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This paper presents a theoretical model of plasma equilibrium in the diamagnetic
confinement mode in an axisymmetric mirror device with neutral beam injection. The
hot ionic component is described within the framework of the kinetic theory, since
the Larmor radius of the injected ions appears to be comparable to or even larger than
the characteristic scale of the magnetic field inhomogeneity. The electron drag of the hot
ions is taken into account, while the angular scattering of the hot ions due to Coulomb
collisions is neglected. The background warm plasma, on the contrary, is considered to be
in local thermal equilibrium, i.e. has a Maxwellian distribution function and is described
in terms of magnetohydrodynamics. The density of the hot ions is assumed to be negligible
compared with that of the warm plasma. Both the conventional gas-dynamic loss and the
non-adiabatic loss specific to the diamagnetic confinement mode are taken into account.
In this work, we do not consider the effects of the warm plasma rotation as well as the
inhomogeneity of the electrostatic potential. A self-consistent theoretical model of the
plasma equilibrium is constructed. In the case of the cylindrical bubble, this model is
reduced to a simpler one. The numerical solutions in the limit of a thin transition layer
of the diamagnetic bubble are found. Examples of the equilibria corresponding to the
gas-dynamic multiple-mirror trap device are considered.
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1. Introduction

Diamagnetic confinement, or the diamagnetic bubble (Beklemishev 2016; Khristo &
Beklemishev 2019, 2022; Chernoshtanov 2020, 2022; Kotelnikov 2020; Soldatkina et al.
2023), is a new operating mode designed to significantly enhance confinement in linear
systems (Dimov 2005; Steinhauer 2011b; Ivanov & Prikhodko 2017). The main idea of
this regime is to form a high-pressure plasma bubble in the central part of a mirror device.
Inside such a bubble, the plasma pressure p reaches the equilibrium limit corresponding
to β = 8πp/B2

v → 1, where Bv is the vacuum magnetic field without plasma, and the
magnetic field tends to zero due to the plasma diamagnetism. The lifetime of the particles
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2 M.S. Khristo and A.D. Beklemishev

in the diamagnetic trap, i.e. the mirror device operating in the diamagnetic confinement
mode, is estimated by Beklemishev (2016) in the framework of magnetohydrodynamics
(MHD) as follows:

τDC ∼ √
τGDτ⊥, (1.1)

where τGD is the lifetime in the gas-dynamic trap (GDT) (Ivanov & Prikhodko 2017), and
τ⊥ is the transverse transport time. Since plasma transport across the magnetic field in
axisymmetric traps is usually far below axial losses: τ⊥ � τGD, a significantly enhanced
overall confinement is expected in the diamagnetic trap: τDC ∼ τGD

√
τ⊥/τGD � τGD. In

this regard, there is a practical interest in the experimental and theoretical study of this
mode. In particular, one of the goals of the new generation linear machine gas-dynamic
multiple-mirror trap (GDMT) (Beklemishev et al. 2013; Bagryansky, Beklemishev &
Postupaev 2019; Skovorodin et al. 2023) is to experimentally verify the concept of
diamagnetic confinement. In addition, the study of the diamagnetic regime is planned at
the compact axisymmetric toroid (CAT) (Bagryansky et al. 2016) currently operating at
the Budker Institute of Nuclear Physics (Budker INP).

One can find a number of earlier theoretical works related to β ∼ 1 plasma confinement
in open traps (see Grad 1967; Newcomb 1981; Lansky 1993; Lotov 1996; Kotelnikov,
Bagryansky & Prikhodko 2010; Kotelnikov 2011). Effective confinement of plasma with
β ∼ 1 in a gas-dynamic system was demonstrated experimentally in the 2MK-200 test
facility by Zhitlukhin et al. (1984). High β plasma confinement was also studied in
the so-called magnetoelectrostatic traps (see Pastukhov 1978, 1980; Ioffe et al. 1981;
Pastukhov 2021). Structures similar to the diamagnetic bubble, called magnetic holes, are
often observed in space plasmas (see Kaufmann, Horng & Wolfe 1970; Turner et al. 1977;
Tsurutani et al. 2011; Kuznetsov et al. 2015).

The idea of diamagnetic confinement was originally proposed by Beklemishev (2016).
The possibility of a discharge transition into the diamagnetic confinement mode is
briefly discussed, and a stationary MHD model of a diamagnetic bubble equilibrium
is constructed in the cylindrical approximation. Further, this hydrodynamic equilibrium
model was extended by Khristo & Beklemishev (2019, 2022) to the case of a non-paraxial
axisymmetric trap. In particular, diamagnetic bubble equilibria in the GDMT are
computed, and the effect of magnetic field corrugation on equilibrium in a diamagnetic
trap is studied. Beklemishev (2016) and Khristo & Beklemishev (2022) also briefly discuss
the possibility of MHD stabilization by a combination of the vortex confinement (see
Soldatkina, Bagryansky & Solomakhin 2008; Beklemishev et al. 2010; Bagryansky et al.
2011) and the conducting wall (see Kaiser & Pearlstein 1985; Berk, Wong & Tsang 1987;
Kotelnikov et al. 2022).

As already noted, the magnetic field inside the diamagnetic bubble is close to zero.
In this case, the Larmor radius and the mean free path of high-energy particles can be
comparable to or even exceed the characteristic scale of magnetic field inhomogeneity,
which is beyond the scope of MHD theory. Therefore, there is a need for a detailed
kinetic model of fast particles in the diamagnetic trap. Research on the kinetic theory
of the diamagnetic regime is already underway at the Budker INP. Kotelnikov (2020)
constructed a fully kinetic equilibrium model in a cylindrical geometry with a distribution
function isotropic in the transverse plane inside the bubble. The collisionless dynamics
of individual particles in a diamagnetic trap was studied by Chernoshtanov (2022). In
addition, a particle-in-cell model for simulating high-pressure plasma in an open trap is
currently being developed at the Budker INP by Kurshakov & Timofeev (2023). Work
is also underway to create a code for numerical simulation of the diamagnetic regime
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Plasma equilibrium in diamagnetic trap with neutral beam injection 3

(see Boronina et al. 2020; Efimova, Dudnikova & Vshivkov 2020; Chernoshtanov et al.
2023, 2024).

Modern experiments on linear devices, such as the already mentioned GDMT and
CAT, commonly involve the injection of high-energy (of the order of several tens of
electronvolts) neutral beams to heat the plasma (Ivanov & Prikhodko 2017; Belchenko
et al. 2018). With this in mind, in the present paper, we aim to construct a theoretical
model of diamagnetic bubble equilibrium in a GDT with neutral beam injection. The
neutral beams are absorbed by the background plasma at a temperature much lower than
the energy of the injected atoms. For this reason, to describe the equilibrium in such a
system, we assume the plasma to consist of two fractions: the background warm plasma
and the hot ions resulting from the neutral beam injection. The former is considered to
be in local thermodynamic equilibrium and is described in terms of MHD; we take as
a basis the hydrodynamic model constructed in the earlier works (Beklemishev 2016;
Khristo & Beklemishev 2019, 2022). The hot ions, on the contrary, are assumed to have
a non-Maxwellian distribution function and are described within the framework of the
kinetic theory. Similar hybrid equilibria were considered earlier in application to field
reversed configurations (FRCs) (Rostoker & Qerushi 2002; Qerushi & Rostoker 2002a,
b, 2003; Steinhauer 2011a).

For simplicity, we consider the approximation of a long, axisymmetric diamagnetic trap.
In this case, in the absence of dissipation and scattering, the azimuthal angular momentum
and the total energy of a single charged particle are conserved. At the same time, since
the magnetic field in the diamagnetic confinement regime has considerable gradients,
the magnetic moment is not globally conserved. However, it was shown independently
by Chernoshtanov (2020, 2022) and Kotelnikov (2020) that, in a diamagnetic trap, the
adiabatic invariant Ir = (2π)−1

∮
pr dr can be conserved under specific conditions, where

pr is the radial component of the particle momentum. In addition, it is known that in such
axisymmetric systems there is a region in phase space where particles with a sufficiently
large canonical angular momentum are absolutely confined (see Morozov & Solov’ev
1966; Lovelace, Larrabee & Fleischmann 1978; Larrabee, Lovelace & Fleischmann 1979;
Hsiao & Miley 1985).

In the present paper, we assume the hot ions to be injected into the region of the phase
space, where, first, the absolute confinement criterion is met and, second, the condition
of the adiabaticity is violated. The former saves us from solving the complex problem
of taking into account the hot ion loss. The latter leads to the distribution function of
the hot ions being homogeneous on the hypersurface of the constant azimuthal angular
momentum and total energy, and hence not depending on the adiabatic invariant Ir.
Violation of the adiabaticity occurs typically due to the non-paraxial ends of the bubble
configuration (Beklemishev 2016). We also assume the energy of the hot ions to be much
higher than the temperature of the warm plasma. In this approximation, the hot ions are
mainly slowing down on the electrons of the warm plasma and hardly collide with the ions.
On this basis, when calculating the hot ion distribution function, we completely neglect
the angular scattering due to Coulomb collisions and take into account only the weak drag
force from the warm electrons.

The article is structured as follows: § 2 focuses on the detailed problem statement; § 3
defines the equations describing the equilibrium of the magnetic field; § 4 derives the
equilibrium equations for the warm plasma. Section 5 finds the equilibrium distribution
function of the hot ions; § 6 reduces the theoretical model to the case of the cylindrical
diamagnetic bubble; § 7 is devoted to the solution of the equilibrium equations in the
approximation of a thin transition layer at the bubble boundary; § 8 considers examples
of equilibria corresponding to the diamagnetic confinement regime in the GDMT device;
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§ 9 summarizes the main results of this paper and discusses the issues to be addressed in
future work.

2. Basic assumptions of the theoretical model

Consider the stationary equilibrium of a diamagnetic bubble in an axisymmetric GDT.
At the periphery of the bubble, the magnetic field is close to the vacuum magnetic field Bv,
i.e. the magnetic field without plasma. In the interior of the bubble, the magnetic field is
vanishingly small B � Bv, being almost completely expelled by diamagnetic plasma; this
region we further refer to as the core of the diamagnetic bubble. We denote the radius of
the bubble core as r0, which, generally speaking, can vary along the trap: r0 = r0(z).1 The
core radius in the central section of the trap, z = 0, we define as a = r0(0). The region at
the boundary of the bubble, inside which the magnetic field changes from B � 0 in the core
to B = Bv at the periphery, we further refer to as the transition layer of the diamagnetic
bubble.

Let the plasma consist of hot ions, resulting from the neutral beam injection, and
background warm plasma. The warm plasma is assumed to be in local thermal equilibrium
with the temperature T = T(r, z) and described in terms of MHD. The hot ions, on the
contrary, are expected to have a non-Maxwellian distribution function and are described
within the framework of kinetic theory.

As was previously found by Khristo & Beklemishev (2022), the specific choice of
the warm plasma transport model in the bubble core seems to have little effect on
the equilibrium. For this reason, we further assume that, inside the bubble core, the
magnetic field is identically zero B ≡ 0, and the warm plasma electrical conductivity
σw and transverse diffusion coefficient D are extremely high: σw → ∞ and D → ∞. In
what follows, we also consider the approximation of a long paraxial bubble with short
non-paraxial ends. In addition, we do not take into account the rotation of the warm plasma
and the effect of the electrostatic potential inhomogeneity. The warm plasma radial electric
currents are also neglected. We understand that these issues are definitely important and
thus should be addressed in future work.

In an axisymmetric system, the azimuthal canonical angular momentum P and the total
energy E of a charged particle are conserved

P = msrvθ + es

c
ψ

2π
= const., E = msv

2

2
= const., (2.1a,b)

where ms, es are the mass and the electric charge of a particle of species s, respectively, vθ
is the azimuthal component of the particle velocity and ψ = ∫ r

0 Bz(r′, z)2πr′ dr′ is the flux
of the longitudinal (‘poloidal’) component of the magnetic field.2 Assuming the magnetic
flux in the mirrors to be approximately equal to ψm � Bmπr2, we arrive at the absolute
confinement criterion in the form (see Morozov & Solov’ev 1966; Lovelace et al. 1978;
Larrabee et al. 1979; Hsiao & Miley 1985):

−RΩsP > E, (2.2)

where Ωs = esBv/msc is the cyclotron frequency in the vacuum magnetic field of the
central section of the trap Bv, R = Bm/Bv is the vacuum mirror ratio, Bm is the mirror
magnetic field, and c is the speed of light. Worth noting is that the particles are absolutely

1Henceforth, cylindrical coordinates (r, θ, z) are used; the corresponding unit vectors are denoted by a ‘hat’: r̂, θ̂ , ẑ.
2In the axisymmetric case, one can fix the vector potential gauge: ∂θA = 0. Then the azimuthal component of the

vector potential is Aθ = ψ/2πr.
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confined only if the direction of their rotation and the direction of the Larmor rotation are
the same. In other words, positively charged particles with Ωs > 0 are confined if P < 0
and negatively charged particles with Ωs < 0 are confined if P > 0. In order to avoid
solving the complex problem of taking into account the hot ion loss, in this paper, we
consider the neutral beam being injected into the absolute confinement region (2.2). It is
clear that, in practice, the injection should be carried out in this way to avoid undesirable
loss of the hot ions.

It was discovered by Kotelnikov (2020) and Chernoshtanov (2020, 2022) that there
exists the adiabatic invariant Ir = (2π)−1

∮
pr dr for particles in a diamagnetic trap. As

additionally shown by Chernoshtanov (2020, 2022), Ir is conserved for particles with not
too high velocity v‖ along the magnetic field, namely, the adiabaticity criterion can be
approximately written as a limitation on the pitch angle ξ

tan ξ = v⊥∣∣v‖
∣∣ �

∣∣∣∣dr0

dz

∣∣∣∣
max
, (2.3)

where v⊥ is the velocity transverse to the magnetic field, |dr0/dz|max is the maximum
inclination of the field line corresponding to the bubble core boundary r0 = r0(z). The
criterion (2.3) imposes considerable restrictions on the uniformity of the magnetic field.
In addition to the requirement of sufficient global smoothness of the longitudinal profile of
the field lines, the small-scale ripples of the magnetic field, resulting from the discreteness
of the magnetic system and instabilities, should also be insignificant. Due to this, the
region in the phase space where the criterion (2.3) is met usually proves to be relatively
narrow. To simplify the theoretical model, we further assume that the condition (2.3)
is violated and the adiabatic invariant Ir is not conserved. As a result, the hot ion
dynamics becomes chaotic, and the trajectories fill the hypersurfaces with constant angular
momentum and energy P = const., E = const. Based on this, we approximately consider
the distribution function of the hot ions depending only on P and E . The collisionless
dynamics of the hot ions in a diamagnetic trap may resemble that in FRCs. In particular,
Landsman, Cohen & Glasser (2004) provide a classification of particle trajectories in
FRCs, where the regions of phase space corresponding to chaotic motion are observed
as well.

As shown by Chernoshtanov (2020, 2022), in a diamagnetic trap there should also
arise an additional axial loss, the so-called non-adiabatic loss. It results from the
particles escaping the trap through a ‘leak’ in the phase space outside the region of the
absolute confinement (2.2). The characteristic non-adiabatic loss time for plasma with a
Maxwellian distribution function at the centre of the trap can be estimated as

τs‖0 ∼ τGD s
a
ρs
, (2.4)

where τGD s = RL/vTs is the gas-dynamic confinement time, a and L are the characteristic
radial size and length of the diamagnetic bubble, ρs = vTs/|Ωs| is the characteristic
Larmor radius and vTs = √

T/ms is the thermal velocity. Note that the time τs‖0 does not
depend on the particle mass since it is cancelled in |Ωs|/v2

Ts. As can be seen, despite the
additional non-adiabatic loss, confinement of the warm plasma in the diamagnetic trap can
still be significantly enhanced compared with the ‘classical’ GDT, provided the ratio ρs/a
is sufficiently small.

In this work, we assume the injection energy ENB to be large compared with the
temperature of the warm plasma T . However, due to the significant difference in masses,
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6 M.S. Khristo and A.D. Beklemishev

the characteristic velocity of the injected ions
√ENB/mi is still much less than the thermal

velocity of the warm electrons
√

T/me. Summarizing the above, we have

1 � ENB

T
� mi

me
, (2.5)

where me and mi are the electron and ion masses, respectively. We also consider the
density3 of the hot ions to be negligible compared with that of the warm plasma, so
the quasi-neutrality condition is satisfied for the latter: ni � ne/Z, where ne and ni are
the densities of warm electrons and ions, respectively, and Z is the ion atomic number.
In addition, we neglect collisions of the hot ions with ions and take into account only the
drag force from the warm electrons. In other words, we use a simple linear kinetic equation
for the hot ions, in which we keep only the terms related to the slowing down of the hot
ions on the warm electrons, neglecting the angular scattering due to Coulomb collisions.
This approximation apparently corresponds to the high-energy limit E � T of the injected
ions.

Let us briefly summarize the formulation of the problem. We consider the stationary
axisymmetric equilibrium of a diamagnetic trap in the paraxial approximation. The plasma
consists of the warm plasma in thermal equilibrium and non-Maxwellian hot ions. The
warm plasma is described in terms of MHD. Both gas-dynamic and non-adiabatic losses
of the warm plasma are taken into account. The electrical conductivity and transverse
diffusion coefficient of the warm plasma inside the bubble core are assumed to be
extremely high. We neglect the rotation of the warm plasma and the inhomogeneity of
the electrostatic potential. Hot ions are considered within the framework of kinetic theory.
A linear kinetic equation is used, which takes into account only the electron drag of the hot
ions. The distribution function of the hot ions is considered to depend only on azimuthal
angular momentum and energy.

3. Magnetic field equilibrium distribution

The equilibrium stationary distribution of the magnetic field can be found from
Maxwell’s equation with a source

∇ × B = 4πc−1J , (3.1)

where J is the total electric current density. Since the radial and longitudinal currents,
as well as the azimuthal magnetic field, are assumed to be zero, we have J = Jθ θ̂ and
A = Aθ θ̂ . In the axisymmetric case before us, we can also fix the vector potential gauge as
follows:

∂θAθ = 0 ⇔ Aθ = Aθ (r, z) . (3.2)

Then the vector potential Aθ proves to be related to the axial magnetic flux ψ

Aθ = ψ

2πr
, ψ =

∫ r

0
Bz

(
r′, z

)
2πr′ dr′. (3.3a,b)

Therefore, (3.1) reduces to the following two-dimensional second-order differential
equation for ψ :

r∂r
(
r−1∂rψ

) + ∂2
zψ = −8π2c−1rJθ , (3.4)

3For brevity, in this article, the number density, i.e. the number of particles per unit volume, is referred to as simply
density.
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which is the Grad–Shafranov equilibrium equation (Grad & Rubin 1958; Shafranov 1958)
in the case of an axisymmetric mirror device. The electric current density Jθ on the
right-hand side of (3.4) contains both the plasma diamagnetic current Jpθ and the current
in the external coils Jvθ , i.e. Jθ = Jpθ + Jvθ . Having solved (3.4), one can evaluate the
magnetic field B via the found magnetic flux ψ as follows:

B = 1
2πr

∇ψ × θ̂ , (3.5)

and then

B = |B| = 1
2πr

√
(∂rψ)

2 + (∂zψ)
2. (3.6)

We consider the external boundary condition of (3.4) to be the regularity of the magnetic
field at infinity

B|r2+z2→+∞ → B∞, 0 ≤ B∞ < +∞. (3.7)

This corresponds to a plasma with a free boundary, i.e. confined only due to the magnetic
field of the external coils. At the same time, by definition, there is no magnetic field in the
interior of the bubble core, i.e. B ≡ 0, and hence ψ ≡ 0, for r ≤ r0(z), where r0 = r0(z) is
the bubble core radius. Then one can set the following internal boundary conditions:

B|r=r0
= 0, (3.8)

ψ |r=r0
= 0. (3.9)

Relations (3.7) and (3.8) together define the boundary condition for (3.4). In turn, relation
(3.9) determines the bubble core boundary r0 = r0(z).

The total plasma electric current density Jpθ is the sum of the warm plasma current
density Jwθ and the current density of the hot ions Jhθ . The former is to be found by solving
hydrodynamic equilibrium equations for the warm plasma; as a basis, we take the MHD
models constructed in previous works (see Beklemishev 2016; Khristo & Beklemishev
2019, 2022). The latter is determined by the distribution function of the hot ions, which
should be found from the solution of the corresponding kinetic equation. These two issues
are dealt with in the following §§ 4 and 5, respectively.

4. Warm plasma equilibrium

As mentioned above, we consider the warm plasma to be in local thermal equilibrium.
We also assume the hot ion density to be negligible compared with the density of the
warm plasma. This allows us to consider the warm plasma as quasi-neutral: ni � ne/Z,
where ne and ni are the densities of the warm electrons and ions, respectively, and Z is the
ion atomic number. In addition, we completely neglect the warm plasma rotation and the
electrostatic potential inhomogeneity. The radial and longitudinal electric currents, as well
as the azimuthal magnetic field, are set equal to zero.

4.1. Force equilibrium
The electric current density of the warm plasma J w, which appears in (3.4), can be found
from the force balance equation for the warm plasma4

∇p = c−1J w × B, (4.1)

4The inertial forces acting on the warm plasma, such as centrifugal force, are neglected in this equation. The proper
description of the azimuthal force balance is related to the angular momentum equilibrium and, consequently, to the
warm plasma rotation, the accounting of which is beyond the scope of the present article.
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8 M.S. Khristo and A.D. Beklemishev

where p is the warm plasma pressure.5 It can be seen that, due to the stationary
axisymmetric equilibrium being considered, the sum of the azimuthal friction forces
acting on the entire warm plasma is equal to zero.

It immediately follows from (4.1) that the warm plasma pressure p is the constant on
the flux surfaces ψ = const. and, therefore, is a function of the magnetic flux ψ only:
p = p(ψ). In addition, due to the high longitudinal electron thermal conductivity, the
temperature of the warm plasma T appears to be constant along the field lines. Together
with axial symmetry, this results in the temperature also being a flux function: T = T(ψ).
Eventually, assuming the pressure, temperature and density6 of the warm plasma to be
related by the equation of state

p = (1 + Z) niT, (4.2)

we arrive at the same for the warm plasma density: ni = ni(ψ).
As a result, (4.1) allows the warm plasma current density to be expressed in terms of the

magnetic field and pressure gradient

Jwθ = 2πrc
dp
dψ
. (4.3)

The magnetic flux distribution ψ = ψ(r, z) is determined by Maxwell’s equations (3.4),
and the pressure profile p = p(ψ) should be found from the solution of the mass and
energy conservation equations for the warm plasma.

4.2. Mass conservation
To obtain the warm plasma equilibrium equation, we consider the material balance in a
flux tube ψ = const.

2Φi‖m +Φi⊥ − Wi = 0, (4.4)

where Φi‖m is the axial loss of the warm ions from the flux tube, determined by the
longitudinal flow through a mirror throat, Φi⊥ is the warm ion flow transverse to the flux
surface ψ = const. and Wi = Wi(ψ) is the total warm ion source inside the flux tube. In
other words, Wi represents the number of warm ion–electron pairs supplied by an external
source to the interior of the surface ψ = const. per unit time. Longitudinal and transverse
ion fluxes are determined as follows:

Φi‖m =
∫

Sm(ψ)

niui · dS, Φi⊥ =
∫

S⊥(ψ)
niui · dS, (4.5a,b)

where ui is the warm ion flow velocity. Integration is carried out over the cross-section of
the magnetic surface in the mirror Sm(ψ) and the flux surface S⊥(ψ) between the mirrors,
respectively.

Gas-dynamic confinement implies the axial mirror loss being described by an outflow
through the nozzle

Φi‖m =
∫

Sm(ψ)

nium dS, (4.6)

where um ∼ √
T/mi is the warm plasma flow velocity in the mirror throats. The ion flow

velocity transverse to the flux surfaceψ = const. can be found from the generalized Ohm’s

5In what follows, the warm plasma pressure p is assumed to be isotropic, which corresponds to the case of a filled
loss cone.

6In what follows, the density of the warm plasma should be understood as the density of the warm ions.
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Plasma equilibrium in diamagnetic trap with neutral beam injection 9

law, which can be written in the form

1
c

[ui × B]θ = Jwθ

σw
, (4.7)

where σw is the electrical conductivity of the warm plasma.7 The force balance (4.1)
together with the azimuthal projection of Ohm’s law (4.7) yields the warm plasma
transverse flow velocity

ui⊥ = − c2

σwB2
∇p. (4.8)

Then the transverse ion flux is

Φi⊥ = −Λi⊥
dp
dψ
, Λi⊥ = 4π2c2ni

∫
γ⊥(ψ)

r2 dl
σwB

, (4.9a,b)

where integration is carried out in (r, z) space along the curve γ⊥(ψ) corresponding to the
flux surface ψ = const.

Finally, substituting (4.6) and (4.9a,b) into the material balance (4.4) and differentiating
it with respect to ψ , we obtain the mass conservation equation for the warm plasma in the
following form:

− d
dψ

(
Λi⊥

dp
dψ

)
+ 2um

Bm
ni = dWi

dψ
, (4.10)

where Bm is the magnetic field in the mirror throats; here, we also take into account that
dψ = Bm dSm.

4.3. Energy conservation
For a given distribution of the magnetic flux, the equilibrium state of the warm plasma is
fully described by three parameters: density ni, temperature T and pressure p. A closed
system of equations can be obtained by supplementing (4.2) and (4.10) with another
equation relating these three parameters. In the previous MHD models (see Beklemishev
2016; Khristo & Beklemishev 2019, 2022), the plasma temperature T is simply assumed to
be constant. However, introducing an equation describing the energy balance of the warm
plasma would be more proper.

The law of thermodynamics for a moving warm plasma element reads

∇ ·
(

3
2

pui

)
= ∇ · (κw∇T)+ J2

w

σw
+ qh − p∇ · ui, (4.11)

where −κw∇T is the heat flux density due to thermal conductivity with a coefficient κw,
qh is the density of the heating power from the hot ions (see expression (5.18) in § 5). The
left-hand side of the equation is the change in the internal energy of the moving element
with time. The first three terms on the right-hand side describe the total heat release, and
the last term is related to the mechanical work. Here, we consider the heating to be due to
the neutral beam injection. If necessary, heating from other sources can also be taken into
account by simply adding the corresponding terms to the right-hand side of the equation.

7Generally speaking, the warm plasma electrical conductivity σw may differ from the ‘classical’ Spitzer
conductivity σSp = Z2e2ni/miνie. Exotic conditions of the diamagnetic confinement mode, such as, for instance, sharp
gradients of the warm plasma parameters and magnetic field, may lead to anomalous transport.
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10 M.S. Khristo and A.D. Beklemishev

Equations (4.1) and (4.8) together yield the resistive heating power density

J2
w

σw
= −ui · ∇p. (4.12)

Substituting it into (4.11) we arrive at

5
2∇ · ( pui)− ∇ · (κw∇T) = qh. (4.13)

Integrating this equation over the volume of the flux tube ψ = const. between the mirrors
results in

2ΦE‖ +ΦE⊥ = Qh, (4.14)

where ΦE‖ is the axial energy loss from the flux tube

ΦE⊥ =
∫

S⊥(ψ)

5
2

pui · dS −
∫

S⊥(ψ)
κw∇T · dS (4.15)

is the energy flow transverse to the flux surface ψ = const., and Qh is the total heating
power from the hot ions inside the flux tube.

The axial energy loss in a GDT can be described as follows:

ΦE‖ = αE

∫
Sm(ψ)

Tnium dS. (4.16)

In other words, an ion–electron pair escaping the trap carries away energy αET through
the mirror (see Ryutov 2005; Skovorodin 2019). The factor αE depends on the nature of
the plasma outflow through the mirror; for the GDT facility in Budker INP, this parameter
lies in the range of 6 ÷ 8 (see Soldatkina et al. 2020). Further, taking into account (4.8),
the transverse energy flow is written in the form

ΦE⊥ = 5
2

p
ni
Φi⊥ −ΛE⊥

dT
dψ
, (4.17)

where

ΛE⊥ = 4π2
∫
γ⊥(ψ)

κwBr2 dl. (4.18)

As a result, after taking the derivative of the energy balance (4.14) with respect to ψ ,
we arrive at the energy conservation equation for the warm plasma in the following form:

− d
dψ

(
5
2

p
ni
Λi⊥

dp
dψ

)
− d

dψ

(
ΛE⊥

dT
dψ

)
+ 2αEum

Bm
niT = dQh

dψ
. (4.19)

4.4. Bubble core equilibrium
Strictly speaking, (4.3), (4.10) and (4.19) cannot be used to describe the equilibrium of
the warm plasma in the bubble core, where ψ → 0. In addition, the magnetized plasma
approximation obviously ceases to be applicable there. For this reason, the equilibrium of
the warm plasma inside the bubble core should be considered separately.

Since the magnetic field inside the bubble core is close to zero, the warm plasma
transport in the core should increase significantly compared with the external transverse
diffusion. Therefore, we assume the pressure, the temperature and the density of the warm
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plasma to be uniform inside the entire bubble core. In addition, we further suppose the
warm plasma in the bubble core to be perfectly conducting, which results in the magnetic
field there being constant and identically equal to zero

B ≡ 0, r < r0 (z) . (4.20)

This is possible only if there is no plasma current inside the core, i.e. the electric current
of the hot ions is completely compensated by the inductive current of the warm plasma

Jwθ = −Jhθ , r < r0 (z) . (4.21)

It is shown by Chernoshtanov (2020, 2022) that the so-called non-adiabatic loss should
arise in the diamagnetic trap. In the case of a sufficiently collisional warm plasma with an
isotropic distribution function, there are particles outside the absolute confinement region
(2.2). These particles may reach the mirrors and escape the trap directly from the bubble
core. The thermal equilibrium distribution of the warm ions in a diamagnetic trap can be
approximately represented as follows (see Chernoshtanov 2020, 2022):

fi (E,P) = ni0

(
mi

2πT0

)3/2

e−E/T0Θ

(
a − |P|√

2miE
)
, (4.22)

where ni0 and T0 are the warm plasma density and temperature in the bubble core, Θ(x) is
the Heaviside step function, a = max[r0(z)] = r0(0) is the maximum radius of the core
and P and E are the canonical angular momentum and the total energy, respectively,
defined as in (2.1a,b). Such a distribution function corresponds to the collisional plasma
when the characteristic Maxwellization time is much less than the confinement time. It
can be obtained by direct averaging of the ‘ordinary’ Maxwellian distribution over the
hypersurface of the constant P and E (see the definition of averaging (5.13) in § 5). The
total axial loss from the core of the bubble is determined by the flow through the mirrors

Φi‖0 � 3
4

ni0vTi0
2πaρi0

R , (4.23)

where vTi0 = √
T0/mi is the warm ion thermal velocity, ρi0 = vTi0mic/eZBv is the

characteristic warm ion Larmor radius in the vacuum field Bv, R = Bm/Bv is the vacuum
mirror ratio and Bm � const. is the mirror magnetic field. The expression (4.23) is obtained
in the limit a � ρi0/R; for details, refer to Appendix A.

The non-adiabatic loss (4.23) is to be taken into account when setting the internal
boundary condition for the mass conservation equation (4.10). Namely, the total transverse
ion flow through the boundary of the bubble core is the total warm ion source inside the
core Wi0 minus the non-adiabatic loss through the mirrors 2Φi‖0(

−Λi⊥
dp
dψ

)∣∣∣∣
ψ→0

= Wi0 − 2Φi‖0. (4.24)

The corresponding axial energy loss is defined as follows:

ΦE‖0 = αE0T0Φi‖0, (4.25)

where αE0 is a coefficient similar to the previously introduced αE for gas-dynamic energy
loss. Then, the internal boundary condition for the energy conservation equation (4.19) is(

−5
2

p
ni
Λi⊥

dp
dψ

−ΛE⊥
dT
dψ

)∣∣∣∣
ψ→0

= Qh0 − 2αE0T0Φi‖0, (4.26)

where Qh0 is the total heat release from the hot ions inside the bubble core.
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12 M.S. Khristo and A.D. Beklemishev

To complete the formulation of the boundary value problem, the external boundary
conditions are to be set. As such, for example, the conditions

ni|r=alim
= 0, T|r=alim

= 0 (4.27a,b)

can be chosen, which correspond to an external limiter located at the radius alim. If the
particle source is localized inside the bubble core, as we assume in the present paper, due
to the large axial loss, the actual boundary of the warm plasma typically does not reach
the limiter. This means that, in this case, the equilibrium appears to be weakly dependent
on the external boundary conditions (4.27a,b).

5. Hot ion equilibrium

Consider the dynamics of a single ion with charge Ze and mass mi in a given
axisymmetric magnetic field, which is determined by the magnetic flux distribution
ψ = ψ(r, z) (see § 3). Then the equations of motion have the form

ṙ = Pr

mi
, Ṗr = Pθ − Ψ

mir2

(
Pθ − Ψ

r
+ ∂rΨ

)
,

θ̇ = Pθ − Ψ

mir2
, Ṗθ = 0,

ż = Pz

mi
, Ṗz = Pθ − Ψ

mir2
∂zΨ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where (r, θ, z,Pr,Pθ ,Pz) is a set of canonically conjugate Hamiltonian variables, overdot
indicates a time derivative and, for brevity, the normalized magnetic flux Ψ = Zeψ/2πc
is introduced.

There are two global regular integrals of motion: the total energy

E = P2
r

2mi
+ (Pθ − Ψ )2

2mir2
+ P2

z

2mi
, (5.2)

and the angular momentum
P = Pθ = mir2θ̇ + Ψ. (5.3)

Excluding the cyclic variable θ , for a given P , the number of degrees of freedom is reduced
to two, and the ion dynamics is equivalent to the motion of a particle with energy E in
two-dimensional (r, z) space in the effective potential

ϕeff = (P − Ψ )
2

2mir2
. (5.4)

Therefore, the conservation of P and E leads to the ion moving in a bounded area: E −
ϕeff > 0.

For given E and P the equality E = ϕeff determines a curve in (r, z) space corresponding
to the boundary of the region of ion motion. Then, taking into account that the magnetic
flux in the mirrors is approximately ψm = Bmπr2, we can find the radial boundaries in the
mirror throats from the equation(RΩi

2

)2 (
mir2)2 − 2

(RΩi

2
P + E

) (
mir2) + P2 = 0, (5.5)

where Ωi = ZeBv/mic is the ion cyclotron frequency in the vacuum magnetic field Bv. If
this equation has no real roots, then the region of ion motion does not reach the mirrors,
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Plasma equilibrium in diamagnetic trap with neutral beam injection 13

and the ion is confined absolutely. This brings us to the absolute confinement criterion
(2.2) for the ions(RΩi

2
P + E

)2

−
(RΩi

2

)2

P2 < 0, ⇒ −RΩiP > E . (5.6)

Otherwise, an ion outside the absolute confinement region may escape the trap in a finite
time.

If there is a third conserved quantity in addition to E and P , the system is integrable,
and the dynamics of the ion is regular. In particular, it was found by Chernoshtanov
(2020, 2022) that, for an ion with not too high longitudinal velocity, satisfying the
condition (2.3), there is an adiabatic invariant Ir = ∮

pr dr. Therefore, the trajectory of
such an ion is fully described by the given E , P and Ir. Otherwise, if the criterion (2.3) is
violated, there is no adiabatic invariant Ir and the dynamics of the ion becomes chaotic.
This means that the ion trajectory ergodically fills a finite volume of phase space on
the invariant hypersurface of constant E and P (Sagdeev, Usikov & Zaslavsky 1988;
Lichtenberg & Lieberman 1992).

The chaotic behaviour of ions can be qualitatively explained by collisionless scattering
on the longitudinal inhomogeneities of the magnetic field on the bubble boundary.
‘Reflecting’ from the magnetic field at the boundary of the bubble leads to a change in the
pitch angle of an ion by approximately �ξ ∼ arctan |dr0/dz|. Therefore, the adiabaticity
criterion (2.3) is met when the maximum scattering angle is not too large: (�ξ)max/ξ � 1,
while large-angle scattering: (�ξ)max/ξ � 1, on the considerable field inhomogeneities:
|dr0/dz| ∼ 1, may result in violation of adiabaticity and hence to dynamic chaos. With this
in mind, we can also suppose that the characteristic time of ergodization appears to be of
the order of several free pass times between the large-scale inhomogeneities: |dr0/dz| ∼ 1.

It is useful to point out the following fundamental feature of the dynamics of individual
particles in a diamagnetic trap. Particles with a sufficiently large canonical angular
momentum P satisfying the criterion (2.2) remain absolutely confined even in the absence
of adiabaticity, when condition (2.3) is violated. This is different from ‘classical’ mirror
machines, where non-adiabatic particles are lost over a time scale of the order of several
bounce periods.

In the presence of non-paraxial regions, where |dr0/dz| ∼ 1, which seems to be typical
for the diamagnetic bubble equilibrium (see Kotelnikov et al. 2010; Kotelnikov 2011;
Beklemishev 2016; Khristo & Beklemishev 2019, 2022), the adiabaticity criterion (2.3)
seems to be violated for the majority of the injected ions. In particular, figure 1 illustrates
an example of the ion Poincaré map in the central plane, z = 0, for various initial
conditions and fixed energy E and angular momentum P . The magnetic field distribution
is taken from the MHD simulations of the diamagnetic bubble equilibrium in GDMT (see
Khristo & Beklemishev 2022). Vacuum magnetic field in the central plane is Bv � 1.5 T,
the ion Larmor radius in the vacuum magnetic field is ρE = √

2miEc/ZeBv � 1.6 cm and
the minimum distance from the trap axis that the ion can approach is rmin = |P|/√2miE �
3.5 cm. It can be seen that a considerable region, corresponding to transverse momentum
in the range P⊥ = √

2miE − P2
z � 0.6 ÷ 0.7, is filled with chaotic trajectories.

Strictly speaking, the ion dynamics should be considered separately for the chaotic and
regular trajectories. In the chaotic region, the distribution function can be considered
depending only on the integrals of motion: energy E and angular momentum P . At the
same time, in the region of regular motion, these are also supplemented by the dependence
on a third conserved quantity, for instance, the adiabatic invariant Ir. On top of that,
required is also a correct description of the transition region, separating chaotic and

https://doi.org/10.1017/S0022377824001417 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001417


14 M.S. Khristo and A.D. Beklemishev

FIGURE 1. An example of the ion Poincaré map in the central plane, z = 0, for various initial
conditions and fixed E and P . The magnetic field distribution is taken from MHD simulations
for the GDMT configuration (see Khristo & Beklemishev 2022). Vacuum magnetic field: Bv �
1.5 T; ion Larmor radius in the vacuum field: ρE = √

2miEc/ZeBv � 1.6 cm; minimum distance
from the trap axis that the ion can approach: rmin = |P|/√2miE � 3.5 cm.

regular trajectories. This issue appears to be quite complex and needs to be addressed in an
individual paper. For this reason, in the present article, we limit ourselves to considering
the simplest case. Namely, we further assume that the region of the hot ion regular
motion has a negligible measure, while the dynamics of the hot ions is globally chaotic
and their trajectories ergodically fill the hypersurfaces of constants E and P . Since the
chaotic behaviour appears to result from the collisionless scattering on the non-paraxial
end regions, |dr0/dz| ∼ 1, we also assume that the characteristic ergodization time is of
the order of several periods of longitudinal oscillations τb ∼ L/

√E/mi.

5.1. Hot ion distribution function
As noted above, we consider the hot ion density to be small enough to neglect their
collisions with each other. In addition, we neglect the angular scattering of the hot ions
due to Coulomb collisions8 and take into account only the warm electron drag force

F s � −νiemiv, (5.7)

where v is the hot ion velocity,

νie = 1.6 × 10−9μ−1
i Z3Λie

ni

cm−3

(
T

eV

)−3/2

s−1, (5.8)

is the inverse ion slowing down time (Trubnikov 1965), μi = mi/mp is the ion mass mi
normalized to proton mass mp,Λie is the ion–electron Coulomb logarithm. In what follows,
we assume that the neutral beam is injected into the absolute confinement region (2.2); in
this case, the loss of the hot ions can be ignored. Therefore, in the stationary case under

8However, collisionless scattering of the hot ions due to non-adiabaticity is taken into account.
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consideration, the kinetic equation for the distribution function of the hot ions fh has the
following invariant form:

∇X · (
Ẋ fh

) = gh, (5.9)

where X is the six-dimensional vector of generalized phase variables, Ẋ is the
corresponding phase velocity vector, ∇X is the nabla differential operator in the X -space
and gh = gh(X ) is the phase density of the hot ion source intensity, the explicit form of
which is determined by the injection. Specifying the variables as X = (r, θ, z,Pr,Pθ ,Pz),
we obtain the equations of motion in the form

ṙ = Pr

mi
, Ṗr = Pθ − Ψ

mir2

(
Pθ − Ψ

r
+ ∂rΨ

)
− νiePr,

θ̇ = Pθ − Ψ

mir2
, Ṗθ = −νie (Pθ − Ψ ) ,

ż = Pz

mi
, Ṗz = Pθ − Ψ

mir2
∂zΨ − νiePz.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

Since we assume axial symmetry, the distribution function fh and the magnetic flux Ψ do
not depend on the cyclic variable θ .

As mentioned above, we consider that the dynamics of ions is globally chaotic, and
the ergodization time is of the order of several periods of longitudinal oscillations of the
ion τb ∼ L/

√E/mi. Since the characteristic slowing down time ν−1
ie significantly exceeds

the characteristic bounce time τb (typically νieτb ∼ 10−3 ÷ 10−4), the drag force (5.7)
can be considered weak on time scales of the period of longitudinal oscillations τb. By
means of the conventionally used Krylov–Bogoliubov–Mitropolsky averaging approach
(Bogoliubov & Mitropolskii 1961), the slow phase space diffusion associated with the
drag force (5.7) can be separated from the fast longitudinal oscillations. Based on this, we
replace the exact kinetic equation (5.9) by an averaged one, assuming that the averaging
should be performed over the E,P = const. surface in the phase space.

Instead of (Pr,Pθ ,Pz), it is convenient to use the new variables (E,P, α), where α ∈
[0, 2π) is defined by

Pr =
√

2mi (E − ϕeff) sinα, Pz =
√

2mi (E − ϕeff) cosα. (5.11a,b)

Hence, we have
∂ (Pr,Pθ ,Pz)

∂ (E,P, α) = mi, (5.12)

and we should also keep in mind the additional condition E > ϕeff, which defines the
region of permissible values of the new variables. Then averaging of some quantity Q
over the surface E,P = const. is performed as follows:

〈Q〉Γ def= Γ −1
∫

· · ·
∫
E>ϕeff

Qmi dr dθ dz dα, (5.13)

where

Γ =
∫

· · ·
∫
E>ϕeff

mi dr dθ dz dα = 4π2mi

∫∫
E>ϕeff

dr dz, (5.14)

is the phase volume of the hypersurface E,P = const. Finally, at the leading order with
respect to νieτb � 1, when the distribution function fh approximately depends only on E
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and P , averaging the perturbed system yields

Γ −1∂E
(
Γ

〈Ė 〉
Γ

fh
) + Γ −1∂P

(
Γ

〈Ṗ 〉
Γ

fh
) = 〈gh〉Γ ,〈Ė 〉

Γ
= −2 〈νie〉Γ E,

〈Ṗ 〉
Γ

= −〈νie〉Γ P + 〈νieΨ 〉Γ .
〈ṙ〉Γ = 0, 〈ż〉Γ = 0, 〈α̇〉Γ = 0.

⎫⎪⎪⎬
⎪⎪⎭ (5.15)

Solving the kinetic equation (5.15) one can find the averaged distribution function of the
hot ions fh � fh(E,P). This in turn enables the density of some quantity Q to be obtained

〈Q〉h
def= 1

r

∫∫∫
Qfh dPr dPθ dPz = mi

r

∫ 2π

0
dα

∫ +∞

−∞
dP

∫ +∞

ϕeff

dEQfh. (5.16)

In particular, the azimuthal electric current density of the hot ions is given by

Jhθ = 〈Zevθ 〉h = 2πZe
r2

∫ +∞

−∞
dP

∫ +∞

ϕeff

dE (P − Ψ ) fh, (5.17)

the power density of heating the warm plasma by the hot ions is defined as

qh = 〈2 〈νie〉Γ E〉h = 4πmi

r

∫ +∞

−∞
dP

∫ +∞

ϕeff

dE 〈νie〉Γ E fh. (5.18)

6. Cylindrical bubble model

The complete system of equations describing the equilibrium of the diamagnetic bubble
with neutral beam injection consists of the equation for the magnetic field (3.4) and the
equations of mass (4.10) and energy (4.19) conservation for the warm plasma. This system
should be supplemented with the equation of state for the warm plasma (4.2) and the
expression for the warm plasma current density (4.3), as well as the expressions for the
hot ion current density (5.17) and heating power density (5.18). Finally, the formulation of
the problem is completed by setting the boundary conditions for the magnetic field: (3.7),
(3.8) and (3.9), the latter of which determines the boundary of the bubble core, and also the
internal (4.24), (4.26) and external (4.27a,b) conditions for the warm plasma equilibrium
equations.

Just as it was done by Beklemishev (2016) for the case of MHD equilibrium, we further
consider a simplified model of a cylindrical diamagnetic bubble. In the central part of
such a bubble, there is a cylindrical core of length L and radius a with zero magnetic field:
ψ ≡ 0; outside the core, for r > a, the magnetic field lines are straight: ψ = ψ(r). At the
ends of the central cylindrical part, there are non-paraxial regions gradually turning into
the mirror throats with the magnetic field Bm � const. In addition, the source of the warm
plasma is further considered to be entirely contained inside the bubble core. In this case,
the density of the warm plasma inside the core is expected to be much higher than outside.
Since the drag force (5.7) is proportional to the density of the warm plasma, the hot ions
seem to slow down and release the energy mainly inside the bubble core as well.

6.1. Magnetic field distribution
The equilibrium equation for the magnetic field (3.4) can only be considered in the
central cylindrical region, and the magnetic flux in the mirrors is considered to be given:
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ψm = Bmπr2. Then, after substituting the current density of the warm plasma (4.3), (3.4)
predictably reduces to the paraxial equilibrium with the Lorentz force from the hot ions

d
dψ

(
B2

8π
+ p

)
= − Jhθ

2πrc
, (6.1)

dr
dψ

= 1
2πr

1
B
. (6.2)

In this equations we use the flux coordinate ψ , so r = r(ψ) is the inverse function of
ψ = ψ(r) and is essentially the radius of the magnetic surface that corresponds to the
magnetic fluxψ . In addition, the magnetic field B and the current density of the hot ions Jhθ
should also be considered here as functions of ψ . The corresponding boundary conditions
(3.7), (3.8) and (3.9) can be reduced to

B|ψ=0 = 0, r|ψ=0 = a, (6.3a,b)

B|ψ→+∞ = Bv, (6.4)

where Bv = const. is the vacuum magnetic field at the central section of the trap.

6.2. Warm plasma equilibrium
Warm plasma equilibrium equations (4.10) and (4.19) mainly remain the same except
for the transport coefficients Λi⊥ and ΛE⊥, which are reduced to a simpler form in the
cylindrical bubble approximation

− d
dψ

(
Λi⊥

dp
dψ

)
+ 2um

Bm
ni = 0, (6.5)

− d
dψ

(
5
2

p
ni
Λi⊥

dp
dψ

)
− d

dψ

(
ΛE⊥

dT
dψ

)
+ 2αEum

Bm
niT = 0, (6.6)

Λi⊥ � 4π2c2ni
r2L
σwB

, ΛE⊥ � 4π2
κwBr2L. (6.7a,b)

Here, we also take into account that, due to the hot ions mainly slowing down inside
the bubble core, the external hot ion heating power release is negligible, i.e. Qh ≡ 0 and
Wi ≡ 0 for ψ > 0. The boundary conditions (4.24), (4.26) and (4.27a,b), in turn, remain
exactly the same, except that Qh0 and Wi0 now have the meaning of the total absorbed
injection power and the total warm plasma source, respectively.

6.3. Hot ion equilibrium
Consider the injection of a monoenergetic neutral beam with the injection energy ENB and
the total absorbed injection power Qh0. The injection is carried out at the angle ξNB ∈
(0,π/2) to the axis of the trap, and the distance from the beam to the trap axis is finite and
equal to rNB < a. In this case, the source in the kinetic equation (5.15) has the form9

〈gh〉Γ = 1
Γ

Qh0

ENB
δ (E − ENB) δ (P − PNB) , (6.8)

9In a real experiment, the beam has a finite width and angular spread, and it is also not exactly monoenergetic.
Nevertheless, any injection can be represented as a combination of beams of type (6.8). In other words, the solution of
the kinetic equation with such a right-hand side is essentially a Green’s function.
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where δ(x) is the Dirac delta function

PNB = −
√

2miENBrNB sin ξNB < 0, (6.9)

is the angular momentum of the injected ions. Due to the beam slowing down mainly in
the core of the bubble, averaging in (5.15) yields

〈νie〉Γ � νie0, 〈νieΨ 〉Γ � 0, (6.10a,b)

where νie0 = νie|T=T0,ni=ni0 . The resulting kinetic equation

−2νie0∂E (EΓ fh)− νie0∂P (PΓ fh) � Qh0

ENB
δ (E − ENB) δ (P − PNB) , (6.11)

is satisfied by

fh � 1
2νie0

1
Γ

Qh0

ENB

1
E3/2

δ

( P√E − PNB√ENB

)
, E < ENB, (6.12a,b)

where the phase volume Γ is approximately equal to

Γ = 4π2miL
∫
E>ϕeff

dr, (6.13)

and ϕeff is the effective potential (5.4) in the central plane.
The remaining integral in Γ can be represented in a simpler form. To do this, we further

assume that, first, there is no reversed field and, second, the magnetic field either increases
with the radius or decreases not faster than r−1. In other words, the following conditions
are met:

B ≥ 0,
r
B

dB
dr

≥ −1. (6.14a,b)

It can be shown that, in this case, the effective potential ϕeff has only one minimum.
Consequently, the equation E = ϕeff has no more than two roots: rmin = rmin(E,P) and
rmax = rmax(E,P), which are the radial boundaries of the integration domain E > ϕeff.
These roots are essentially the minimum and maximum distance from the axis available to
a hot ion with energy E and angular momentum P . In what follows, rmin and rmax are
shortly referred to as the minimum radius and the maximum radius, respectively, and
we also define the corresponding minimum and maximum radii for the injected ions:
r̄min = rmin(ENB,PNB) and r̄max = rmax(ENB,PNB). Eventually, the phase volume can be
represented in the following form:

Γ = 4π2miL (rmax − rmin) . (6.15)

It is worth noting that the minimum radius for the ions passing through the interior of the
bubble core can be found explicitly. Indeed, since Ψ ≡ 0 in the bubble core, for rmin < a
we have

E = ϕeff (rmin) = |P|2
2mir2

min
, ⇒ rmin = |P|√

2miE
. (6.16)

Note that the solution (6.12a,b) also implies that, in the approximation considered, the
hot ion energy and angular momentum are related as follows: P√ENB = PNB

√E . This
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means that the minimum radius for the ions injected in the bubble core (rNB < a) remains
constant

rmin = r̄min = |PNB|√
2miENB

. (6.17)

Given (6.9), the minimum radius can also be expressed in terms of the injection radius
rNB and injection angle ξNB: r̄min = rNB sin ξNB. In addition, it follows that the sign of the
angular momentum does not change during the ion slowing down, and the ions initially
injected into the absolute confinement region (2.2) always stay in it

−RΩiPNB > ENB, ⇒ −RΩiP >
√
EENB ≥ E . (6.18)

Therefore, the axial loss of the hot ions can indeed be neglected.10

Eventually, using the resulting distribution function (6.12a,b) and the definition (5.17),
we obtain the azimuthal diamagnetic current density of the hot ions

Jhθ

2πrc
= − r̄min

a
Πh

ψh

a3

r3
Θ

(
r − r̄min

a − r̄min
− ψ

ψh

)

×
∫ 1

((a−r̄min)/(r−r̄min))(ψ/ψh)

a − r̄min

r∗
max (η)− r̄min

(
1 + a − r̄min

r̄min

ψ

ψh

1
η

)
dη, (6.19)

where ψh = 2πBv(a − r̄min)ρNB is the characteristic magnetic flux induced by the hot ion
current, ρNB = √

2miENBc/ZeBv is the characteristic Larmor radius of injected ions, the
coefficient

Πh = Qh0

νie0πa2L
, (6.20)

is the characteristic energy density of the hot ions and

r∗
max (η)

def= rmax
(ENBη

2,PNBη
)
, (6.21)

is the maximum radius of the hot ions with the distribution (6.12a,b), which is to be found
from the equation E = ϕeff reduced to explicit form

r∗
max (η) = r (ψ)|ψ=ψhη((r∗

max(η)−r̄min)/(a−r̄min))
. (6.22)

In particular, the outer boundary is r̄max = r∗
max(1).

7. Thin transition layer limit

The resulting complete system of equilibrium equations for a cylindrical bubble (6.1),
(6.2), (6.5) and (6.6) accompanied by the expression for the hot ion current (6.19) proves to
be essentially nonlinear. An exact equilibrium solution can only be obtained numerically.
Detailed numerical simulations and analysis of the corresponding numerical equilibria are
planned to be provided in future work. In the present paper, we focus on considering a
limiting case that allows a significant simplification of the equations.

As mentioned at the beginning of § 2, at the boundary of the diamagnetic bubble, right
beyond the core, there is a transition layer inside which the magnetic field changes from

10In fact, collisional angular scattering at low energies E ∼ T of course should eventually lead to the loss of the hot
ions. The balance of the hot ions with the distribution (6.12a,b) essentially assumes the presence of a sink in phase space
at E → 0.
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B = 0 to B = Bv. The total thickness of this layer – the radial size of the region such that
0 < B < Bv – is further denoted by λ. The inner boundary of the layer r = a corresponds
to the radial boundary of the bubble core, where the magnetic field is zero: B|r≤a = 0. The
outer boundary r = a + λ is the radius at which the diamagnetic current density of the
plasma vanishes and the magnetic field reaches the vacuum value: B|r≥a+λ = Bv. In other
words, the outer boundary of the transition layer represents the boundary of the plasma. In
the same way, we define separately the boundaries for the warm plasma r = a + λw and
hot ion ions r = a + λh, beyond which the corresponding diamagnetic currents vanish;
λw and λh are further naturally called the thicknesses of the transition layer for the warm
plasma and the hot ions, respectively. It is clear that the total thickness of the transition
layer is determined by the largest one: λ = max{λw, λh}.

The transition layer thickness for the warm plasma λw is determined by the characteristic
scale of the warm plasma resistive transverse diffusion across the magnetic field, which
is normally quite small. In particular, the MHD equilibrium model (Beklemishev 2016)
shows that the thickness of the transition layer proves to be approximately equal to
λw MHD = 7λGD, where

λGD =
√

c2

4πσw
τGD, (7.1)

is the characteristic thickness of magnetic field diffusion into the plasma and τGD =
RL/2um is the gas-dynamic lifetime. In the case of ‘classical’ Spitzer conductivity σw =
Z2e2ni/miνie, for the typical parameters: T ∼ 1 keV, R ∼ 15, L ∼ 500 cm, the quantity
λGD is of the order of tenths of a centimetre. However, in the presence of the hot ion
component, MHD is not applicable, and this estimate ceases to be valid.

For the distribution (6.12a,b), the outer boundary, at which the current of the hot ions
(6.19) vanishes, corresponds to the maximum radius of the injected ions r̄max. Then the
thickness of the hot ion transition layer in this case is equal to λh = r̄max − a. On the other
hand, the hot ion transition layer is essentially the boundary region inside which the hot
ions are ‘reflected’ from the external vacuum magnetic field outside the bubble core, and
its thickness seems to be proportional to the Larmor radius of the injected ions λh ∼ ρNB.
Under typical conditions, the hot ion Larmor radius ρNB is of the order of centimetres
and normally proves to be much greater than the warm plasma transverse diffusion scale
λGD. Thus, the total transition layer thickness λ = max{λw, λh} could be expected mainly
determined by the hot ion transition layer thickness: λh � λw.

Further, in this work, we consider the limit of the thin transition layer λ� a, which
allows the model equations to be greatly simplified. Since λ normally decreases with
increasing magnetic field, this approximation seems to correspond to the case of a
sufficiently strong vacuum field Bv.

7.1. Equilibrium magnetic field distribution
The magnetic field equilibrium is determined by (6.1) and (6.2) with the boundary
conditions (6.3a,b) and (6.4). When solving these equations, we consider the pressure
profile of the warm plasma p = p(ψ) given, implying that it can be found from the
corresponding equilibrium equations (6.5) and (6.6). At the same time, the diamagnetic
current of the hot ions is determined by the expression (6.19).

It is further convenient to use the following dimensionless quantities:

φ = ψ

ψh
, x = r

a
, R = B

Bv
, βw = 8πp

B2
v
, (7.2a–d)
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where βw is the warm plasma pressure normalized to the energy density of the vacuum
magnetic field B2

v/8π, also referred to simply as the relative pressure of the warm plasma.
According to this, we also define the dimensionless minimum and maximum radii as
follows:

x̄min = r̄min

a
, x∗

max (η) = r∗
max (η)

a
, (7.3a,b)

where the latter is determined by the equation

x∗
max (η) = x (φ)|φ=η((x∗

max(η)−x̄min)/(1−x̄min))
, (7.4)

which results from the corresponding normalization of (6.22). Then, (6.1) and (6.2) with
substituted hot ion current (6.19) take the following dimensionless form:

d
dφ

(
R2 + βw

)

= Λh

x3
Θ

(
x − x̄min

1 − x̄min
− φ

) ∫ 1

((1−x̄min)/(x−x̄min))φ

1 − x̄min

x∗
max (η)− x̄min

(
1 + 1 − x̄min

x̄min

φ

η

)
dη, (7.5)

dx
dφ

= ε

x
1
R
, (7.6)

where

Λh = x̄min
8πΠh

B2
v
, ε = (1 − x̄min)

ρNB

a
. (7.7a,b)

Normalizing the boundary conditions (6.3a,b) and (6.4) yields

R|φ=0 = 0, x|φ=0 = 1, (7.8a,b)

R|φ→+∞ = 1. (7.9)

As mentioned above, the hot ion transition layer thickness λh appears to be of the
order of the Larmor radius of the injected ions ρNB, which means that, in the thin
transition layer limit before us λh � a, we should also expect the ratio ρNB/a to be small.
Given this, it seems appropriate to apply the method of successive approximations by
considering the coefficient ε ∝ ρNB/a on the right-hand side of (7.6) as a small expansion
parameter. Namely, we further assume that the solution of the system (7.5) and (7.6) can
be represented in the form of an asymptotic expansion.

For a given magnetic field profile R = R(φ), by integrating (7.6) and taking into account
the boundary condition (7.8a,b), the radius as a function of the magnetic flux can be
explicitly expressed

x (φ) =
√

1 + 2ε
∫ φ

0

dφ′

R (φ′)
. (7.10)

At the leading order of the approximation ε � 1, when small corrections are completely
neglected, the expression (7.10) reduces to

x (φ) � 1 + o
(
ε0) . (7.11)

Substituting (7.11) into (7.4) yields the corresponding approximation for the maximum
radius

x∗
max (η) � 1 + o

(
ε0) . (7.12)
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The obtained formulas (7.11) and (7.4) correspond to r � a. In other words, on the scale of
the transition layer, the radius r can be considered almost constant and equal to the bubble
radius a, while the magnetic flux ψ varies greatly. At a qualitative level, this is associated
with the high density of the diamagnetic current inside the layer.

Taking into account (7.11) and (7.12), the integral in the right-hand side of (7.5) is
evaluated explicitly

d
dφ

(
R2 + βw

) � ΛhΘ (1 − φ)

∫ 1

φ

[
1 + (

x̄−1
min − 1

) φ
η

]
dη + o

(
ε0)

= Λh
[
1 − φ − (

x̄−1
min − 1

)
φ lnφ

]
Θ (1 − φ)+ o

(
ε0) . (7.13)

As can be seen, the outer boundary of the hot ions at this order of approximation
corresponds to φ = 1. Given the boundary conditions (7.8a,b) and (7.9), the resulting
equation yields

R (φ) � R(0) (φ)+ o
(
ε0) , (7.14)

where

R(0) (φ) =

⎧⎪⎨
⎪⎩

√
βw0 − βw (φ)+Λhφ

[
1 − φ

2
− (

x̄−1
min − 1

) φ
2

(
lnφ − 1

2

)]
, φ < 1,

√
1 − βw (φ), φ ≥ 1,

(7.15)

and βw0 = βw(0) = 8πp0/B2
v is the relative pressure of the warm plasma inside the bubble

core. In the absence of surface currents, the solution (7.14) should be continuous at the
boundary φ = 1, from which we also obtain the following condition:

1 � βw0 + βh0 + o
(
ε0) . (7.16)

Here, the quantity

βh0 = 1
4

(
x̄−1

min + 1
)
Λh = (1 + x̄min)

2πΠh

B2
v
, (7.17)

can be interpreted as the characteristic relative energy density of the hot ions in the bubble.
The formula (7.16) essentially expresses the balance between the plasma pressure inside
the bubble and the pressure of the external magnetic field.

By applying the successive approximations to find higher orders of the expansion, the
solution can be further refined. In particular, taking into account first-order corrections in
the expression (7.10) yields

x (φ) � 1 + ε

∫ φ

0

dφ′

R(0) (φ′)
+ o

(
ε1) . (7.18)
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Using the obtained dependence, the corresponding correction to the maximum radius is
also found from (7.4)

x∗
max (η) � 1 + ε

∫ η

0

dφ
R(0) (φ)

+ o
(
ε1) . (7.19)

For η = 1 this formula determines the thickness of the hot ion transition layer

λh

a
= x∗

max (1)− 1 � ε

∫ 1

0

dφ
R(0) (φ)

+ o
(
ε1) . (7.20)

Further, in this paper, we consider the equilibrium configuration of the magnetic field
to be approximately defined by (7.11) and (7.14) at ε → 0. In other words, we take into
account only the leading order of the asymptotic expansion. The applicability criterion for
this approximation is determined by the limit

1 − x∗
max (1)

1 − x̄min
= λh

a − r̄min
� 1, (7.21)

which is actually assumed in the derivation of (7.14). After substituting (7.20), we arrive
at the following condition: ∫ 1

0

dφ
R(0) (φ)

� a
ρNB

. (7.22)

An upper bound for the integral involved can be obtained as follows:

∫ 1

0

dφ
R(0) (φ)

≤ 1√
1 − βw0

W
(

a
r̄min

)
, (7.23)

where

W (z) def=
√

z + 1
2

∫ 1

0

dφ√
φ

[
1 − φ

2
− (z − 1)

φ

2

(
lnφ − 1

2

)] . (7.24)

As can be seen from figure 2, for all reasonable a/r̄min the function W is of the order of
2 ÷ 3.

Before moving on to considering the equilibrium of the warm plasma, it is also useful to
examine the expression (7.16) in greater detail. For given parameters of the warm plasma
inside the bubble core: density ni0 and temperature T0, which are to be found from the
solution of the equilibrium equations (6.5) and (6.6), the expression (7.16) defines the
relation between the radius of the core a and the fixed external parameters: absorbed
heating power Qh0, vacuum magnetic field Bv and geometric parameters L and r̄min. After
expressing the warm plasma density ni0 from the equation of state (4.2), the formula (7.16)
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FIGURE 2. Function W = W(z) defined by the expression (7.24).

is reduced to a cubic equation for the normalized core radius k = a/r̄min = x̄−1
min

k3 − (4τsνie0)
−1 (k + 1) � 0, (7.25)

where

τs = βh0
B2

v

8π

πr̄2
minL

Qh0
. (7.26)

Provided that the core radius a exceeds the minimum radius r̄min, i.e. k ≥ 1, this equation
has exactly one real root for a fixed βw0 ∈ [0, 1]

k =

⎧⎪⎪⎨
⎪⎪⎩

3
D

cos
(

1
3

arccos D

)
, 0 < D ≤ 1,

3
D

cosh
(

1
3

arccosh D

)
, 1 < D,

(7.27)

where D = √
27τsνie0 and arccosh x = ln(x + √

x2 − 1). This means that, for a given
temperature in the core T0, this root specifies the functional dependency of the core radius
on the pressure in the core: k = k(βw0).

7.2. Warm plasma equilibrium
The equilibrium of the warm plasma is described by (6.5) and (6.6) with the boundary
conditions (4.24), (4.26) and (4.27a,b). In what follows, the electrical and thermal
conductivity of the warm plasma are considered classical (Braginskii 1965)

σw = Z2e2ni

miνie
= 8.7 × 1013Z−1Λ−1

ie

(
T

eV

)3/2

s−1,

κw = 10−3
(
μ

1/2
i + 0.077Z

)
Z2Λie

(
B
G

)−2 ( ni

cm−3

)2
(

T
eV

)−1/2

cm−1 s−1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.28)
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In addition, the warm plasma flow velocity in the mirror is assumed to be

um =
√

2
π
vTi =

√
2T
πmi

, (7.29)

which corresponds to the gas-dynamic loss in the case of short mirrors and a filled loss
cone (Ivanov & Prikhodko 2017). In what follows, we also consider r � a, assuming the
leading order of the thin transition layer approximation λw � a.

Let us show that in this case there exists an equilibrium of the warm plasma such
that the temperature can be considered slowly varying on the scale of the warm plasma
inhomogeneity

ni

T
dT
dni

� p
T

dT
dp

= γT � 1. (7.30)

Subtracting (6.5) multiplied by αET from (6.6) yields

αETd
(
Λi⊥

dp
dψ

)
− d

(
5 (1 + Z)

2
TΛi⊥

dp
dψ

)
− d

(
ΛE⊥

dT
dψ

)
= 0. (7.31)

Taking into account the condition (7.30), the left-hand side of the resulting expression is
approximately reduced to an exact differential

d
((
αE − 5 (1 + Z)

2

)
TΛi⊥

dp
dψ

)
− d

(
ΛE⊥

dT
dψ

)
� 0, (7.32)

which further allows the equation to be explicitly integrated. The constant of integration
should be set equal to zero, since at the boundary of the warm plasma, where ni → 0, the
transverse fluxes of mass and energy should vanish. Finally, we find the slope factor

γT = p
T

dT
dp

�
(
αE − 5 (1 + Z)

2

)
Λi⊥
ΛE⊥

p � 1
60

(
αE − 5 (1 + Z)

2

)
1 + Z(

μ
1/2
i + 0.077Z

)
Z
.

(7.33)

For hydrogen plasma Z = 1, μi = 1 and αE = 8, which is typical for GDT (Ivanov &
Prikhodko 2017; Skovorodin 2019; Soldatkina et al. 2020), the slope factor proves to be
quite small: γT ∼ 10−1 � 1.

When the condition (7.30) is met, the equilibrium equations (6.5) and (6.6) are
equivalent and reduced to

dF
dχ

+ 2βw � 0, F = −βw

R
dβw

dχ
, (7.34a,b)

where we use the dimensionless magnetic flux χ = ψ/ψGD normalized to ψGD =
2πaλGDBv, and λGD is defined by (7.1). We also introduce the quantity F , which has
the meaning of the warm plasma transverse flow. The magnetic field distribution is
given by (7.14) taking into account the corresponding renormalization of the magnetic
flux: φ = χ/χh, where χh = ψh/ψGD = (1 − k−1)ρNB/λGD corresponds to the boundary
of the hot ions φ = 1. When solving (7.34a,b), according to the approximation (7.30), the
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temperature should be considered constant and equal to T0. Further, a weak temperature
dependence can be found from the equality (7.33)

T
T0

=
(

p
p0

)γT

. (7.35)

Internal boundary conditions (4.24) and (4.26) also merge into one

F |χ→0 � S, (7.36)

S = βw0
3
2

√
π

2
ρi0

λGD

(
Wi0

2Φi‖0
− 1

)
, (7.37)

with an additional condition

αET0
(
Wi0 − 2Φi‖0

) = Qh0 − 2αE0T0Φi‖0, (7.38)

which defines the relationship between the temperature and the pressure of the warm
plasma in the bubble core. For simplicity, we further assume αE0 = αE, then the
temperature of the warm plasma T0 can be explicitly found from the equality (7.38). It
proves to be independent of the pressure and is determined by the ratio of the sources

T0 � Qh0

αEWi0
. (7.39)

External boundary conditions (4.27a,b) are reduced to the following:

βw|χ=χw
= 0, ⇔ F |χ=χw

= 0, (7.40)

where χ = χw corresponds to the outer boundary of the warm plasma r = a + λw. The
second condition is essentially the vanishing of the transverse flow at the boundary, which
is consistent with the pressure gradient and the current density being finite. It is also
worth noting that the position of the boundary χw is not specified and should be found
self-consistently from the solution of the equilibrium equation (7.34a,b). This means that
the two conditions (7.40) are related by χw and are formally reducible to one. In other
words, one of the expressions (7.40) can be considered as a boundary condition, and the
other as a definition of the boundary position χ = χw.

7.3. Numerical solution
The boundary value problem (7.34a,b), (7.36) and (7.38) described above turns out to be
rather complex, and to find its exact solution we use numerical methods.

As mentioned above, provided that the temperature is given by the expression (7.39),
(7.25) relates the radius of the bubble core and the pressure of warm plasma in the
core: k = k(βw0). This means that βw0 remains the only free (i.e. unknown yet) parameter
that determines the equilibrium. In that regard, the boundary value problem before us is
convenient to reformulate as the following Cauchy problem. The equilibrium equations
(7.34a,b) can be considered as the system of ordinary differential equations for the
functions βw = βw(χ) and F = F(χ) with the initial conditions (7.36) and βw|χ=0 = βw0.
At the same time, the quantity βw0 should be treated as a variable parameter, which is found
from the external boundary condition (7.40).

To solve the formulated problem, we apply an approach similar to the shooting
method. For a given parameter βw0, the equations (7.34a,b) are integrated by means of
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FIGURE 3. Profile of the warm plasma pressure depending on the magnetic flux: the numerical
solution (black solid curve), left (blue dashed curve) and right (red dash-dotted curve)
asymptotics given by the expressions (7.41) and (7.42a,b), respectively. Simulation corresponds
to the parameters of the GDMT10 regime (see table 1).

the Runge–Kutta methods, starting from the corresponding initial conditions at χ = 0.
Computing continues until either βw = βw(χ;βw0) or F = F(χ;βw0) hits zero at some
point χ = χw(βw0).11 Thus, by varying the parameter βw0, we can formally obtain the
functional dependence χw = χw(βw0). On the other hand, for a given relation χw =
χw(βw0), the conditions (7.40) are actually reduced to an equation for βw0 on the finite
interval 0 ≤ βw0 ≤ 1. The root of this equation, which can be found using standard
numerical methods, is a true value of the parameter βw0 corresponding to the real
equilibrium profile βw = βw(χ).

Figure 3 shows the numerical solution of the warm plasma equilibrium equation, found
using the procedure described above. There are also plotted the corresponding analytical
asymptotics in the vicinity of the bubble core and the outer boundary of the warm plasma,
respectively,

βw ∼ βw0 − 4SCh

3βw0
χ 3/2 − S2

6β2
w0
χ 2

+ Ch

5

{
8 − S3

36C2
hβ

3
w0

+ S
βw0χh

[
1 + (k − 1)

(
ln

(
χ

χh

)
− 9

10

)]}
χ 5/2

+ o
(
χ 5/2) , χ → 0, (7.41)

βw ∼ 1
3 R (χw) (χw − χ)2 + o

[
(χw − χ)2

]
, χ → χw, (7.42a,b)

where

Ch =
√

1
χh

βh0

k + 1
. (7.43)

11Here, we explicitly highlight the parametric dependence of the solutions βw and F , as well as the warm plasma
boundary position χw, on the parameter βw0.
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The second term in the expansion (7.41) includes the contribution from the hot ions – it
corresponds to the pressure profile of the warm plasma in the magnetic field induced by
the hot ion current only. The third term, in turn, takes into account the diamagnetic current
of the warm plasma. The non-polynomial logarithmic contribution of the hot ion current
appears in the fourth term of the expansion.

8. Diamagnetic confinement in GDMT

As an application of the constructed theoretical model, we further investigate the
equilibrium of the diamagnetic bubble corresponding to the design parameters of the
GDMT device (Skovorodin et al. 2023). Hydrogen plasma is assumed: Z = μi = 1;
the axial loss constants correspond to GDT (Ivanov & Prikhodko 2017; Skovorodin 2019;
Soldatkina et al. 2020): αE0 = αE = 8; the Coulomb logarithm is set equal to Λie = 15.
Energy, angle and impact parameter of the injection are ENB = 30 keV, ξNB = π/4 and
rNB = 5 cm, respectively, which corresponds to the minimum radius of the hot ions equal
to r̄min � 3.54 cm. The bubble length is estimated from the MHD equilibrium simulations
of GDMT (Khristo & Beklemishev 2022) and is equal to L = 500 cm. The total warm
plasma source intensity is fixed at Wi0 = 5 × 1021 s−1. The magnetic field in the mirrors is
Bm = 200 kG.

We consider the conventional case of the vacuum magnetic field equal to Bv = 10 kG,
as well as the regimes with halved and doubled fields: Bv = 5 kG and Bv = 20 kG. In
all the simulations, the radius of the bubble core is fixed at a = 20 cm, which is the
characteristic expected plasma radius in the GDMT. Then the required total absorbed
injection powers prove to be Qh0 � 6.11 MW, 9.75 MW and 14.93 MW for Bv = 5, 10
and 20 kG, respectively. For convenience, the simulation parameters are listed in table 1,
where the considered regimes are briefly called ‘GDMT05’, ‘GDMT10’ and ‘GDMT20’.

The results of the simulations are shown in figures 4 and 5. Figure 4 shows the radial
profiles of the warm plasma relative pressure, density and temperature outside12 the bubble
core r ≥ a. The radial profiles of the magnetic field, along with the current densities of the
warm plasma and the hot ions, outside the core r ≥ a, are presented in figure 5.

8.1. Analysis of the solutions
(i) For all solutions the relative energy density of the hot ions is significantly greater

than the warm plasma relative pressure (see table 1 and figure 4)

βw0 � βh0 ∼ 1. (8.1)

Thus, it turns out that the energy content of the plasma as well as the diamagnetic
current almost entirely correspond to the hot ions, while the contribution of the warm
plasma is negligible. Since the warm plasma density in this case should be relatively
small, the drag force (5.7) acting on the injected ions appears to be weak as well.
Therefore, this results in the energy being accumulated by the hot component rather
than being transferred to the warm plasma, which is actually consistent with (8.1).

(ii) In table 1, listed are the simulated values of the transition layer thickness for the
warm plasma λw and the hot ions λh, determined from the corresponding current
profiles plotted in figure 5. As expected, the total transition layer thickness λ =
max{λw, λh} is manly determined by the hot component, since the transition layer
for the warm plasma λw proves to be much thinner than that for the hot ions λh.
The thickness of the transition layer for the hot ions naturally turns out to be of

12Inside the bubble core r < a, the warm plasma is isotropic, homogeneous and perfectly conducting, which
corresponds to the magnetic field and the total diamagnetic plasma current being identically zero inside the core (see § 4).
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Quantity Units Regime
GDMT05 GDMT10 GDMT20

Bv kG 5 10 20
Bm kG 200 200 200
Wi0 s−1 5 × 1021 5 × 1021 5 × 1021

Qh0 MW 6.11 9.75 14.93
ENB keV 30 30 30
ξNB

◦ 45 45 45
rNB cm 5 5 5
r̄min cm 3.54 3.54 3.54
L cm 500 500 500
a cm 20 20 20
ρNB cm 5.01 2.50 1.25
λw MHD

a cm 2.92 1.29 0.60
λh cm 7.02 3.76 1.97
λw cm 2.44 1.07 0.46
βw0 % 12.55 3.66 0.99
ni0 cm−3 4.09 × 1013 2.98 × 1013 2.11 × 1013

T0 keV 0.95 1.52 2.33
η‖0

b % 73.5 85.6 92.6

aThickness of the warm plasma transition layer according to MHD equilibrium (Beklemishev 2016):
λw MHD = 7λGD. See the beginning of § 7.
bProportion of the non-adiabatic loss (4.23) in the total axial loss of the warm plasma: η‖0 =
2Φi‖0/Wi0.
TABLE 1. Parameters of the numerical simulations. The thicknesses of transition layers λh and
λw are the widths of the current profiles shown in figure 5. The warm plasma thermodynamic
parameters: relative pressure βw0, density ni0 and temperature T0 are the maxima of the
corresponding quantities shown in figure 4. The parameter η‖0 is found from numerical
simulations.

the order of the Larmor radius of the injected ions in the vacuum magnetic field:
λh ∼ ρNB. At the same time, the warm plasma transition layer thickness proves to be
surprisingly close to the estimate made for MHD equilibrium (Beklemishev 2016):
λw MHD = 7λGD. This effect is probably due to a combination of the following two
factors. On the one hand, the warm plasma transition layer should apparently be
wider in the presence of injected ions, since the characteristic scale of the warm
plasma transverse diffusion proves to be greater in the magnetic field weakened
by the diamagnetism of the hot component. On the other hand, for a fixed warm
plasma source, the lower maximum relative pressure of the warm plasma (8.1) seems
to correspond to a radial pressure drop in a more narrow region. A more clear
explanation of this phenomenon and a proper quantitative estimate of the thickness
λw should be made based on analysis the warm plasma equilibrium equations, which
is planned to be addressed in future work.

(iii) The equilibria presented in figures 4 and 5 are obtained within the thin transition
layer limit λ� a − r̄min (see § 7). For all the solutions found, the expansion
parameter λ/(a − r̄min) proves to be less than unity. However, in the regime
GDMT05 with relatively weak vacuum magnetic field (figure 5a), the expansion
parameter is not too small: λ/(a − r̄min) � 7/20. A proper description of such
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(a)

(b)

(c)

FIGURE 4. Radial profiles of the warm plasma (a) relative pressure, (b) density and
(c) temperature outside the bubble core r ≥ a for the regimes GDMT05 (blue dashed curves),
GDMT10 (black solid curves) and GDMT20 (red dash-dotted curves) specified in table 1.

equilibria should be obtained by accurate numerical modelling that takes into
account the finite thickness of the transition layer.

(iv) To simplify the system of the warm plasma equilibrium equations presented in
§ 7.2, we assume the temperature of the warm plasma to be approximately constant:
T � const. As a result, the temperature profiles determined by the formula (7.35)
actually prove to be relatively flat, but in addition, the corresponding pressure
and density profiles turn out to be identically shaped (see figure 4). It is worth
noting, however, that the approximation of a slowly varying temperature T �
const. is valid in the particular case of the hydrogen plasma with the energy
loss factor αE corresponding to the GDT (Ivanov & Prikhodko 2017; Skovorodin
2019; Soldatkina et al. 2020), i.e. Z = μi = 1 and αE = 8. At the same time, the
nature of energy loss in the diamagnetic confinement mode may differ significantly
from the gas-dynamic regime. In particular, the presence of the non-adiabatic loss
(Chernoshtanov 2020, 2022) could greatly affect both longitudinal and transverse
equilibrium.

(v) In § 6.3, we assume that the injected hot ions release the energy mainly inside the
bubble core. As already mentioned, the warm plasma temperature radial profile turns
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(a)

(b)

(c)

FIGURE 5. Equilibrium radial profiles of the magnetic field (black solid curves), the current
densities of the warm plasma (blue dashed curves) and the hot ions (red dash-dotted curves)
outside the bubble core r ≥ a. Simulation parameters are presented in table 1: (a) GDMT05,
(b) GDMT10 and (c) GDMT20.

out to be almost flat, while the density of the warm plasma ni sharply drops just
beyond the bubble core on the scale of λw (figure 4). In the thin transition layer
approximation λw ≤ λ� a − r̄min, this results in the ion–electron drag νie ∝ niT−3/2

indeed acting mainly inside the core. However, this appears to take place only
when the source of the warm plasma is entirely contained inside the bubble core.
Otherwise, the maximum density of the warm plasma could be located outside the
core, which, apparently, could significantly increase the energy loss.

(vi) The simulations also yield the parameter η‖0 = 2Φi‖0/Wi0 (see table 1), which
represents the total proportion of the non-adiabatic loss (4.23) in the total warm
plasma loss. It can be seen that the warm plasma loss turns out to be almost entirely
non-adiabatic for all the considered regimes

Wi0 ∼ 2Φi‖0, (8.2)

while the loss at the periphery of the bubble core 2Φi‖out = Wi0 − 2Φi‖0 proves to
be negligible: 2Φi‖out � Wi0. One can also observe that the parameter η‖0 grows
with increasing vacuum magnetic field. The reason for this is probably related to
the high energy density of hot ions (8.1). The strong diamagnetism induced by the
hot ions extending beyond the bubble core leads to a considerable weakening of the
magnetic field B in the vicinity of the bubble core r � a. Therefore, the effective
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mirror ratio R = Bm/B inside the thin transition layer a < r < a + λw is greatly
increased compared with the vacuum value R = Bm/Bv. This should eventually
result in the axial loss at the periphery Φi‖out ∼ niumSm being suppressed due to
a decrease in the cross-section of the warm plasma flow in the mirrors Sm ∼ aλw/R.
At the same time, the non-adiabatic loss Φi‖0 ∼ ni0um0aρi0/R, being determined by
the vacuum mirror ratio, R, is not affected by the diamagnetism of the hot ions.

(vii) The warm plasma density ni0 turns out to be considerably lower in the regimes with
a higher temperature of the warm plasma T0 (see figure 4 and table 1). This appears
to be due to the improved confinement resulting from the suppression of the axial
loss in the regimes with a lower warm plasma temperature. When the non-adiabatic
loss dominates, the warm plasma density can be approximately estimated from (8.2)

ni0 ∼ Wi0τi‖0

πa2L
∝ Wi0Bm

a
1
T0
, (8.3)

where

τi‖0 ∼ a
ρi0
τGD ∝ aLBm

1
T0
, (8.4)

is the characteristic time of the non-adiabatic loss. It turns out that the efficiency
of the axial confinement does not depend explicitly on the mirror ratio R, as for
a ‘classical’ GDT τGD ∝ R, but it is enhanced with increasing the absolute value
of the mirror magnetic field Bm. In addition, the warm plasma density ni0 and the
confinement time τi‖0 indeed prove to be greater at a lower warm plasma temperature
T0. The inverse dependence of ni0 on T0 is the result of the non-adiabatic loss (4.23)
being proportional to ρi0vTi0 ∝ T0.

(viii) It can be observed from the simulations (see figure 4 and table 1) that the warm
plasma temperature T0 proves to be higher in the regimes with a stronger vacuum
magnetic field Bv. Indeed, sustaining the diamagnetic confinement equilibrium with
stronger external field Bv (at fixed mirror field Bm, length L and radius a of the
bubble core) requires greater absorbed injection power Qh0, while the increased
heating power Qh0, in turn, should result in a corresponding rise in the equilibrium
temperature of the warm plasma T0. This relation can be clarified by considering the
force balance in the case of beam plasma (8.1)

Πh ∼ ΠM, (8.5)

where

Πh ∼ − Qh0〈Ė 〉
Γ

V
∼ Qh0

νie0πa2L
, ΠM ∼ B2

v

8π
, (8.6a,b)

are the characteristic energy densities of the hot ions and the vacuum magnetic field,
respectively. This expression roughly corresponds to (7.25) in the limit: βh0 → 1,
βw0 → 0 and r̄min/a → 0. Taking into account the estimate (8.3), we obtain the
following relation:

B2
v ∼ 8Qh0

νie0a2L
∝ 1

aLBm
T7/2

0 . (8.7)

Therefore, the temperature of warm plasma indeed proves to increase with the
vacuum magnetic field as T0 ∝ B4/7

v .
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(ix) Having fixed the mirror field Bm, the warm plasma source Wi0, the radius a and the
length L of the bubble core, from the considered above qualitative estimates (8.3)
and (8.7), we get

ni0 ∝ B−4/7
v , T0 ∝ B4/7

v . (8.8a,b)

Given the error due to the corresponding inaccuracy of the estimate (8.2), these
relations agree well with the results of the simulations shown in figure 4 and table 1.

(x) In the present paper, we assume the classical model of transverse transport for the
warm plasma, which corresponds to the Spitzer conductivity (7.28). At the same
time, large gradients of equilibrium parameters, such as the magnetic field and
the warm plasma density, inside the transition layer of the diamagnetic bubble
could probably lead to non-classical transport, which corresponds to a much
greater diffusion coefficient. In turn, a significant modification of the transverse
transport could apparently have a qualitative impact on the equilibrium of the warm
plasma. However, the issue concerning non-classical diffusion in the diamagnetic
confinement mode remains poorly studied so far.

(xi) The model of the warm plasma equilibrium, constructed in § 4 within the framework
of MHD, assumes isotropic pressure and gas-dynamic axial loss. This is known to
correspond to the collisional regime with a filled loss cone. In the case of GDT
(Ivanov & Prikhodko 2017), such a regime is realized when the gas-dynamic time
τGD ∼ RL/vTi significantly exceeds the kinetic time τkin ∼ τii lnR, where τii is the
mean free time of ion–ion Coulomb collisions (Trubnikov 1965). However, when
considering a diamagnetic trap, one should also take into account the effective
increase in the mirror ratio R ≥ R, which results from the magnetic field weakening
induced by the strong diamagnetic current of the high-pressure plasma. In addition,
the exotic conditions of the diamagnetic confinement mode are likely to lead to
anomalous collisionality with an effective mean free time τeff, which typically proves
to be considerably shorter than the ‘classical’ time τii. Thus, the warm plasma loss
cone in the transition layer of a diamagnetic bubble can be considered filled when

LR

vTi
� τeff ln R. (8.9)

This condition seems to be always satisfied at least in some neighbourhood of
the bubble core r � a, where the magnetic field approaches zero B → 0 and,
accordingly, the effective mirror ratio is greatly increased R → +∞. At the
periphery of the warm plasma r � a + λw, the loss cone may turn out to be only
partially filled (LR/vTi ∼ τeff ln R) or even empty (LR/vTi � τeff ln R), depending
on the specific value of the anomalous mean free time τeff.

9. Summary

In the present work, we have constructed a theoretical model of plasma equilibrium
in the diamagnetic confinement regime in an axisymmetric mirror device with neutral
beam injection. To describe the equilibrium of the background warm plasma, we use the
MHD equations of mass and energy conservation, as well as the force balance equation.
Transverse transport is considered to be due to resistive diffusion, and the axial loss
includes both the ‘classical’ gas-dynamic loss and the non-adiabatic loss (Chernoshtanov
2020, 2022) specific to the diamagnetic bubble. This model does not take into account
the effects of the warm plasma rotation and inhomogeneity of electrostatic potential. The
equilibrium of the hot ions resulting from the neutral beam injection is described by the
distribution function, which is found from the corresponding kinetic equation. It takes into
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account the warm electron drag force acting on the hot ions, while the angular scattering
due to Coulomb collisions is neglected. The chaotic nature of the dynamics of ions in the
diamagnetic bubble is taken into consideration as well. Solving the equilibrium equations
yields the equilibrium profiles of the warm plasma density, temperature and pressure;
the hot ion current density is obtained from the corresponding distribution function; the
equilibrium magnetic field is determined by Maxwell’s equations.

Applying the constructed theoretical model, we have considered the case of the
cylindrical core of the diamagnetic bubble. In this case, the equilibrium model is reduced
to a simpler one-dimensional problem. To further simplify the equations, we have assumed
the approximation of a thin transition layer. This allows the hot ion current density and the
magnetic field to be explicitly expressed in terms of the magnetic flux. Finally, it has
been found that the radial profile of the warm plasma typically turns out to be almost
isothermal, which enables the system of two equilibrium equations for the warm plasma
to be approximately reduced to a single one. For the resulting equation of the simplified
equilibrium model, we have constructed a numerical solution algorithm that includes a
variation of the shooting method in combination with the Runge–Kutta schemes.

The equilibria of the diamagnetic bubble have been found for the parameters of the
GDMT device (Skovorodin et al. 2023). Three cases corresponding to different vacuum
magnetic fields in the central plane, Bv = 5, 10, 20 kG, have been considered. All the
other external parameters are fixed except the absorbed injection power, which is adjusted
so that the radius of the bubble core remains the same a = 20 cm. Equilibrium profiles
of the warm plasma density, temperature and pressure have been found. In addition, the
radial distributions of the magnetic field and the diamagnetic current densities of the warm
plasma and the hot ions have been constructed.

It has been found that, for all the solutions obtained, the main contribution to the
plasma energy content and the diamagnetism comes from the hot ions. This corresponds
to a negligible relative pressure of the warm plasma βw0 � βh0 ∼ 1. In addition, the
non-adiabatic loss turns out to be dominant in all considered regimes, and its fraction
in total loss is greater for stronger vacuum magnetic field. This seems to be due to the
warm plasma in the transition layer being confined in the magnetic field weakened by
the hot ion diamagnetism, which should lead to an increased mirror ratio and improved
axial confinement. The transition layer of the diamagnetic bubble turns out to be quite
thin in the regimes with the stronger vacuum fields, Bv = 10, 20 kG. However, in the case
of the weak external field, Bv = 5 kG, the thickness of the transition layer proves to be
not too small, which may correspond to a reduced accuracy of the approximate solution.
Qualitative estimates of the warm plasma density and the temperature of the warm plasma
have also been obtained.

9.1. Future work
This work should be considered as a basis for further expansion of the theoretical model
constructed here. In the near future, the equilibrium model presented in this paper will
be used for a detailed investigation of the diamagnetic confinement regime in GDMT. In
particular, it is planned to study the dependence of the bubble equilibrium on external
conditions, such as heating power, vacuum magnetic configuration, warm plasma source,
etc. In addition, the finite absorption efficiency of the injected neutral beam can be taken
into account. The constructed model can also be refined by eliminating the thin transition
layer approximation; this, however, would require more complex numerical simulations.
In perspective, it is also planned to include in the model the effects of the warm plasma
rotation and the inhomogeneity of the electrostatic potential. In the long term, collisional
angular scattering of the hot ions can also be taken into account.
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Appendix A. Non-adiabatic loss

By definition, the ion flux through the mirror throat at z = zm is

Φi‖0 =
(∫

dS⊥

∫∫∫
vz>0

d3v vzfi

)∣∣∣∣
z=zm

= ni0√
2π

(
mi

T0

)3/2 ∫ +∞

0
r dr

∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

0
vz dvz

×
[

e−E/T0Θ

(
a − |P|√

2miE
)]∣∣∣∣

z=zm

, (A1)

where z is directed along the magnetic field in the mirror throat, and we also substituted
the warm ion distribution function (4.22). Taking into account the definitions of P and E
given by (2.1a,b), we arrive at

Φi‖0 = 2ni0T−3/2
0√

2πmi

∫ +∞

0
dr

∫ +∞

−∞
dP

∫ +∞

(P−Ψm)
2/2mir2

dE
√

2E
mi

− (P − Ψm)
2

m2
i r2

× e−E/T0Θ

(
a − |P|√

2miE
)
, (A2)

where

Ψm = ZeBm

2c
r2, (A3)

is the magnetic flux in the mirror. It is convenient to further use the following
dimensionless variables:

η = E
T0
, ζ = P

a
√

2miT0
, ξ = r2

a2
. (A4a–c)
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Then, the integral takes the form

I (γ ) def= 2Φi‖0

ni0vTi0πa2

=
(

2
π

)3/2 ∫ +∞

0
dξ

∫ +∞

−∞
dζ

∫ +∞

(ζ−γ ξ)2/ξ
dη e−η 1

ξ

√
ηξ − (ζ − γ ξ)2Θ

(
1 − |ζ |√

η

)
,

(A5)

where we introduced the constant

γ = R
2
√

2

a
ρi0
, (A6)

and vTi0 = √
T0/mi is the warm ion thermal velocity, ρi0 = vTi0mic/eZBv is the

characteristic warm ion Larmor radius in the vacuum field Bv, R = Bm/Bv is the vacuum
mirror ratio.

Integration over ξ , ζ , and η is convenient to rearrange as follows:

I (γ ) =
(

2
π

)3/2 ∫ +∞

0
dη e−η

∫ √
η

− min{√
η,η/4γ}

dζ
∫ x+

x−
dξ
γ

ξ

√
(ξ+ − ξ) (ξ − ξ−), (A7)

where

ξ± = 2ζγ + η ± √
4ζγ η + η2

2γ 2
, (A8)

and ξ+ > ξ− > 0. Integrating over ξ yields

∫ ξ+

ξ−
dξ
γ

ξ

√
(ξ+ − ξ) (ξ − ξ−) = πγ

2

(
ξ+ + ξ− − 2

√
ξ+ξ−

)
= π

(
ζ − |ζ | + η

2γ

)
.

(A9)
After integration over ζ we get

I (γ ) =
√

2
π

[
1
γ

∫ +∞

0

(
η3/2 + η2

8γ

)
e−η dη −

∫ +∞

16γ 2

(
2η − η3/2

γ
+ η2

8γ 2

)
e−η dη

]
.

(A10)
In the limit γ � 1 the second term in the square brackets proves to be exponentially small.
Then we obtain the asymptotic behaviour of the integral I(γ )

I (γ ) ∼ 3
√

2
4γ

(
1 + 1

3
√

πγ

)
+ O

(
γ −2e−16γ 2

)
∼ 3

√
2

4γ
+ O

(
γ −2) . (A11)

Restoring the dimensional values, we finally arrive at

Φi‖0 � 3
4

ni0vTi0
2πaρi0

R . (A12)
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