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Neural network models have been employed to predict the instantaneous flow close to
the wall in a viscoelastic turbulent channel flow. Numerical simulation data at the wall are
used to predict the instantaneous velocity fluctuations and polymeric-stress fluctuations
at three different wall-normal positions in the buffer region. Such an ability of non-
intrusive predictions has not been previously investigated in non-Newtonian turbulence.
Our comparative analysis with reference simulation data shows that velocity fluctuations
are predicted reasonably well from wall measurements in viscoelastic turbulence. The
network models exhibit relatively improved accuracy in predicting quantities of interest
during the hibernation intervals, facilitating a deeper understanding of the underlying
physics during low-drag events. This method could be used in flow control or when only
wall information is available from experiments (for example, in opaque fluids). More
importantly, only velocity and pressure information can be measured experimentally, while
polymeric elongation and orientation cannot be directly measured despite their importance
for turbulent dynamics. We therefore study the possibility to reconstruct the polymeric-
stress fields from velocity or pressure measurements in viscoelastic turbulent flows. The
neural network models demonstrate a reasonably good accuracy in predicting polymeric
shear stress and the trace of the polymeric stress at a given wall-normal location. The
results are promising, but also underline that a lack of small scales in the input velocity
fields can alter the rate of energy transfer from flow to polymers, affecting the prediction
of the polymeric-stress fluctuations.
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1. Introduction
Viscoelastic fluids are widely used in industrial processes and an understanding of
complex-fluid behaviour becomes crucial for enterprises working with non-Newtonian
flows. Further, in real-world scenarios, turbulent flows predominate, exhibiting chaotic
and multi-scale dynamics. The turbulent flows of purely viscoelastic fluids have important
technological implications due to increased mixing efficiencies at low Reynolds numbers
and have also piqued the interest in drag reduction and flow control communities at high
Reynolds numbers. The addition of a tiny amount of polymer (parts per million) has proven
efficient in reducing friction drag in pipe flows (Virk 1971), leading to substantial energy
savings in fluid-transport applications. Such observation sparked intense research into the
interaction between flow dynamics and polymers, in the context of skin-friction reduction.
Lumley (1969) postulated that the drag reduction attributed to polymer molecules arises
from the extension of polymers, thereby increasing the effective extensional viscosity of
the solution. This increase in extensional viscosity leads to the damping of small eddies,
resulting in increased buffer layer thickness. However, De Gennes (1986) attributed the
drag reduction to elastic effects rather than the viscous properties of polymers. This
theory assumes that the turbulent kinetic energy (TKE) is stored as elastic energy by the
polymers, thereby influencing the energy cascade. Nevertheless, neither theory offers a
comprehensive description of polymer-induced drag reduction.

Various experimental investigations in channel and pipe flows (Pinho & Whitelaw
1990; Wei & Willmarth 1992; Den Toonder et al. 1997; Warholic, Massah & Hanratty
1999, 2001; Ptasinski et al. 2001, 2003) have shown that polymers induce changes in the
turbulence structure rather than simply attenuating it. These changes are characterised
by an increase in streamwise turbulence intensity alongside a decrease in wall-normal
fluctuations. With access to direct numerical simulation (DNS) techniques (Sureshkumar,
Beris & Handler 1997), a deeper insight into the intricate interaction between polymers
and flow fields has been probed. Notably, Dubief et al. (2004, 2005) pointed out that
the polymers exhibited a structured energy exchange with the flow, primarily occurring
around near-wall vortices. This increased polymer activity in the buffer region suggests
that polymers are entrained around the vortices, resulting in the torque due to polymeric
stress opposing the rotation of the streamwise vortices (Kim et al. 2007), thereby extracting
energy from near-wall vortices. Consequently, polymer stretching weakens the near-wall
coherent structures, leading to a reduction of skin friction (Stone, Waleffe & Graham
2002; Dubief et al. 2004; Li & Graham 2007; Kim et al. 2007, 2008). In addition
to damping near-wall vortices, polymers also enhance the streamwise kinetic energy in
near-wall streaks, thereby the net balance of these gives rise to a self-sustained drag-
reduced turbulent flow (Dubief et al. 2004, 2005). Furthermore, Xi & Graham (2010, 2012)
suggested that the turbulent flow is characterised by an alternating sequence of active and
hibernating phases. These phases are distinguished by flow structures exhibiting strong
vortices and wavy streaks during the active phase, and weak streamwise vortices during the
hibernation phase, with viscoelastic flows characterised by increased hibernation intervals.
Additional insights into the influence of polymer additives on drag reduction are detailed
by Xi (2019).

Overall, the studies indicate that drag reduction caused by polymer molecules
arises from their complex and dynamic interactions with turbulent flow structures.
Nonetheless, the exact behaviour of polymers in turbulent flows remains an open question.
Moreover, the intermittent dynamics near the wall are primarily explored using numerical
simulations, as they provide direct access to polymeric-stress fields through constitutive
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equations for viscoelastic fluids. In contrast, experimental investigations of drag reduction
in viscoelastic flows are limited by the challenges of near-wall measurements and the
inability of current techniques to directly measure polymeric stress (Stone & Graham
2003). Consequently, while direct measurements of polymeric stress in experiments are
not feasible, flow fields measurable through experimental techniques can serve as inputs
to machine-learning models to infer polymeric-stress fields indirectly. This approach
represents a promising avenue for gaining insights into polymeric-stress dynamics in
turbulent flows and bridging the gap between numerical and experimental investigations.
Since a complete description of viscoelastic turbulence would require characterisation of
both velocity and polymeric stresses, a deeper understanding of viscoelastic turbulence
would benefit from advances in methodologies that combine experimental measurements
of velocity fields with computational models to infer stress distributions (Thakur, Raissi &
Ardekani 2024).

The phenomenon of drag reduction in viscoelastic turbulent flows has been explored
from theoretical, experimental and numerical perspectives. However, in recent years,
machine-learning methods have expanded the possibilities in simulating (Raissi, Yazdani
& Karniadakis 2020; Eivazi et al. 2022; Vinuesa & Brunton 2022), predicting (Eivazi
et al. 2021; Guastoni et al. 2021; Yousif et al. 2023a,b) and controlling (Guastoni
et al. 2023; Vignon, Rabault & Vinuesa 2023) wall-bounded Newtonian turbulent flows
(Vinuesa 2024). Data-driven methods also hold potential for enhancing the understanding
of the role of coherent structures in Newtonian (Cremades et al. 2024) and viscoelastic
turbulence dynamics (Le Clainche et al. 2020). In viscoelastic turbulence, Kumar,
Constante-Amores & Graham (2025) demonstrated that low-dimensional models of
elastoinertial turbulence (EIT), obtained by combining proper-orthogonal decomposition
(POD), autoencoders and neural ordinary differential equations (NODEs), can accurately
capture short and long-term dynamics of dilute polymer solutions thereby significantly
reducing computational costs. In the domain of polymeric stress predictions, researchers
have explored the predictability of polymeric-stress components from velocity gradient
using neural networks (Nagamachi & Tsukahara 2019) and have also developed a
framework for rheological model discovery from the velocity field and information
corresponding to boundary conditions and initial condition of polymeric stress (Thakur
et al. 2024). These examples underscore the possibilities offered by data-driven
methods to advance the understanding of polymers and flow field interaction in
viscoelastic turbulent flow. However, a critical first step is to estimate the instantaneous
polymer behaviour in an experimental setting. But, experimental studies encounter
difficulties in accurately quantifying macromolecular extension, thereby significantly
restricting the ability to fully characterise polymer behaviour (Stone & Graham 2003).
Moreover, near-wall measurements of flow fields in turbulent channel flows can also
pose challenges. Nevertheless, nonlinear machine-learning tools offer possibilities for
improving experimental flow measurements and estimating flow and scalar quantities
(Vinuesa, Brunton & McKeon 2023; Eivazi et al. 2024). Neural network models and,
in particular, fully convolutional network (FCN) models have demonstrated excellent
capabilities in predicting the instantaneous state of the flow using quantities measured
at the wall in Newtonian turbulent flow (Guastoni et al. 2021).

Hence, in the present study, the idea of non-intrusive sensing has been applied to
viscoelastic turbulent channel flow to predict the velocity fluctuations and polymeric-stress
components near the wall using the quantities measured at the wall. To this end, FCN
models are employed to predict the two-dimensional velocity fluctuations and polymeric-
stress-fluctuation fields at different wall-normal distances. The obtained predictions from
FCN models are compared with reference simulation data and the analysis indicates that
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velocity fluctuations can be reasonably well predicted in viscoelastic turbulence similar to
the results obtained by Guastoni et al. (2021) for Newtonian wall-bounded turbulent flow.
Further, the present work highlights that the errors between reference fields and predictions
are lower in hibernation intervals in comparison to those at high-shear events, highlighting
the ability of the network model to relatively well capture the underlying physics at low-
drag events. Thus, the present work highlights the capability of a data-driven approach
to model turbulence in complex-fluid flows. As a first step, directly providing a possible
experimental measurement of wall quantities or near-wall velocity fluctuations as inputs to
the network model allows for an estimation of the polymeric-stress quantities in the near-
wall region from experimental observations. Furthermore, the developed non-intrusive
sensing models will also find useful applications in closed-loop control of wall-bounded
turbulence in viscoelastic flows.

The paper is organised as follows. The methodology employed in the present work is
introduced in § 2. A description on the dataset to train the network models is provided
in § 2.1 and an overview of the network models can be found in § 2.2. A filter-based
approach to identify the effects of small scales on FCN predictions is detailed in § 2.3.
In § 3, the results obtained with different network models are discussed. The performance
of the network models in different prediction types is outlined in §§ 3.1–3.3. The effects
of filtering the small scales in the input velocity fluctuations on the predictions by FCN is
discussed in §§ 3.4 and 3.5, and an interpretation of the predictions by FCN is provided in
§ 3.6. Additional details regarding the error metrics for different types of predictions and
the analysis of predictions of polymeric shear stress can be found in Appendices A–C.

2. Methodology

2.1. Dataset
To estimate the turbulent dynamics of the viscoelastic fluid from velocity fields, direct
numerical simulation of viscoelastic turbulent channel flow is performed to generate
the data necessary for modelling the relationship between near-wall velocity fluctuations
and polymeric-stress-fluctuation quantities of interest using a fully convolutional neural
network model. For the direct numerical simulation, a macroscopic continuum description
of fluid–polymer interaction is considered. Specifically, an homogeneous dilute mixture
of polymer in the solvent fluid is modelled with the finitely extensible nonlinear elastic
with Peterlin closure (FENE-P) constitutive relation (refer to (2.4)). Although more
sophisticated models (Watanabe & Gotoh 2014; Shen et al. 2022) could be considered,
Stone & Graham (2003) demonstrated that the FENE-P model can still yield reasonable
predictions of the spatial distribution of stresses due to polymers and indicated that while
the transient extension for the FENE-P model compares favourably to a more detailed
model such as bead-spring-chain models, it may overestimate elastic stresses in turbulent
flow. The FENE-P model still remains by far the most widely used option for investigating
viscoelastic turbulence and drag reduction phenomena owing to its ability to reproduce
essential features of polymer dynamics such as polymer drag reduction, including the
maximum-drag reduction asymptote (Graham 2014). Dubief et al. (2022, 2023) also
highlight its role in studies of EIT, a chaotic state driven by polymer dynamics, and for
understanding elastic turbulence and maximum drag reduction. Hence, in the present
study, FENE-P model is used with the notion that it accurately describes the polymer
physics of the considered viscoelastic liquid.

In the macroscopic description of the polymer model, we consider the statistics of end-
to-end vector R to characterise the average of the end-to-end vectors of a large number of
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polymer macro-molecules contained in a fluid particle. An essential statistical quantity in
this description is the second-order correlation of the orientation vector R, known as the
conformation tensor (A) which is obtained by

A = Ai j

R2
0

=
〈
Ri R j

〉
f

R2
0

, (2.1)

where 〈·〉 f corresponds to the statistical average over a fluid particle and R2
0 corresponds

to the root mean square (r.m.s.) of all the end-to-end vectors inside a fluid particle at rest.
The dimensional incompressible Navier–Stokes equations coupled with the evolution

equation for the polymer conformation tensor are given by

∂u
∂t

+ (u · ∇u) = − 1
ρ

∇ p + μs

ρ
∇2u +

[
μp

ρλ
∇ · (P(A)A)

]
, (2.2)

∇ · u = 0, (2.3)
∂A
∂t

+ u · ∇A = A · ∇u + (∇u)T · A − 1
λ

[P(A)A − I] , (2.4)

P(A) = L2
max

L2
max − tr(A)

(2.5)

,
where u is the velocity with corresponding components in streamwise, wall-normal and
spanwise directions represented by u, v, w, and p is the pressure. In the remainder of the
text, the instantaneous quantities are expressed as the sum of a mean component – obtained
by averaging over space and time – and a fluctuating component. Consequently, the mean
velocity components are denoted by 〈U 〉, 〈V 〉, 〈W 〉 and the corresponding fluctuations by
u, v, w. In (2.2), ρ is the density of the fluid with t denoting the time and λ denoting the
relaxation time scale of polymeric stress. The solvent and polymer viscosity of the fluid
are given by μs, μp, respectively, and they depend on the polymer concentration. The
Peterlin function P(A) accounts for the finite length of the polymer molecules with Lmax
denoting the upper limit of the normalised polymer extension length, the point after which
the polymers cannot absorb more energy from the flow.

The polymeric stress τ p can be retrieved from the conformation tensor using the Kramer
relationship:

τ p = μp

λ
(A − I) . (2.6)

Note that the mean of the polymeric-stress component is obtained by averaging in space
and time, and is denoted by

〈
τp,ij

〉
and the corresponding fluctuation by τp,ij. Alternatively,

one could also obtain the polymeric-stress components by predicting the conformation
tensor and thereby retrieve the required stress components, in which case, one can employ
geometric decomposition of conformation tensor as introduced by Hameduddin et al.
(2018) (see also Hameduddin, Gayme & Zaki 2019; Hameduddin & Zaki 2019). This
approach presents an interesting avenue for future work. However, in the present study,
we aim to directly predict the fluctuation components of polymeric-stress components of
interest from input fields and, hence, we consider the above-described decomposition of
polymeric-stress components. Further, it should be highlighted that one of the difficulties
in simulating viscoelastic fluid flow comes from the preservation of positive definiteness
of the conformation tensor (A) during the evolution of turbulent flow at high Weissenberg
number (Wi := λUb/h, with Ub corresponding to the bulk velocity and h is the channel
half-height; Wi quantifies the elastic forces with respect to the viscous forces, thereby
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indicating the degree of anisotropy in the flow). Sureshkumar & Beris (1995) used artificial
diffusion with the hyperbolic polymer evolution equation. The artificial diffusion can
be either local (Dubief et al. 2004, 2005) or global (Sureshkumar et al. 1997). Despite
the simplicity of the method, artificial diffusion affects the dynamics of the polymers
at the small scales (Nguyen et al. 2016; Yerasi et al. 2024). Therefore, in the present
study, the log-conformation approach (Fattal & Kupferman 2004) is used to ensure
the positive definiteness of the conformation tensor and thereby circumvent the high-
Weissenberg-number problem. However, it does not alter the inherent hyperbolic nature
of the governing equations, thereby imposing stringent demands on mesh refinement and
significantly increasing the associated computational costs. While the log-conformation
transformation circumvents the issue of the loss of positive definiteness in the polymer
conformation tensor, it does not eliminate the hyperbolic nature of the governing equations
and poses stringent requirements in terms of mesh refinement levels and the associated
computational costs. The advection of the log-conformation tensor is performed using the
WENO5 scheme for its ability to accurately capture sharp gradients and discontinuities
with minimal spurious oscillations. The time advancement of the conformation tensor
is performed using a third-order Runge–Kutta (RK3) scheme. More details on the
numerical methodology can be found from Rosti et al. (2018) and Izbassarov et al. (2021).
Furthermore, the wall fields (see figure 4a) can exhibit high-frequency structures, which
may be associated with the polymer diffusive instabilities as highlighted by Beneitez,
Page & Kerswell (2023), Couchman et al. (2024) and Beneitez et al. (2024). These
structures could potentially stem from the inherent numerical diffusion in solving the
polymeric stress equations, as no artificial diffusivity is employed in the present numerical
simulations.

The dataset for training and evaluation of the network model is obtained through a DNS
of turbulent channel flow of viscoelastic fluid at a Reynolds number based on the bulk
velocity of Re = Ubh/ν = 2800 (ν = (μs + μp)/ρ denotes the total kinematic viscosity
of the fluid), which corresponds to a friction Reynolds number Reτ = 180 (where Reτ is
defined in terms of h and friction velocity uτ ) for a Newtonian fluid. In this study, the
turbulent channel flow simulations are performed at a Weissenberg number Wi = 8. The
ratio of polymeric viscosity (μp) to the total viscosity (μs + μp), which is denoted by
α, is set to 0.1. The maximum polymer extensibility is set to Lmax = 60. The difficulties
associated with proper rheological characterisation of real fluids by adequate constitutive
equations is an important area of research on its own and rather, we assume that the
adopted model adequately describes the intended fluid properties.

The viscoelastic turbulent channel flow is simulated using a finite-difference-based
in-house code on a computational domain of size 6h × 2h × 3h in the streamwise (x),
wall-normal (y) and spanwise directions (z), respectively, as shown in figure 1. The
readers are referred to Izbassarov et al. (2021) for a complete description of the viscoelastic
turbulent channel simulation employed in this study. The computational domain is
uniformly discretised using 1728 × 576 × 864 grid points along x, y and z, respectively. A
spatial resolution of �x+ = �y+ = �z+ < 0.6 is chosen to fully resolve the turbulent
scales in the viscoelastic turbulent flow (see also Rosti et al. 2018; Izbassarov et al.
2021). Here, the superscript ‘+’ denotes the scaling in terms of the friction velocity uτ

(= √
τw/ρ, where τw corresponds to the wall-shear stress) and viscous length �∗(= ν/uτ ).

Note that the value of uτ obtained with Wi = 8 is lower than that in the Newtonian case
(uτ ≈ 180/Reb; since Reτ, Wi=0 ≈ 180) due to skin-friction reduction (refer also to mean
velocity profile plotted in figure 3). Variation of the averaged wall-shear rate (〈Uy〉x,z|wall)
obtained with Wi = 8 is compared against the Newtonian case (Wi = 0) in figure 2. Here,
Uy corresponds to the wall-normal derivative of the streamwise velocity and 〈·〉x,z denotes
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Figure 1. Typical workflow representation of V-prediction using fully convolutional network (FCN) model.
(a) The computational domain for the channel flow and (b) FCN model with the corresponding number of
kernels in each hidden layer indicated.
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Figure 2. Time evolution of the wall-shear rate in a viscoelastic channel flow corresponding to Wi = 8 and
Newtonian channel flow (Wi = 0) at (a) y/h = 2 and (b) y/h = 0. The dashed lines indicate the temporal
mean and the dotted lines indicate the 10 % deviation from the temporal mean.

the spatial averaging in x and z directions in the channel. From figure 2, identifying the
hibernation intervals (regions with low wall-shear stress) using area-averaged wall-shear
rate as performed by Xi & Graham (2010) with a threshold corresponding to 10 % of the
mean shear rate, we observe the presence of such low-drag events at Wi = 8. Note that the
choice of threshold is arbitrary here and a definitive choice of the threshold value is absent
in the literature. Effectively, for the considered viscoelastic turbulent flow at Wi = 8, we
observe a drag reduction (quantified as 1 − (Reτ /Reτ,Wi=0)

2, see also Izbassarov et al.
(2021)) of roughly 20 % for the set of considered parameters in this study. From figure 2, it
is evident that the fields at the wall (which are provided as inputs to FCN, see figure 1,
§ 2.2) significantly deviate from the statistical mean for a considerable fraction of the
total time. Thus, in this work, we aim to build a neural network model that can predict
viscoelastic turbulence quantities of interest, not only in the mean flow, but also in extreme
wall-shear events with particular interest in hibernation intervals.
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100 101 102

y+

0

5

10

15

20

〈U
〉+

Wi = 8

Newtonian

Figure 3. Inner-scaled mean streamwise velocity profile obtained with the viscoelastic channel flow at Wi = 8
(blue) and reference Newtonian channel flow (orange). The red markers indicate the wall-normal positions at
which planar data are sampled, apart from the wall. The black dashed lines corresponds to the viscous sub-layer
(〈U 〉+ = y+) and log-law (〈U 〉+ = ln(y+)/0.41 + 5.2) relationship.

To this end, a database consisting of instantaneous fluctuation fields (obtained by
the subtraction of mean value of viscoelastic turbulent fields) of wall-shear-stress
components and wall-pressure fluctuation, as well as the two-dimensional velocity-
fluctuation and polymeric-stress-fluctuation fields obtained at different wall-normal
locations, y+ = 13.6, 26.7 and 44.2 (y/h ≈ 0.09, 0.17 and 0.28, respectively, see also
figure 3) is generated. Note that these wall-normal locations correspond respectively to
y+ = 15, 30 and 50 for a Newtonian turbulent channel flow and, hence, for simplicity, we
refer to these locations as y+ ≈ 15, 30 and 50, respectively, in this study. The buffer region
is probed because of its importance in terms of production and dissipation of turbulent
energy, and is significantly modified in drag-reducing flows with polymer additives (Den
Toonder et al. 1997; Stone & Graham 2003).

The simulations are run for ∼ 120h/uτ time units and a total of 40 600 samples
is obtained with a sampling period of �t+s ≈ 1 for training the network model. The
sampled instantaneous two-dimensional fields are down-sampled to a resolution of
(Nx × Nz =) 432 × 432 in x and z, respectively. The fields on both walls are used in
this study, and they are split into training and validation sets with a ratio of 4 : 1. The
computational resources required to carry out the simulation and generate the necessary
training dataset amounted to approximately 1.5 million core-hours.

The network models are evaluated with the samples in the test dataset which consists
of 10 000 samples. The samples in the test dataset are chosen from a time interval (in the
sampled time series) that corresponds to at least 60 flow-through times apart from the
samples in the training dataset to ensure minimal auto-correlation between the samples in
the training and test dataset. The temporal length for the number of samples considered
in the test dataset corresponds to ≈ 50h/uτ time units, whereas a temporal averaging over
10–15 eddy-turnover times is sufficient to obtain good convergence of turbulence statistics
(Li, Sureshkumar & Khomami 2006).

2.2. Neural network model
In this work, a fully convolutional neural network model similar to the one proposed
by Guastoni et al. (2021) is used, with an increased number of hidden layers (see
figure 1) to obtain a more complex combination of abstract turbulent features identified
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by the kernels in the network. Here, we use an existing architecture, acknowledging that
further enhancements could be achieved with newer architectures that require extensive
datasets. Our focus is on proposing a methodology for viscoelastic stress predictions
in turbulent flows aimed towards experimental applications and in establishing baseline
performance using current convolutional architectures. The considered FCN consists
of 30 hidden layers with total number of trainable parameters amounting to 985 105
(≈ 1 million parameters). The convolution operations are followed by batch normalisation
and a rectified-linear-unit (ReLU) activation function. The inputs to the network are
normalised using respective mean and standard deviation of the fields from the training
dataset and the outputs are normalised using the corresponding standard deviation
values. For the different prediction tasks considered in this study, the choice of loss
function (L) is the mean-squared error (MSE) between the instantaneous predicted and
DNS fields:

L(uFCN; uDNS) = 1
Nx Nz

Nx∑
i=1

Nz∑
j=1

|uFCN(i, j) − uDNS(i, j)|2 , (2.7)

which helps the network to learn the large-scale features first and then progressively
optimse the trainable parameters to minimise the errors at finer scales (Xu et al. 2019).
The subscripts ‘DN S’ and ‘FC N ’ are respectively used to denote the DNS samples and
corresponding predictions from FCN. Each network model is trained using 4 × A100
graphics-processing units (GPUs), amounting to approximately 3500 GPU-hours for
training a single network model.

In this study, three types of predictions have been undertaken to highlight the
capability of FCN models to reconstruct the near-wall visco-elastic turbulence fields. In
V-predictions (indicating velocity predictions), the streamwise wall-shear stress, spanwise
wall-shear stress and pressure field at the wall are used to predict the streamwise, spanwise
and wall-normal velocity fluctuations at the target wall-normal position. This allows us to
assess whether velocity fields can also be predicted in viscoelastic turbulence exhibiting
periods of hibernation. The performance of the neural network models in predicting the
fluctuations of polymeric shear stress (τp, xy) and fluctuations of trace of polymeric stress
(tr(τp)) at a given wall-normal location using the true velocity-fluctuation fields at the
same location are denoted as E predictions (signifying prediction of elastic/polymeric
stress quantities of interest). In this study, the fluctuations of polymeric-stress components
are predicted directly from the input data. Finally, in V-E predictions, the FCN model
is used to predict the fluctuations of polymeric shear stress and diagonal components of
polymeric-stress tensor at a target wall-normal distance directly from wall inputs, with
auxiliary predictions of corresponding velocity fluctuations at the considered wall-normal
location. The auxiliary predictions of velocity fluctuations at a wall-normal location
are used in V-E predictions to obtain an increase in the accuracy of the prediction of
polymeric-stress quantities. It is worth noting that the mean of polymeric shear stress
can be obtained either from the experimentally quantified stress deficit (Warholic et al.
1999) or from numerical simulations. Additionally, the FCN model performs well in
predicting the mean of polymeric-stress quantities, which stems from the use of the
mean-squared error as a loss function that tends to regress to the mean and hence the
relative errors in predicting the mean polymeric-stress quantities from FCN are lower
than 2 %. Consequently, our primary focus in this study is on retrieving the instantaneous
fluctuations of polymeric stress using corresponding fluctuations of input quantities.

The mean absolute error between the predictions and DNS fields (denoted by MAE) is
reported for different types of predictions, which is calculated as
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MAE(u) = 〈|uFCN − uDNS|〉x,z . (2.8)

The error metrics described in this section are computed for each component of u and for
the polymeric-stress quantities of interest (refer to Appendix A). The network performance
is also evaluated from a statistical point of view in terms of the relative error in predicting
the corresponding r.m.s. quantities between the true (DNS) fields from the test dataset and
the fields predicted by the FCN (indicated by Erms), and is given by

Erms(u) [ %] = 100 · |uFCN,rms − uDNS,rms|
uDNS,rms

, (2.9)

whereas the instantaneous correlation coefficient between the predicted and the DNS fields
is defined as

R(u) = 〈uFCNuDNS〉x,z,t

uFCN,rmsuDNS,rms
, (2.10)

with 〈·〉x,z,t corresponding to the average in space (x, z) and time (t ; denotes the samples
in the test dataset) and subscript ·rms refers to r.m.s. quantities.

Note that the performance metrics reported in this study are obtained from the mean of
at least three different network models to include the effects of stochasticity introduced
by the random initialisation of kernel weights in FCN and random sampling of mini-
batches during the training process. The instantaneous correlation coefficient between the
predicted and DNS fields averaged over the samples in the test dataset, is also highlighted.
To evaluate the distribution of energy across the various scales in the flow, a comparison of
the pre-multiplied two-dimensional (2-D) power-spectral density (PSD) kzkxφi j (λ

+
x , λ+z )

between DNS fields and the predictions is performed. Here, φi j is the power-spectral
density obtained for the quantity ‘i j’ and kx , kz respectively denoting the wavenumbers
in streamwise and spanwise directions, with the corresponding wavelengths in viscous
units denoted by λ+x and λ+z .

2.3. Low-pass filtering of velocity fluctuations
To identify the effects of small-scale features in the input velocity-fluctuation fields on
the predictions of polymeric stress (see §§ 3.5 and 3.6) and thereby to recommend scale
requirements for inputs from possible experimental investigations, we employ low-pass
filtering of velocity fluctuations with a threshold wavelength denoted by λ+c . This threshold
λ+c represents the smallest wavelength of the turbulent scales present in the input velocity-
fluctuation fields to the FCN. For instance, in velocity-fluctuation fields sampled from
DNS with 432 × 432 data points respectively in the streamwise and spanwise directions,
the minimum wavelengths correspond to λ+x = 5, λ+z = 2.5 and hence, λ+c = 2.5 for the
DNS sampled fields. By filtering the sampled DNS velocity-fluctuation fields at a certain
y+ to contain small scales above λ+c , we ascertain that λ+x = λ+z ≥ λ+c (> 2.5). However,
the predictions of polymeric-stress quantities from the FCN aim to capture all the scales
above 2.5 viscous-length units, regardless of the input λ+c . In other words, the sampled
DNS polymeric-stress quantities serve as the true reference for the supervised training
process of FCN for all the different network models with corresponding λ+c of input
velocity fluctuations.

The filtering is performed in the wavenumber space kx , kz and the corresponding
procedure for the filtering process is outlined in Algorithm 1.

The relative decrease in the turbulent kinetic energy in the input velocity fluctuations
sampled from DNS (denoted by KDNS) and after the filtering process (denoted by K f ) for
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Algorithm 1 Low-pass filtering of input velocity fields

v v v

vvv

w w w

www

a given λ+c is quantified as

�K= 100 · KDNS −K f

KDNS
[ %] = 100 ·

〈
χ2〉 − 〈

ζ 2〉〈
χ2

〉 [ %], (2.11)

where 〈·〉 corresponds to the spatial and temporal averaging of data yielding a scalar
output. Here, χ corresponds to the sequence of sampled velocity-fluctuation snapshots
from DNS and ζ is the sequence of respective filtered fields obtained from the filtering
process.

3. Results
The predictions of the trained network models are compared with the data obtained from
DNS. The performance is assessed from a qualitative point of view and subsequently
from a quantitative aspect, based on predictions of instantaneous fields, turbulent statistics
and the two-dimensional power spectral density. Further, the importance of small-scale
velocity fluctuations to successfully retrieve the small-scale polymeric-stress fluctuations
is highlighted. Table 1 summarises the list of predictions considered in this study.

3.1. Prediction of velocity fluctuations
The predicted velocity fluctuations at different target wall-normal positions using
streamwise and spanwise wall-shear rate and wall pressure are qualitatively inspected.
A sample prediction of the instantaneous velocity-fluctuation fields for the case of V
predictions is shown in figure 4 (corresponding to an instant in the test dataset where
the input wall-shear rate is higher than the mean wall-shear rate). We note that the
predicted velocity fields are visually well correlated with the DNS fields at different
target wall-normal locations. The linear correlation coefficient between the predicted
and true streamwise-velocity fluctuation fields exceeds 99 % for predictions at y+ ≈ 15,
and gradually declines but remains above 80 % at y+ ≈ 50. The r.m.s. quantities of
the streamwise velocity-fluctuation fields at y+ ≈ 15, 30, 50 are predicted with less than
(Erms <) 3 %, 6 % and 15 % error, respectively. With an increasing separation distance
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Section Inputs Outputs Input y+ Output y+ λ+c Type

uy, wy, p u, v, w 0 15 −
3.1 uy, wy, p u, v, w 0 30 − V predictions

uy, wy, p u, v, w 0 50 −
u, v, w tr(τ p), τp, xy 15 15 −

3.2 u, v, w tr(τ p), τp, xy 30 30 − E predictions
u, v, w tr(τ p), τp, xy 50 50 −

uy, wy, p tr(τ p), τp, xy 0 15 −
3.2 uy, wy, p tr(τ p), τp, xy 0 30 − V-E predictions

uy, wy, p tr(τ p), τp, xy 0 50 −
ũ, ṽ, w̃ tr(τ p), τp, xy 15 15 9−108

3.4 ũ, ṽ, w̃ tr(τ p), τp, xy 30 30 9−108 Filt
ũ, ṽ, w̃ tr(τ p), τp, xy 50 50 9−108

Table 1. Summary of the predictions obtained using respective FCN models.
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Figure 4. Sample instantaneous (a) normalised wall inputs to the FCN compared with the instantaneous
velocity-fluctuation fields in the (b) streamwise, (c) wall-normal and (d) spanwise directions, at different wall-
normal positions. In panel (b−d): (left) DNS field and (right) V predictions from FCN. The fields are scaled
with the corresponding r.m.s. values.

(wall-normal distance between the wall fields and the target velocity-fluctuation fields),
the fields are less correlated and thereby the performance of the network also decreases.
Because of this, the r.m.s.-normalised mean-absolute errors in the predicted streamwise-
velocity fluctuations are 0.14, 0.29 and 0.47 at y+ ≈ 15, 30, 50, respectively (see also
figure 5). The performance metrics for different network models, along with the error fields
(representing the difference between reference DNS and the predictions) corresponding to
the instantaneous field as illustrated in figure 4, are summarised in Appendix A.

The MAE in the wall-normal and spanwise fluctuation fields remained below 0.025
in the different target wall-normal locations considered in the study (refer to figure 5 for
normalised quantities). However, the Erms values in the wall-normal and spanwise-velocity
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Figure 5. Variation of the r.m.s.-normalised mean-absolute errors of (a) streamwise, (b) wall-normal and
(c) spanwise velocity components in V predictions at different wall-normal locations with respect to the wall-
shear rate. The markers correspond to the mean absolute error in the instantaneous sample for the test dataset.
The shaded region corresponds to the hibernation interval identified with 90 % of 〈Uy〉x,z,t . The dashed vertical
lines indicate the temporal mean and the dotted vertical lines indicate the 10 % deviation from the temporal
mean.

fluctuations are at least twice as large as those obtained in the r.m.s. prediction of the
streamwise component at the respective wall-normal locations. The reduction in accuracy
stems from the weaker and finer-scale nature of wall-normal and spanwise fluctuations
compared with the dominant streamwise component (see also figure 8a). Note that the
polymers attenuate the spanwise and wall-normal fluctuations by opposing the upwash
and downwash flows generated by near-wall vortices (Dubief et al. 2004, 2005). Thus,
the absence of such polymeric stress information in the inputs for V predictions also
limits the model’s ability to accurately represent turbulence statistics in the spanwise and
wall-normal fluctuation components. The reduced accuracy in predicting wall-normal and
spanwise velocity fluctuations arises from their weaker and finer-scale nature compared
with the streamwise component, further attenuated by polymer effects, making them
harder for the model to learn without additional polymeric stress information.

It should be emphasised that the network model is explicitly optimised for predicting
instantaneous fields rather than reproducing the turbulence statistics. This emphasis is
rooted in the motivation for non-intrusive sensing in an experimental setting, aimed at
understanding the near-wall dynamics of viscoelastic turbulent channel flow. In addition,
optimising network models to accurately replicate turbulence statistics obtained from DNS
could lead the model to learn the mean-flow behaviour with a lower Erms. This may also
entail a compromise, as predictions during hibernating intervals could potentially become
less accurate.

When assessing the accuracy of the instantaneous predictions based on mean-absolute
errors, as illustrated in figure 5, it becomes apparent that the MAE (in each test sample)
varies with wall-shear rate for different target wall-normal locations. Specifically, in
instances of low-wall-shear rate, the absolute errors are notably lower and increase
with wall-shear rate. This is due to the fact that low-drag events typically exhibit
reduced fluctuation intensity, which increases with wall-shear rate, leading to increased
concentration of energy in small-scale features. Consequently, the network encounters
relative difficulty in accurately predicting these small-scale features, resulting in higher
prediction errors at large wall-shear-rate inputs. It is worth noting that the variation of
MAE (in each test sample) with wall-shear rate stems from the selection of the loss
function used in the network. Nevertheless, the obtained network model exhibits superior
predictive performance in capturing velocity-fluctuation fields during low-wall-shear-rate
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Figure 6. A sample fluctuation field corresponding to (a) polymeric shear stress and (b) trace of the polymeric
stress, at different-wall normal locations. In panel (a,b): (left) the DNS field; (middle) E predictions; and (right)
V-E predictions from FCN. The fields are scaled with the respective r.m.s. values.

events. This observation underscores the potential utility of such models in obtaining
sufficiently accurate velocity fluctuations in an experimental setting, more particularly for
studying hibernation events in detail.

3.2. Prediction of polymeric stress
The predicted velocity fluctuations at various target wall-normal positions show a good
agreement with the reference DNS quantities. Following this, the focus is to estimate
the polymeric-stress quantities of interest based on velocity fluctuations. Additionally,
an effort is made to retrieve polymeric stress using only wall information, which is
advantageous in experimental settings. This section begins with a qualitative analysis
of the predicted polymeric-stress fields. A sample predicted field of polymeric-stress
components (corresponding to the same time instant as the wall inputs shown in figure 4a)
for E predictions and V-E predictions is shown in figure 6 (see also Appendix A, for
the corresponding error fields). Overall, the large-scale features in the polymeric-stress
quantities of interest are visually in good agreement with DNS. For E predictions, where
polymeric stresses are predicted from DNS velocity fields at the same location, there
is no separation distance between the input and target fields and the linear correlation
coefficient between the predicted and DNS polymeric shear stress, and the trace of the
polymeric stress remained more than 90 % for the different target wall-normal positions.
Moreover, Erms remained below 15 % for E predictions of τp,xy and tr(τp) at different
target wall-normal distances.

Note that in V-E predictions, the polymeric stresses are predicted directly from the wall
inputs, without having access to the true velocity fields at the wall-normal location where
those stresses are predicted. Instead, predicted auxiliary velocity fields at that location
(together with wall inputs) are used to predict the polymeric-stress fields. The obtained
errors of approximately 40 % indicate that a small error in predicting velocity-fluctuation
fields significantly impacts the errors in predicting the polymeric-stress fields (see also
§ 3.4), suggesting that the auxiliary velocity-fluctuation fields in V-E predictions lack
certain information that is connected to the polymeric activity at the small wavelengths.
Nevertheless, the large-scale structures in the predicted polymeric-stress fields for V-E
predictions exhibit a qualitative agreement with the reference, as observed in figure 6.

Examining the accuracy of the instantaneous predictions based on mean-absolute errors,
as depicted in figure 7 for E predictions and V-E predictions, reveals a similar trend in
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Figure 7. Variation of the r.m.s.-normalised mean-absolute errors of polymeric shear stress in (a) E predictions,
(b) V-E predictions, and trace of polymeric stress in (c) E predictions and (d) V-E predictions with respect to
the wall-shear rate. The markers correspond to the mean absolute error in the instantaneous sample in the test
dataset. Shaded regions correspond to the identified hibernation interval with 90 % of 〈Uy〉x,z,t . The dashed
vertical lines indicate the temporal mean and the dotted vertical lines indicate the 10 % deviation from the
temporal mean.

MAE (in each test sample) with respect to wall-shear rate as observed in V predictions.
Overall, the absolute errors increase with the wall-shear rate. Further, the magnitude
of such absolute errors in the field is nearly doubled for V-E predictions (figure 7b,d)
compared with E predictions (figure 7a,c). Moreover, the MAE in predicting polymeric-
stress quantities of interest remains relatively constant across various target wall-normal
positions with respect to the corresponding r.m.s. quantities for E predictions and with
marginal distinctions in V-E predictions.

3.3. Energy distribution across different length scales
The statistical analysis of the predicted velocity fluctuations using V predictions and
the predicted polymer stresses using E predictions closely matches the results obtained
from DNS. However, there is a significant deviation in the second-order statistics of
polymeric stress quantities predicted using only the wall-shear rate and wall pressure
(V-E predictions). To understand the reasons behind this, the distribution of energy across
different length scales in the FCN predictions is examined and compared with the reference
DNS.

The distribution of energy in the predicted and DNS data across different scales are
compared through spectral analysis as illustrated in figure 8(a). The results show that
the neural network models successfully reproduce the energy content in the streamwise
velocity component (denoted by φuu) at different wavelengths. However, for the wall-
normal velocity fluctuations (φvv) and spanwise velocity fluctuations (φww), the network
models exhibit limitations in reconstructing energy at the smallest wavelengths and
specifically such errors in the smallest scales increase with increasing target wall-normal
position.

The power spectral density obtained for the polymeric shear stress (denoted by
φτp, xyτp, xy) and the trace of polymeric stress (φtr(τp)tr(τp)) are depicted in figure 8(b)
for different wall-normal positions. We observe that the energetic structures correspond
to wavelengths that are almost one order of magnitude smaller than those observed
in the velocity fluctuations (refer to figure 8a). This reveals that the polymer activity
is predominantly concentrated in small-scale structures compared with the flow scales.
Consequently, this suggests that the employed neural network model needs to reconstruct
fine-scale polymeric-stress fields from coarse energy-containing features in the velocity
fluctuations.
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Figure 8. Pre-multiplied two-dimensional power-spectral densities of (a, left) the streamwise, (a, centre)
wall-normal, (a, right) spanwise velocity components and (b, left) polymeric shear stress, (b, right) trace of
polymeric stress at y+ ≈ 15 (top), y+ ≈ 30 (middle) and y+ ≈ 50 (bottom). The contour levels contain 10 %,
50 % and 80 % of the maximum power-spectral density. Shaded contours refer to DNS data, while contour lines
correspond to (a) V predictions, (b, green) E predictions and (b, red) V-E predictions.

For the E predictions (figure 8b), where exact velocity fields from DNS at the same wall-
normal position are used as inputs, we observe the ability of the model to reconstruct the
features containing energy at different wavelengths more accurately with minimal errors
observed in the smallest scales. However, in the case of V-E predictions, where the wall
inputs to the network feature large-scale energy-containing features, the performance of the
network is reduced in reconstructing the energy distribution of features at smaller scales,
and rather the model tends to predict the large-scale features in the polymeric-stress fields.
These observations underscore the importance of providing accurate velocity-fluctuation
fields as inputs to the FCN. Although the auxiliary velocity fields have a very small error
compared with DNS velocity fields, they lack certain information when reconstructed by
FCN using wall inputs in V-E predictions, and thereby the network is unable to capture the
polymeric-stress features at small and medium scales.

3.4. Effects of small-scale velocity fluctuations on the polymeric stress predictions
Spectral analysis reveals that the energetic scales in velocity fluctuations are approximately
one order of magnitude larger than those in the polymeric-stress quantities of interest.
Consequently, it becomes challenging for the FCN to reconstruct polymeric stress
information at finer scales using the large energy-containing structures in velocity
fluctuations. Furthermore, for E predictions, DNS velocity fluctuation fields are used
as inputs whereas for V-E predictions, the (auxiliary) inputs are the predicted velocity
fluctuations at a target wall-normal position that exhibits a good agreement with the DNS
velocity-fluctuation fields. It should be highlighted that the (auxiliary) velocity-fluctuation
fields employed in V-E predictions quite accurately comprise the large-scale features as
observed with DNS fields, although they exhibit certain differences in the small-energy
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Figure 9. Pre-multiplied two-dimensional power spectral density of (a) streamwise, (b) wall-normal and
(c) spanwise velocity fluctuations at y+ ≈ 30. The contour levels contain 10 %, 50 %, 80 %, 99 % of the
maximum power spectral density. Shaded contours in grey refer to DNS data, while contour lines in red indicate
the corresponding energy levels after filtering with λ+c = 21.6. Filtered scales are indicated by the shaded region
in blue.

containing features (see also figure 8a). However, we observe that small-scale polymeric-
stress fluctuations in V-E predictions are under-predicted compared with E predictions (see
figure 6). This indicates that small-scale velocity fluctuations in DNS fields are crucial for
the accurate prediction of polymeric stresses. Thereby, the observations also signify that
polymeric stresses and velocity fluctuations are strongly coupled at fine, low-energetic
scales.

We investigate the relationship between polymeric stress and velocity fluctuations at
smaller scales by systematically removing the turbulent kinetic energy at these finer scales
and observing the resulting polymeric stress predictions by FCN. The low-pass filtering
of velocity fluctuations (as outlined in § 2.3) is performed to evaluate the accuracy of
prediction of polymeric stresses by using only the large energy-containing features in
velocity fluctuations. This approach not only helps in identifying the effects of small-
scale features in the input velocity-fluctuation fields on the prediction of polymeric stress,
but also enables a scale requirement recommendation for velocity fluctuations from
potential experimental investigations to estimate the polymeric stress information. The
effect of filtering velocity fluctuations using the pre-multiplied two-dimensional (2-D)
power spectral density (PSD) kzkxφkk(λ

+
x , λ+z ) for the velocity fluctuations (k ∈ {u, v, w})

at y+ ≈ 30 is shown in figure 9. The figure illustrates the effect of filtering the small-scale
velocity fluctuations with a wavelength threshold of λ+c = 21.6.

A sample instantaneous field of the trace of polymeric stress in the test dataset is shown
in figure 10. The reference DNS field at different wall-normal locations is shown alongside
the corresponding predictions obtained from FCN, with respective inputs at different
cutoff wavelengths. It is observed that E predictions (λ+c = 2.5) successfully capture all
the different scales present in the reference DNS. As the cutoff wavelength in the input
velocity fluctuations to FCN increases, the predicted outputs begin to lack certain small-
scale features. At λ+c = 13.5, where the absence of small scales contributes to a relative
loss (�K) of less than 0.01 % of turbulent kinetic energy in the inputs at different y+
considered here, the errors in the prediction of small scale become significant, as illustrated
in figure 10. Further, for λ+c = 21.6, constituting a relative loss of less than 0.07 % of
TKE of inputs at different y+ considered here, we observe that the small-scale features
are increasingly depleted in the predictions. Nevertheless, the predictions still manage
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Figure 10. A sample trace of the polymeric-stress-fluctuation field is plotted at different wall-normal
locations with corresponding predictions from FCN using inputs with different cutoff wavelengths of the
velocity-fluctuation fields. The fields are scaled with the respective r.m.s. values.
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The corresponding normalised mean-absolute errors are also indicated.

to capture the regions with large polymer extension, where tr(τp) is higher. A similar
observation for the polymeric shear stress is provided in Appendix B.

Overall, the variation of errors in predicting the corresponding r.m.s. quantities of
the polymeric stress quantities of interest is shown in figure 11 for different values
of cutoff wavelengths of inputs. The corresponding normalised mean-absolute errors
are also indicated. Overall, the mean errors observed at different target wall-normal
locations exhibit a logarithmic growth with respect to the cutoff wavelength of the input
velocity fluctuations. This also explains the observation of higher errors in V-E predictions
when using wall inputs to predict polymeric stress quantities of interest at different
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Figure 12. Pre-multiplied two-dimensional power spectral density of trace of polymeric stress at y+ ≈ 30. The
shaded contours in all panels correspond to the spectra obtained from DNS samples (tr(τp)DNS) in the test
dataset. (a) Spectra when filtered and unfiltered velocity fields are used as inputs: DNS velocity-fluctuations is
used as input (tr(τp)FCN,DNS) (black), filtered velocity-fluctuations using a cut-off wavelength of λ+c = 21.6
(tr(τp)FCN,Filt) (purple). (b) Spectra of errors: the spectra of the difference between reference (DNS) and
predicted polymeric-stress fluctuations using DNS velocity fluctuations as input (tr(τp)DNS − tr(τp)FCN,DNS)
(black), filtered velocity fluctuations (with λ+c = 21.6) as input (tr(τp)DNS − tr(τp)FCN,Filt) (purple). (c) Spectra
of the difference between unfiltered and filtered cases: the spectra of the difference between reference
DNS velocity fluctuations and the filtered velocity fluctuations with λ+c = 21.6 for u, v, w components are
indicated in blue, orange and green contour lines, respectively, while brown contour lines depict the spectra
of the difference between the predicted polymeric-stress fluctuations with unfiltered and filtered inputs
(tr(τp)FCN,DNS − tr(τp)FCN,Filt). The contour levels in all panels and contour lines in panel (a) contain 10 %,
50 % and 80 % of the maximum power spectral density, while contour lines in panel (b,c) indicate 10 % and
50 % of the respective maximum power spectral density.

y+ compared with E predictions. Although the predicted velocity fluctuations from V
predictions closely resemble those of the DNS reference, there is a logarithmic increase
in prediction errors of polymeric stresses when using the auxiliary predictions of velocity
fluctuations, which lacks energy content at certain scales (see figure 8a).

In addition, for retrieval of polymeric stress information from possible near-wall
experimental velocity fields using FCN, it becomes necessary to resolve finer scales,
typically lower than 10 viscous lengths, to obtain more reliable polymeric-stress behaviour
at the smallest scales. This hypothesis will be confirmed more conclusively in the next
section, where we further examine the effects of artificially excluding small scales from
the DNS velocity fields.

3.5. Spectral analysis on the effects of small-scale velocity fluctuations
Identifying the influence of small-scale features in the velocity-fluctuation fields on the
polymeric stress, we probe the distribution of energy in the predicted polymeric stresses
due to the absence of small, low-energetic scales in the velocity fluctuations. The pre-
multiplied two-dimensional PSD of the trace of polymeric stress (tr(τp) at y+ ≈ 30 is
depicted in figure 12. Figure 12(a) shows the 10 %, 50% and 80% contours of reference
(DNS) polymeric stress by shaded contours, against the FCN predictions of the trace of
polymeric stress using DNS velocity-fluctuation fields as input to FCN (tr(τp)FCN,DNS)
(black contour lines) and filtered velocity fluctuations as input to FCN (τp)FCN,Filt) (purple
contour lines).

The predictions using exact velocity fields closely capture the energy content across
different scales compared with the reference (DNS) polymeric stress (black contours are
almost identical to shaded contours in figure 12a). However, it should be noted that there
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are always some small errors in predicting the trace of polymeric-stress fields using DNS
velocity fluctuations as input. These errors stem from the absence of certain correlations in
the inputs, such as the wall-normal gradients of velocity fluctuations and the time history
of velocity fluctuations.

However, filtering the input velocity fluctuations with λ+c = 21.6, so that they lack the
very finest scales, results in a very significant deviation in the power density spectra of
the predicted polymeric stress (purple contours are very different from shaded contours).
Most notably, the energy-containing structures in the predictions are at larger spatial
scales than in the DNS. Additionally, the predictions now lack certain small-scale energy
components. This shows that polymers interact with very small scales in the velocity
fields in viscoelastic turbulence. The similarity between purple contours (predictions with
filtered velocity fields) and red contours in figure 8(b) (V-E predictions) confirms that
errors in V-E predictions stem from the absence of the smallest scales in the auxiliary
velocity fields.

The difference between the FCN predictions and the DNS reference polymeric-stress
field represents the error in the predictions. To analyse this error quantitatively, we show
the error spectra in figure 12(b). The error spectra illustrate the difference between the
reference and predicted polymeric-stress fluctuations using DNS velocity fluctuations
as input (tr(τp)DNS − tr(τp)FCN,DNS, black dashed contour), and the difference between
reference (DNS) and predicted polymeric-stress fluctuations, using filtered velocity
fluctuations with a cutoff wavelength of λ+c = 21.6 as input (tr(τp)DNS − tr(τp)FCN,Filt),
is depicted by a purple dashed contour. From figure 12(b), we observe that the errors are
highest at the small yet energetic scales of the trace of polymeric stress, while large scales
are less affected by errors. This confirms the visual finding from figure 6 that the largest
scales are relatively well captured by V-E predictions.

Finally, from figure 12(c), we examine the effect of filtering small scales in the
velocity fluctuations on the differences introduced in the predictions by the FCN. Here,
the spectra of the difference between the predicted polymeric-stress fluctuations with
DNS inputs (refer to figure 12a, black contour lines) and the predicted polymeric-stress
fluctuations (refer to figure 12a, purple contour lines) with filtered inputs (tr(τp)FCN,DNS −
tr(τp)FCN,Filt) is plotted with brown contour lines. In addition, we include the spectra of the
difference between reference DNS velocity fluctuations and filtered velocity fluctuations
with λ+c = 21.6 for u, v, w components (respectively indicated with blue, orange and
green contour lines). The latter contours are very narrow, which shows that changes
in velocity fields due to filtering mostly occur at a narrow range of scales. However,
predictions of polymeric stresses are affected at a strikingly large range of scales (brown
contours). Figure 12(c) hence shows that the loss of turbulent kinetic energy in the small
scales in the velocity fluctuations does not necessarily correspond to the loss of energy
at similar scales in the polymeric stress. This observation is aligned with the studies of
Nguyen et al. (2016), where they showed from scale-to-scale analysis (Casciola & de
Angelis 2007; Xi, Bodenschatz & Xu 2013; Valente, Da Silva & Pinho 2014) of isotropic
viscoelastic turbulence that the loss of turbulent kinetic energy at a given small scale does
not necessarily correspond to a gain of polymer energy at the same scale, and vice versa.

3.6. Interpretation of predictions with filtered velocity fluctuations
Overall, we observe that the small-scale features in the velocity-fluctuation fields are
crucial for the estimation of polymeric stress. In this section, the reason for such an
observation is hypothesised based on polymer–flow interaction and obtained predictions
from FCN. We start with the observation of the probability distribution function of
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Figure 13. Probability density function of the r.m.s.-normalised trace of polymeric stress at y+ ≈ 30,
identifying the distribution of the percentage of data-points in the test dataset with a bin size of 0.045. (Inset)
Magnified view of the peak of distribution.

polymeric stress. The probability distribution function for the trace of polymeric stress
is shown in figure 13. The predictions from FCN using DNS input velocity fluctuations
closely capture the resulting probability distribution function observed with the DNS
stress fields in the test dataset. However, using the filtered velocity-fluctuation fields
with λ+c = 21.6 results in the distribution of the data to be closer to the mean value.
The negative and positive fluctuations of the trace of the polymeric stress are under-
predicted indicating that the relaxation behaviour of the polymer is over-predicted and the
maximum stretch of polymers is under-predicted by FCN. The over-prediction and under-
prediction of polymeric stress may stem from the fact that the FCN is optimised to capture
the mean behaviour of the polymeric-stress fluctuations for the given velocity-fluctuation
input. Because of the alteration of the input velocity-fluctuation field via filtering of small
scales, the FCN is unable to predict well the extreme behaviour of polymeric stress, and
thereby converges close to the mean behaviour and hence the resulting prediction of the
standard deviation of the polymeric stress quantities of interest are lower in comparison
to that observed with the DNS fields. Consequently, this contributes to growing errors
with respect to the cutoff wavelength of input velocity fluctuations. However, there may be
physical reasons attributed to the difficulty in predicting polymeric stress without small-
scale features in velocity fluctuations that are independent of the chosen technique to
model the relationship between polymeric stress and velocity fluctuations. Future work
will involve performing direct numerical simulations with filtered velocity fluctuations to
identify the effects of small-scale velocity fluctuations on the polymeric-stress-fluctuation
fields. Additional tasks also include transfer-learning-based approaches to evaluate the
performance of the network models at different Weissenberg numbers.

Filtering small scales in the velocity-fluctuation fields results in an alteration of the
turbulent kinetic energy of the flow. In the buffer region that is considered in the study,
there exists an anti-correlation between streamwise velocity fluctuation and the
fluctuations of the trace of polymeric stress (as shown in figure 14), thereby an increase in
polymeric stresses (and consequently polymer energy) leads to a decrease in the turbulent
kinetic energy of the fluid (see also figure 15a).

The r.m.s.-normalised joint probability distribution of the prediction errors in the trace
of polymeric stress with respect to turbulent kinetic energy is probed in figure 15(a).
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Figure 14. Instantaneous (a) streamwise velocity-fluctuation field and (b) trace of polymeric stress from the
test dataset at y+ ≈ 50, alongside corresponding (c) E prediction and (d) V-E prediction. Contour lines indicate
regions of strong anti-correlation between u and tr(τp) as obtained with the DNS data.
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Figure 15. Normalised joint probability density function between turbulent kinetic energy and the trace of
polymeric stress at y+ ≈ 30, obtained from (a) DNS samples in test dataset and (b) FCN predictions using
DNS velocity fluctuations (FCN,DNS) and filtered velocity fluctuations (FCN,Filt) at λ+c = 21.6.

From the figure, the relationship between the trace of polymeric stress (indicative of
polymer stretch and elastic energy stored by polymers) and the turbulent kinetic energy
of the flow from DNS samples in the test dataset is observed. It is evident that the
polymers are highly stretched in regions with low turbulent kinetic energy and vice versa.
This suggests that polymers extract turbulent kinetic energy from the fluid, particularly in
the considered wall-normal position in the buffer region. Moreover, the relaxation of the
polymeric stress, which can occur in the core of the streamwise vortices, releases energy
into the fluid flow (Xi 2019).

From figure 15(b), it is observed that the under-prediction of the trace of polymeric-
stress fluctuations is significant in the regions of lower turbulent kinetic energy. This
indicates that the effect of filtering small scales results in over-prediction of relaxation
behaviour of polymeric stress and under-prediction of maximum polymer elongation,
and thereby maximum trace of polymeric stress, particularly in the regions with lower
turbulent kinetic energy. Thus, due to the alteration of the distribution of small-scale
input velocity fluctuations, the FCN model is unable to reproduce the features of energy
extraction by polymers from the turbulent flow. Hence, it is pertinent to capture accurately
the turbulent kinetic energy in the flow and that small-scale velocity fluctuations are
required to accurately capture the extraction of turbulent kinetic energy from flow by
polymers.

The results from the present study suggest that polymeric stress can be
estimated by directly providing potential experimental measurements of wall quantities
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(V-E predictions) or near-wall velocity fluctuations (E predictions) as inputs to the network
model. It is important to note that experimental fields may contain noise, necessitating
retraining of the network model using transfer learning methodologies to optimise the
model weights with the acquired experimental dataset. However, in the current supervised
learning framework, such approaches require the presence of reference experimental stress
fields for retraining the network models, which is not applicable in this case. It was recently
shown that Lagrangian stretching fields extracted from particle image velocimetry (PIV)
serve as indicators of polymer elongation fields under certain conditions (Kumar, Guasto &
Ardekani 2023), but their applicability to stress field substitutes in channel flow turbulence
remains to be investigated. Therefore, we propose that as an initial step to gain insight
into polymeric stresses from experimental measurements, interpolation (for matching
resolution) and de-noising techniques (Raiola, Discetti & Ianiro 2015; Nekkanti & Schmidt
2021; Yousif et al. 2023c) can be employed to retrieve accurate wall fields or velocity
fluctuations from experimental data. These refined velocity inputs can then be coupled
with the proposed DNS-trained network models to obtain predictions of instantaneous
polymeric-stress fields within the probed domain.

The present work can also be extended towards identifying coherent structures in the
flow and thereby employing the SHapley Additive exPlanations (SHAP) algorithm to
explain the importance of the coherent structure (Cremades et al. 2024), which can
improve the understanding of the dynamical role of coherent structures in viscoelastic
turbulent flow. Hence, the present work serves as a starting point, holding potential for
many future works to understand better the polymer physics in drag-reduced flows.

4. Conclusions
The present work highlights the capability of a data-driven approach to perform non-
intrusive sensing in viscoelastic turbulent flows. Here, we demonstrate the ability of
CNN-based models to accurately reconstruct the velocity fluctuations in viscoelastic
turbulence close to the wall, using the two wall-shear fluctuation components and
the wall-pressure fluctuations as inputs. Additionally, the network models successfully
reproduce the polymeric-stress-fluctuation fields from the DNS velocity-fluctuation fields.
Moreover, the feasibility of these network models to extract polymeric-stress-fluctuation
fields of interest solely from wall input fluctuations and predicted velocity fluctuations
is explored. Overall, the network effectively reconstructs the large-scale features of the
polymeric-stress fields using wall inputs and predicted velocity fields. Furthermore, the
developed models exhibit enhanced accuracy in predicting quantities of interest during
the hibernation intervals, facilitating a deeper understanding of the underlying physics
during low-drag events when the model is deployed in a practical application. These non-
intrusive-sensing models hold valuable applications in experimental settings (Vinuesa
et al. 2023), enabling the determination of polymeric stresses in turbulent flows from
velocity fields or wall inputs, which otherwise would be challenging or impossible to
quantify experimentally. However, accurately predicting the polymeric stresses from wall
inputs is found to be more challenging than predicting velocity fields from the same, since
wall inputs typically do not contain fingerprints of the smallest scales, and we show that
small scales in velocity fields are connected to a wide range of scales in polymeric-stress
fields.

Aimed towards extracting polymeric-stress information from velocity-fluctuation fields
in a possible experimental investigation of viscoelastic turbulent channel flow, a number
of FCN models are trained with inputs corresponding to different thresholds of small-
scale wavelengths in the velocity-fluctuation fields. We find that accurately capturing
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the turbulent kinetic energy in the near-wall fields is crucial for retrieving second-order
turbulent statistics of polymeric stresses. Specifically, experimental acquisition of velocity
fluctuations would in principle need to resolve the finer scales, smaller than 10 viscous
units, to obtain more reliable polymeric stress behaviour at the smallest scales, which
determines the accurate rate of energy transfer from flow to polymers. We show that this
in turn facilitates an accurate estimation of the r.m.s. of polymeric stresses in the buffer
region of viscoelastic turbulent channel flow.

Concluding, the results demonstrate the potential of data-driven models to predict
instantaneous fields in non-Newtonian wall turbulence, which is useful for flow control
or estimation of stress fluctuations that cannot be measured. As a next step, de-noised
experimentally measured velocity fields and wall pressure measurements could be given
as inputs to the network that has been trained by simulations. Furthermore, direct
numerical simulations with filtered velocity fluctuations can be performed to further
isolate the physical mechanisms behind how small-scale velocity fluctuations influence
the polymeric-stress-fluctuation fields at a wide range of scales.
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Appendix A. Performance metrics for network models
In the present study, hyperparameter tuning was conducted to investigate the sensitivity
of various parameters, including network model capacity, depth, kernel size, batch size
and learning rate, on the errors in predicting the r.m.s. of velocity and polymeric-stress
fluctuations. Approximately 15 different training runs were performed to optimise these
parameters, and a more thorough exploration of the hyperparameter space could further
enhance prediction performance. In the present study, a fully convolutional neural network
containing 3 × 3 kernels and 31 hidden layers constituting 985 105 trainable parameters is
employed (refer figure 1). The initial weights for the network are distributed randomly
with a Gaussian distribution and a scheduled learning rate (α) was provided to the Adam
algorithm (Kingma & Ba 2015) in the form α = α0aepoch/b, with α0 corresponding to
initial learning rate, and a, b are the tunable parameters denoted by learning rate drop and
epoch drop, respectively (here, epoch corresponds to one entire pass of training data). In
this study, α0 = 0.001, a = 0.5 and b = 40, and a batch size of 16 was employed in the
training of FCN.

Additionally, U-Net (with five skip connections) and Generative Adversarial Network
(GAN) models (with approximately 2 million trainable parameters in the generator) were
also trained, and corresponding evaluations revealed comparable performance in terms of
accuracy to that achieved with the FCN in the present study. Hence, the FCN with the
optimal training parameters as obtained with the exploratory study is employed in the
present work.
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i
Parameters y+ u v w

15 0.14 (± 0.01) 0.32 (± 0.11) 0.41 (± 0.02)
〈MAE(i)〉t / iDNS rms 30 0.29 (± 0.01) 0.44 (± 0.06) 0.53 (± 0.02)

50 0.47 (± 0.01) 0.79 (± 0.15) 0.59 (± 0.04)

15 2.62 (± 1.2) 13.11 (± 2.7) 8.02 (± 3.8)
Erms(i) 30 5.21 (± 0.3) 15.90 (± 4.5) 10.62 (± 1.9)

50 12.73 (± 3.9) 24.72 (± 6.5) 14.72 (± 4.4)

15 0.996 (± 0.003) 0.889 (± 0.040) 0.932 (± 0.018)
R(i) 30 0.942 (± 0.002) 0.763 (± 0.015) 0.771 (± 0.010)

50 0.811 (± 0.001) 0.623 (± 0.011) 0.643 (± 0.010)

Table 2. Model-averaged errors in V predictions.

i

Parameters y+ τp xy [E] tr(τp) [E] τp xy [V −E] tr(τp) [V −E]
15 0.19 (± 0.01) 0.20 (± 0.01) 0.45 (± 0.01) 0.63 (± 0.01)

〈MAE(i)〉t / iDNS rms 30 0.21 (± 0.01) 0.20 (± 0.02) 0.49 (± 0.02) 0.60 (± 0.01)
50 0.19 (± 0.01) 0.17 (± 0.02) 0.48 (± 0.01) 0.55 (± 0.01)

15 6.03 (± 1.8) 8.68 (± 1.4) 42.52 (± 1.0) 54.71 (± 2.6)
Erms(i) 30 11.54 (± 2.7) 9.47 (± 1.8) 49.40 (± 3.4) 51.14 (± 0.7)

50 11.46 (± 1.4) 5.52 (± 1.4) 62.37 (± 3.2) 49.54 (± 4.8)

15 0.906 (± 0.004) 0.924 (± 0.007) 0.484 (± 0.006) 0.362 (± 0.013)
R(i) 30 0.906 (± 0.006) 0.917 (± 0.010) 0.296 (± 0.013) 0.433 (± 0.008)

50 0.905 (± 0.007) 0.924 (± 0.011) 0.207 (± 0.012) 0.426 (± 0.015)

Table 3. Model-averaged errors in E predictions and V-E predictions.

The prediction errors for V predictions are provided in table 2 and various metrics for
E predictions and V-E predictions are detailed in table 3. The error metrics reported in
tables 2 and 3 are obtained from the samples contained in the test dataset and averaged
over three different training runs for the FCN model. The variances are indicated in the
braces.

The magnitude of point-wise errors in V predictions can go up to 1.2 for the wall-normal
component as observed from figure 5(b) and the average value of 〈MAE(v)〉t /vDNS RMS at
y+ = 50 is 0.79, as indicated in table 2. While we acknowledge the presence of point-wise
errors, quantified as 〈MAE(v)〉t /vDNS RMS ≈ 1 for larger target wall-normal positions, it
is important to emphasise that the model effectively captures the dominant features in the
fields, as evidenced by the spectra plots in figure 8(a). The spectral comparison indicates
that the energy distribution across scales aligns well between the predicted and reference
fields, highlighting the model’s strength in reproducing the energy-containing structures.
Additionally, the high correlation between the reference and predicted fields closer to the
wall-parallel planes supports the conclusion that the model is successfully identifying and
predicting the large-scale coherent features, such as streaks, in the turbulent flow. Thus,
the overall ability of the model to reproduce the energy-containing structures closer to the
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Figure 16. Error fields corresponding to V predictions of (a) streamwise, (b) wall-normal and (c) spanwise
velocity fluctuations at different target wall-normal positions, corresponding to the same instant as plotted in
figure 4. The fields are normalised with corresponding r.m.s. values.

wall ensures its suitability for analysing near-wall turbulence dynamics in the intended
application.

The error field, which quantifies the difference between the reference DNS and the
corresponding prediction obtained from the FCN, is shown in figure 16 for V predictions
and in figure 17 for E predictions and V-E predictions. Overall, the magnitude of the error
distributed across the fields increases as the target wall-normal position increases (see
also Guastoni et al. 2021). Additionally, the pattern and distribution of the error exhibit
qualitative differences across various wall-normal positions in the V predictions, although
some similarities are observed in the error patterns for the polymeric-stress quantities of
interest for E predictions. Moreover, the error fields for V-E predictions are closer to the
reference fields of interest, indicating that the network model struggles to capture a range
of scales effectively.

Appendix B. Effects of low-pass filtering the velocity fluctuations on prediction of
polymeric shear stress
A sample instantaneous field of the polymeric shear stress (τp, xy) in the test dataset is
shown in figure 18(a). The sampled DNS field at different wall-normal locations serves
as a reference, while the corresponding predictions obtained from FCN with respective
inputs at different cutoff wavelengths are depicted. The figure shows that the resulting
predictions from FCN lack certain small-scale features with increasing λ+c for different
wall-normal locations, a fact that is attributed to the absence of fine-scale features in the
input fields.
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Figure 17. Error fields corresponding to E predictions and V-E predictions of (a) polymeric shear stress and
(b) trace of polymeric stress at different target wall-normal positions, corresponding to the same instant as
plotted in figure 6. The fields are normalised with corresponding r.m.s. values.
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Figure 18. (a) A sample polymeric-shear-stress-fluctuation field is plotted at different-wall-normal locations
with corresponding predictions from FCN using inputs with different cutoff wavelength of the velocity-
fluctuation fields. The fields are scaled with the respective r.m.s. values. (b) Pre-multiplied two-dimensional
power-spectral density of polymeric shear stress at y+ ≈ 30. The contour levels contain 10 %, 50 % and 80 %
of the maximum power spectral density. Shaded contours refer to DNS data, while contour lines indicate the
cutoff wavelength in the input velocity fluctuations provided to FCN.

Further, the distribution of energy in different scales for both the DNS- and the FCN-
predicted polymeric-shear-stress field at y+ ≈ 30 is illustrated in figure 18(b), which also
identifies that the resulting predictions from FCN increasingly feature energy-containing
large-scale structures and lack energy content in small scales with increasing λ+c .

Appendix C. Joint probability density function of polymeric shear stress
A similar observation can be made for the prediction of the polymeric shear stress with
respect to turbulent shear stress as outlined in § 3.6 for the trace of polymeric stress.
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Figure 19. (a) Probability density function of the r.m.s.-normalised polymeric shear stress at y+ ≈ 30,
identifying the distribution of the percentage of data-points in the test dataset with a bin size of 0.18.
(b) Normalised joint probability density function between turbulent shear stress and polymeric shear stress
obtained from DNS samples in the test dataset at y+ ≈ 30 and FCN predictions using DNS velocity fluctuations
(FCN,DNS) and filtered velocity fluctuations (FCN,Filt) with λ+c = 21.6.

The probability density function for the r.m.s.-normalised polymeric shear stress is shown
in figure 19(a). The predictions from FCN using DNS input velocity fluctuations closely
capture the probability density function observed with the DNS polymeric-shear-stress
fields in the test dataset. However, using the filtered velocity-fluctuation fields with
λ+c = 21.6 results in the distribution of the data being closer to the mean value, indicating
an under-prediction of the fluctuations of the polymeric shear stress.

From figure 19(b), observing the distribution from DNS samples, we find the polymeric
shear stress mitigates the production of turbulent shear stress. Furthermore, predictions of
polymeric shear stress using filtered fields are under-predicted, especially in regions with
negligible turbulent shear stress. Filtering the input fields alters the Reynolds shear stress,
leading to increased errors in the predictions of polymeric shear stress.
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