPubMed
Nakatani, N., Hattori, E., Ohnishi, T., et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet. 2006;15:1949–62.CrossRefGoogle ScholarPubMed
Nave, K. A., Salzer, J. L. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol. 2006;16:492500.CrossRefGoogle ScholarPubMed
Naydenov, A. V., Macdonald, M. L., Ongur, D., et al. Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress. Arch Gen Psychiatry. 2007;64:555–64.CrossRefGoogle ScholarPubMed
Neves-Pereira, M., Mundo, E., Muglia, P., et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet. 2002;71:651–5.CrossRefGoogle ScholarPubMed
Neves-Pereira, M., Cheung, J. K., Pasdar, A., et al. BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry. 2005;10:208–12.CrossRefGoogle Scholar
Nichols, C. B., Rossow, C. F., Navedo, M. F., et al. Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res. 2010;107:747–56.CrossRefGoogle ScholarPubMed
Nieto, R., Kukuljan, M., Silva, H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013;4:45.CrossRefGoogle ScholarPubMed
Nievergelt, C. M., Kripke, D. F., Barrett, T. B., et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:234–41.CrossRefGoogle ScholarPubMed
Nishina, Y., Sato, K., Miura, R., et al. Substrate recognition and activation mechanism of D-amino acid oxidase: a study using substrate analogs. J Biochem. 2000;128:213–23.CrossRefGoogle ScholarPubMed
O’Brien, W. T., Harper, A. D., Jove, F., et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci. 2004;24:6791–8.Google ScholarPubMed
O’Donovan, M. C., Craddock, N., Norton, N., et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40:1053–5.Google ScholarPubMed
Okada, T., Hashimoto, R., Numakawa, T., et al. A complex polymorphic region in the brain-derived neurotrophic factor (BDNF) gene confers susceptibility to bipolar disorder and affects transcriptional activity. Mol Psychiatry. 2006;11:695703.CrossRefGoogle ScholarPubMed
Ophoff, R. A., Escamilla, M. A., Service, S. K., et al. Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am J Hum Genet. 2002;71:565–74.CrossRefGoogle Scholar
Padmos, R. C., Hillegers, M. H., Knijff, E. M., et al. A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry. 2008;65:395407.CrossRefGoogle ScholarPubMed
Padmos, R. C., Van Baal, G. C., Vonk, R., et al. Genetic and environmental influences on pro-inflammatory monocytes in bipolar disorder: a twin study. Arch Gen Psychiatry. 2009;66:957–65.CrossRefGoogle ScholarPubMed
Papakostas, G. I., Alpert, J. E. and Fava, M. S-adenosyl-methionine in depression: a comprehensive review of the literature. Curr Psychiatry Rep. 2003;5:460–6.CrossRefGoogle ScholarPubMed
Patapoutian, A.and Reichardt, L. F. Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol. 2000;10:392–9.CrossRefGoogle ScholarPubMed
Perlis, R. H., Smoller, J. W., Ferreira, M. A., et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166:718–25.CrossRefGoogle ScholarPubMed
Pezawas, L., Verchinski, B. A., Mattay, V. S., et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci. 2004;24:10099–102.CrossRefGoogle ScholarPubMed
Phiel, C. J., Zhang, F., Huang, E. Y., et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.CrossRefGoogle ScholarPubMed
Pickard, B. S., Knight, H. M., Hamilton, R. S., et al. A common variant in the 3’UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc Natl Acad Sci U S A. 2008;105:14940–5.CrossRefGoogle Scholar
Poliak, S., Gollan, L., Martinez, R., et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron. 1999;24:1037–47.CrossRefGoogle ScholarPubMed
Porcelli, S., Fabbri, C.and Serretti, A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012;22:239–58.CrossRefGoogle ScholarPubMed
Potash, J. B., Willour, V. L., Chiu, Y. F., et al. The familial aggregation of psychotic symptoms in bipolar disorder pedigrees. Am J Psychiatry. 2001;158:1258–64.CrossRefGoogle ScholarPubMed
Prata, D., Breen, G., Osborne, S., et al. Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:914–17.CrossRefGoogle ScholarPubMed
Prata, D. P., Papagni, S. A., Mechelli, A., et al. Effect of D-amino acid oxidase activator (DAOA; G72) on brain function during verbal fluency. Hum Brain Mapp. 2012;33:143–53.CrossRefGoogle ScholarPubMed
Preisig, M., Bellivier, F., Fenton, B. T., et al. Association between bipolar disorder and monoamine oxidase A gene polymorphisms: results of a multicenter study. Am J Psychiatry. 2000;157:948–55.CrossRefGoogle ScholarPubMed
Prickaerts, J., Moechars, D., Cryns, K., et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26:9022–9.CrossRefGoogle ScholarPubMed
Priebe, L., Degenhardt, F. A., Herms, S., et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry. 2012;17:421–32.CrossRefGoogle ScholarPubMed
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43:977–83.Google Scholar
Rao, J. S., Harry, G. J., Rapoport, S. I., et al. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15:384–92.CrossRefGoogle ScholarPubMed
Riteau, N., Gasse, P., Fauconnier, L., et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med. 2010;182:774–83.CrossRefGoogle ScholarPubMed
Roybal, K., Theobold, D., Graham, A., et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104:6406–11.CrossRefGoogle ScholarPubMed
Ryan, M. M., Lockstone, H. E., Huffaker, S. J., et al. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry. 2006;11:965–78.CrossRefGoogle ScholarPubMed
Rybakowski, J. K. Genetic influences on response to mood stabilizers in bipolar disorder: current status of knowledge. CNS Drugs. 2013;27:165–73.CrossRefGoogle ScholarPubMed
Rybakowski, J. K., Suwalska, A., Skibinska, M., et al. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:820–3.CrossRefGoogle ScholarPubMed
Sani, G., Napoletano, F., Forte, A. M., et al. The wnt pathway in mood disorders. Curr Neuropharmacol. 2012;10:239–53.CrossRefGoogle ScholarPubMed
Savitz, J., Solms, M.and Ramesar, R. The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav. 2006;5:311–28.CrossRefGoogle ScholarPubMed
Scarr, E., Pavey, G., Sundram, S., et al. Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. Bipolar Disord. 2003;5:257–64.CrossRefGoogle ScholarPubMed
Schmid, R. S., McGrath, B., Berechid, B. E., et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A. 2003;100:4251–6.CrossRefGoogle ScholarPubMed
Schosser, A., Gaysina, D., Cohen-Woods, S., et al. Association of DISC1 and TSNAX genes and affective disorders in the depression case-control (DeCC) and bipolar affective case-control (BACCS) studies. Mol Psychiatry. 2010;15:844–9.CrossRefGoogle ScholarPubMed
Schultz, C. C., Muhleisen, T. W., Nenadic, I., et al. Common variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. Psychol Med. 2014;44:811–20.CrossRefGoogle ScholarPubMed
Schulze, T. G., Alda, M., Adli, M., et al. The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. Neuropsychobiology. 2010;62:72–8.CrossRefGoogle Scholar
Schumacher, J., Jamra, R. A., Freudenberg, J., et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry. 2004;9:203–7.CrossRefGoogle ScholarPubMed
Scott, L. J., Muglia, P., Kong, X. Q., et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A. 2009;106:7501–6.CrossRefGoogle ScholarPubMed
Seifuddin, F., Mahon, P. B., Judy, J., et al. Meta-analysis of genetic association studies on bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:508–18.CrossRefGoogle ScholarPubMed
Serretti, A., Benedetti, F., Mandelli, L., et al. Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2003;121B:35–8.CrossRefGoogle ScholarPubMed
Serretti, A., Cusin, C., Benedetti, F., et al. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2005;137B:36–9.CrossRefGoogle ScholarPubMed
Severino, G., Manchia, M., Contu, P., et al. Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord. 2009;11:215–20.CrossRefGoogle Scholar
Shao, L. and Vawter, M. P. Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry. 2008;64:8997.CrossRefGoogle ScholarPubMed
Shi, J., Badner, J. A., Gershon, E. S., et al. Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res. 2008a;98:8997.CrossRefGoogle ScholarPubMed
Shi, J., Wittke-Thompson, J. K., Badner, J. A., et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet. 2008b;147B:1047–55.CrossRefGoogle ScholarPubMed
Shink, E., Harvey, M., Tremblay, M., et al. Analysis of microsatellite markers and single nucleotide polymorphisms in candidate genes for susceptibility to bipolar affective disorder in the chromosome 12Q24.31 region. Am J Med Genet B Neuropsychiatr Genet. 2005;135B:50–8.CrossRefGoogle ScholarPubMed
Shyu, W. C., Lin, S. Z., Chiang, M. F., et al. Neuregulin-1 reduces ischemia-induced brain damage in rats. Neurobiol Aging. 2004;25:935–44.CrossRefGoogle ScholarPubMed
Siris, S. G. Depression in schizophrenia: perspective in the era of “atypical” antipsychotic agents. Am J Psychiatry. 2000;157:1379–89.CrossRefGoogle ScholarPubMed
Skibinska, M., Hauser, J., Czerski, P. M., et al. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry. 2004;5:215–20.CrossRefGoogle ScholarPubMed
Sklar, P., Gabriel, S. B., McInnis, M. G., et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry. 2002;7:579–93.CrossRefGoogle ScholarPubMed
Sklar, P., Smoller, J. W., Fan, J., et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13:558–69.CrossRefGoogle ScholarPubMed
So, J., Warsh, J. J.and Li, P. P. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry. 2007;62:141–7.CrossRefGoogle ScholarPubMed
Soeiro-De-Souza, M. G., Otaduy, M. C., Dias, C. Z., et al. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. J Affect Disord. 2012;141:94101.CrossRefGoogle ScholarPubMed
Soria, V., Martinez-Amoros, E., Escaramis, G., et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35:1279–89.CrossRefGoogle ScholarPubMed
Sprooten, E., Fleming, K. M., Thomson, P. A., et al. White matter integrity as an intermediate phenotype: exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res. 2013;206:223–31.CrossRefGoogle ScholarPubMed
Squassina, A., Manchia, M., Borg, J., et al. Evidence for association of an ACCN1 gene variant with response to lithium treatment in Sardinian patients with bipolar disorder. Pharmacogenomics. 2011;12:1559–69.CrossRefGoogle ScholarPubMed
St Clair, D., Blackwood, D., Muir, W., et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990;336:1316.CrossRefGoogle ScholarPubMed
Steen, V. M., Lovlie, R., Osher, Y., et al. The polymorphic inositol polyphosphate 1-phosphatase gene as a candidate for pharmacogenetic prediction of lithium-responsive manic-depressive illness. Pharmacogenetics. 1998;8:259–68.Google ScholarPubMed
Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71:877–92.CrossRefGoogle ScholarPubMed
Steinberg, S., Mors, O., Borglum, A. D., et al. Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry. 2011;16:5966.CrossRefGoogle ScholarPubMed
Steinberg, S., De Jong, S., Mattheisen, M., et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry. 2014;19:108–14.CrossRefGoogle ScholarPubMed
Sun, X., Wang, J. F., Tseng, M., et al. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006;31:189–96.Google ScholarPubMed
Szczepankiewicz, A., Skibinska, M., Hauser, J., et al. Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology. 2006;53:51–6.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Lipsky, R., Mentschel, C., et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry. 2005;10:631–6.CrossRefGoogle ScholarPubMed
Takenouchi, T., Sekiyama, K., Sekigawa, A., et al. P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz). 2010;58:91–6.CrossRefGoogle ScholarPubMed
Tesli, M., Kahler, A. K., Andreassen, B. K., et al. No association between DGKH and bipolar disorder in a Scandinavian case-control sample. Psychiatr Genet. 2009;19:269–72.CrossRefGoogle Scholar
Tesli, M., Skatun, K. C., Ousdal, O. T., et al. CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS One. 2013;8:e56970.CrossRefGoogle ScholarPubMed
Thomson, P. A., Wray, N. R., Millar, J. K., et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry. 2005;10:616, 657–68.CrossRefGoogle ScholarPubMed
Thomson, P. A., Christoforou, A., Morris, S. W., et al. Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry. 2007;12:94104.CrossRefGoogle Scholar
Tunquist, B. J., Hoshi, N., Guire, E. S., et al. Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc Natl Acad Sci U S A. 2008;105:12557–62.CrossRefGoogle ScholarPubMed
Van Den Bossche, M. J., Strazisar, M., De Bruyne, S., et al. Identification of a CACNA2D4 deletion in late onset bipolar disorder patients and implications for the involvement of voltage-dependent calcium channels in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:465–75.CrossRefGoogle ScholarPubMed
Van Wingen, G., Rijpkema, M., Franke, B., et al. The brain-derived neurotrophic factor Val66Met polymorphism affects memory formation and retrieval of biologically salient stimuli. Neuroimage. 2010;50:1212–18.CrossRefGoogle ScholarPubMed
Walss-Bass, C., Liu, W., Lew, D. F., et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol Psychiatry. 2006a;60:548–53.CrossRefGoogle ScholarPubMed
Walss-Bass, C., Raventos, H., Montero, A. P., et al. Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr Scand. 2006b;113:314–21.CrossRefGoogle Scholar
Washizuka, S., Kakiuchi, C., Mori, K., et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2003;120B:72–8.CrossRefGoogle ScholarPubMed
Washizuka, S., Iwamoto, K., Kazuno, A. A., et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry. 2004;56:483–9.CrossRefGoogle ScholarPubMed
Washizuka, S., Kakiuchi, C., Mori, K., et al. Expression of mitochondria-related genes in lymphoblastoid cells from patients with bipolar disorder. Bipolar Disord. 2005;7:146–52.CrossRefGoogle ScholarPubMed
Washizuka, S., Kametani, M., Sasaki, T., et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:301–4.CrossRefGoogle ScholarPubMed
Washizuka, S., Iwamoto, K., Kakiuchi, C., et al. Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Neurosci Res. 2009;63:199204.CrossRefGoogle ScholarPubMed
Weber, H., Kittel-Schneider, S., Gessner, A., et al. Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD. Neuropsychopharmacology. 2011;36:2076–85.CrossRefGoogle ScholarPubMed
Weisenhaus, M., Allen, M. L., Yang, L., et al. Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice. PLoS One., 2010;5: e10325.CrossRefGoogle ScholarPubMed
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.Google Scholar
Wessa, M., Linke, J., Witt, S. H., et al. The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatry. 2010;15:1126–7.CrossRefGoogle ScholarPubMed
Whalley, H. C., Papmeyer, M., Romaniuk, L., et al. Effect of variation in diacylglycerol kinase eta (DGKH) gene on brain function in a cohort at familial risk of bipolar disorder. Neuropsychopharmacology. 2012;37:919–28.CrossRefGoogle Scholar
Williams, H. J., Craddock, N., Russo, G., et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet. 2011a;20:387–91.CrossRefGoogle ScholarPubMed
Williams, H. J., Norton, N., Dwyer, S., et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011b;16:429–41.CrossRefGoogle ScholarPubMed
Wilson, G. M., Flibotte, S., Chopra, V., et al. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet. 2006;15:743–9.CrossRefGoogle ScholarPubMed
Woo, R. S., Li, X. M., Tao, Y., et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron. 2007;54:599610.CrossRefGoogle ScholarPubMed
Yang, S., Van Dongen, H. P., Wang, K., et al. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry. 2009;14:143–55.CrossRefGoogle ScholarPubMed
Zandi, P. P., Willour, V. L., Huo, Y., et al. Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet B Neuropsychiatr Genet. 2003;119B:6976.CrossRefGoogle ScholarPubMed
Zeng, Z., Wang, T., Li, T., et al. Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population. Mol Psychiatry. 2011;16:473–5.CrossRefGoogle ScholarPubMed
Zhang, D., Cheng, L., Qian, Y., et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry. 2009;14:376–80.CrossRefGoogle ScholarPubMed
Zhang, L., Fletcher-Turner, A., Marchionni, M. A., et al. Neurotrophic and neuroprotective effects of the neuregulin glial growth factor-2 on dopaminergic neurons in rat primary midbrain cultures. J Neurochem, 2004;91:1358–68.CrossRefGoogle ScholarPubMed
Zhao, Q., Che, R., Zhang, Z., et al. Positive association between GRIN2B gene and bipolar disorder in the Chinese Han population. Psychiatry Res. 2011;185:290–2.CrossRefGoogle ScholarPubMed
Zhou, B., Zhang, Y., Zhang, F., et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology 2014;59(6):2196–206.CrossRefGoogle ScholarPubMed
Zuliani, R., Moorhead, T. W., Job, D., et al. Genetic variation in the G72 (DAOA) gene affects temporal lobe and amygdala structure in subjects affected by bipolar disorder. Bipolar Disord. 2009;11:621–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×