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Wall turbulence consists of various sizes of vortical structures that induce flow circulation
around a wide range of closed Eulerian loops. Here we investigate the multiscale properties
of circulation around such loops in statistically homogeneous planes parallel to the wall.
Using a high-resolution direct numerical simulation database of turbulent channels at
Reynolds numbers of Reτ = 180, 550, 1000 and 5200, circulation statistics are obtained
in planes at different wall-normal heights. Intermittency of circulation in the planes of
the outer flow (y+ � 0.1Reτ ) takes the form of universal bifractality as in homogeneous
and isotropic turbulence. The bifractal character simplifies to space-filling character close
to the wall, with scaling exponents that are linear in the moment order, and lower than
those given by the Kolmogorov paradigm. The probability density functions of circulation
are long-tailed in the outer bifractal region, with evidence showing their invariance with
respect to the loop aspect ratio, while those in the inner region are closely Gaussian. The
unifractality near the wall implies that the circulation there is not intermittent in character.
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1. Introduction
The most important diagnostic quantity for characterising the inertial-range intermittency
in turbulence is the velocity increment over a separation distance contained in the inertial
range (IR). This practice has been used for more than 80 years since Kolmogorov’s
pioneering work of 1941 (K41 henceforth), and has produced a quantitative understanding
of the scaling exponents and their multifractal modelling (see e.g. Frisch 1995;
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Sreenivasan & Antonia 1997). Years later, Migdal (1994, 2023) proposed that circulation
around Eulerian loops of various sizes makes a more natural connection to fluid
mechanics. Specifically, he considered the circulation around a loop of area A defined as

ΓA =
∮

C
u′ · dl =

∫∫
A

ω · ndA, (1.1)

where C is the boundary of a loop of area A, u′ is the fluctuating velocity, dl is an
elemental length along C , ω = ∇ × u′ is the fluctuating vorticity, and ndA is an elemental
area of A in the direction of the unit normal n. It is trivial to show that the circulation mo-
ments scale as 〈|ΓA|p〉 ∼ A2p/3 in Kolmogorov’s 1941 paradigm. However, intermittency
introduces deviations from this scaling, requiring a more general power-law form:

〈|ΓA|p〉 ∼ Aζp/2 ∼ r ζp , (1.2)

where r ∼ √
A is the linear dimension of the loop, p is an integer, and ζp is the scaling

exponents. Absolute values are used in (1.2) because odd moments of ΓA cancel out
due to the symmetry of the probability density function (PDF). Migdal (1994) proposed
the area rule that the tails of the PDFs of ΓA depend only on the minimal area of the
loop C in IR, not on the shape of the loop. Early work (Sreenivasan et al. 1995; Cao
et al. 1996; Benzi et al. 1997) attempted to make connections with the theory, but it was
hampered by the low Reynolds numbers of the flows. The stimulating work of Iyer et al.
(2019) in homogeneous and isotropic turbulence (HIT) at high Reynolds numbers has
shown that a concise bifractal relation holds for ζp, thus revealing considerable simplicity
in the intermittent structure of circulation. This result is plausible because circulation,
being the area integral of vorticity, would smooth out extreme local fluctuations of
velocity gradients. Iyer et al. (2021) also confirmed the area rule for the PDFs. Since
then, Müller et al. (2021) and Polanco et al. (2021) demonstrated that the circulation in
quantum turbulence is also a bifractal, linking the intermittency of quantum and classical
turbulence. Similarly, Zhu et al. (2023) confirmed the bifractality of circulation in the IR
of the inverse energy cascade of quasi-two-dimensional turbulence experiments. Müller &
Krstulovic (2024) compared this result with those in incompressible quantum turbulence
and found the equivalence of circulation intermittency in the two instances.

These studies have focused primarily on HIT. The early investigations of circulation
by Sreenivasan et al. (1995) were made in wakes, and those of Benzi et al. (1997) in
periodically varying shear flows, but, again, the Reynolds number of these studies were
small, as was the shear. Recently, Mugundhan & Thoroddsen (2023) and Alhareth et al.
(2024) examined the evolution of circulation in turbulent flow that passes through an
experimental contraction subjected to mean strain, and found an approximate bifractality
of circulation, corresponding to the results of Iyer et al. (2019). However, in none of these
flows was the variation of the mean shear strong, and the viscosity effects as central, as in
turbulent channel flows. Filling this gap is the central purpose of this paper.

Here, we study the statistics of circulation in wall-parallel planes of turbulent channel
flows. We have three particular reasons for these studies. First, wall turbulence is
characterised by a rich set of coherent structures (Kline et al. 1967; Adrian 2000; Jimenez
2018) spanning from small to large to very large scales. These structures, particularly
vortical structures in different orientations, can produce an effect on circulation, deserving
a quantitative investigation of their multiscale properties. Second, with increasing height
from the wall, the shear and anisotropic effects tend to vanish, and hence the circulation
in the homogeneous centre plane may be expected to be similar to that in HIT. In other
words, it would be interesting to examine how the fractality of circulation statistics varies
with the height. Finally, the Reynolds number variation of circulation properties enriches
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Reτ Lx/δ, Lz/δ Nx , Ny, Nz �x/η �z/η �y/η Lx/η Lz/η

180 4π , 2π 256, 128, 128 2.3–6.2 2.3–6.2 0.3–1.6 585–1589 293–794
550 4π , 2π 512, 256, 256 2.6–10.6 2.6–10.6 0.5–1.9 1338–5437 669–2718
1000 8π , 3π 2048, 512, 1536 2.6–10.3 1.3–5.2 0.002–1.5 5363–21181 2681–10590
5200 8π , 3π 10240, 1536, 7680 1.8–11.1 0.9–5.5 0.06–1.7 18635–113635 6988–42613

Table 1. Discretisation of DNS of Navier–Stokes equation. Cases of Reτ = 180 and 550 are our current
simulations, and Reτ = 1000 and 5200 are simulations by Lee & Moser (2015) from Johns Hopkins Turbulence
Database. Here, Nx , Ny and Nz are the number of grids in the corresponding directions. Note that �x and �z
are uniform grids, while �y stretches in the wall-normal direction in terms of η, which is the local Kolmogorov
length scale.
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Figure 1. (a) Sketch of the computational domain for channel where Lx and Lz are the streamwise and
spanwise sizes, respectively. (b) An illustration of the circulation around a rectangular loop with side lengths
rx and rz in a wall-parallel plane, top-left for y+ = Reτ and bottom-right for y+ = 5 (superscript ‘+’ denotes
normalisation in wall units). The panels show contours of the normalised wall-normal vorticity ωy ey in the
domain of 2000η in length and 1000η in width using the DNS data at Reτ = 5200. Here, ωrms is the root mean
square of ωy . Spot-like structures appear in the centre plane while streak-like structures are visible near the
wall.

the understanding of Reynolds number similarity and offers insights for developing
eddy-based turbulent models.

2. Data for analysis
The direct numericalsimulation (DNS) data for turbulent channels used in this paper are
for Reτ = 180, 550, 1000 and 5200. Here, Reτ = uτ δ/ν, with uτ = √

τw/ρ as friction
velocity, τw the mean wall shear stress, ρ the density, ν the viscosity and δ the half-height
of the channel. Our data for the first two Reynolds numbers have been validated in Xie
et al. (2021). For Reτ = 1000 and 5200, the data have been simulated by Lee & Moser
(2015), available from the Johns Hopkins Turbulence Database (Li et al. 2008).

Table 1 shows the grid spacings in terms of the Kolmogorov length scale η =
(ν3/〈ε〉)1/4, where 〈ε〉 = 〈ν∂ j u′

i∂ j u′
i 〉 is the local turbulent dissipation rate. Here and

elsewhere, 〈·〉 denotes the ensemble average. By nominal standards, this resolution ensures
that small scales are resolved. As the dissipation decreases with the wall-normal distance
y, η increases from its minimum at the wall to its maximum at the centre, which is also
why the grid spacings normalised by η vary from the wall to the centre.

Fully developed turbulent channels are homogeneous in wall-parallel x–z planes
(figure 1a), so that circulation in those planes is the focus here. This also enables a potential
comparison with the results obtained from HIT. A sketch of the circulation around a
rectangular loop in the x–z plane is shown in figure 1(b) for y+ = Reτ , i.e. the centre
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plane, and for y+ = 5, a plane in the viscous sublayer. The former plane features vanishing
mean shear with blob-like vorticity, whereas the latter experiences strong mean shear with
dominant coherent structures, such as velocity streaks (Kline et al. 1967). We thus expect
a notable difference in circulation characteristics for planes with increasing wall-normal
distance.

Experiments typically use loop integration as they provide more accurate velocity
measurements than velocity gradients (Sreenivasan et al. 1995; Mugundhan & Thoroddsen
2023), but we calculate the circulation from DNS data via vorticity integration in (1.1). The
integrated area is denoted as A = rx × rz and ωy ey indicates the wall-normal vorticity.
Both methods were attempted in Iyer et al. (2021), obtaining complete equivalence except
for loops with side length of η. Square loops are first considered, i.e. rx = rz as in
figure 1(b), while the influence of loop shape will be discussed in § 3. As shown in table 1,
the sampling area for averaging at Reτ = 5200 spans from 60η2 to 108η2 in the centre
and from 2η2 to 109η2 near the wall, thus offering a wide scale range for examining
scaling properties. For Reτ = 180, the sampling area extends from 5η2 to 105η2 in the
centre; although smaller compared with Reτ = 5200, it is sufficient to verify the scaling
by extended self-similarity (ESS) (Benzi et al. 1997), as described in § 4.

3. Scaling in the IR for different wall-normal heights
We first focus on the case of Reτ = 5200 for which an IR is clearly present. To
capture circulation properties at different shear levels, seven heights are selected, i.e.
y+ = 5200 (Reτ ), 3900 (0.75Reτ ), 1300 (0.25Reτ ), 520 (0.1Reτ ), 70, 15 and 5, marked
by different symbols in figures 2(a, b). In the outer region (including the so-called
logarithmic layer and the core), where y+ � 0.1Reτ , the mean shear is negligible; while
in the inner region, the flow is shear dominated (figure 2b) and highly anisotropic. The
current dimensionless parameter S+ = Sν/u2

τ = dU+/dy+ is equivalent to the definition
S∗ = Sk/ε, which has been used, among others, most recently by Alhareth et al. (2024),
if one adopts the classical wall scaling for the kinetic energy to be k ∼ u2

τ , and for the
dissipation rate to be ε ∼ u4

τ /ν. Here, S = dU/dy denotes the mean shear rate, and U is
the streamwise mean velocity. According to the DNS data used here, we find S∗ > 20 for
y+ < 20, while S∗ < 10 above the buffer layer.

The circulation variances at these selected heights are displayed in figures 2(c–f ), all
exhibiting unambiguous scaling. The insets further show the local slopes, whose plateau
region extends for approximately two decades of IR in the loop area. In particular for
the four heights in the outer region (figure 2c), all curves collapse on each other and
closely correspond to the Kolmogorov scaling of A4/3, quite similar to that in HIT.
This concurrence indicates that the mean shear effect is, in fact, negligible for the
outer circulation. In contrast, closer to the wall, the scaling exponents are not universal,
gradually decreasing with smaller y+: A0.93 at y+ = 70, A0.87 at y+ = 15 and A0.81 at
y+ = 5.

By extending the findings of figure 2 to higher orders, we can assess intermittency
effects under varying shear levels. High-order moments are presented in figures 3(a) and
3(b) for the two planes of y+ = Reτ and y+ = 5, respectively. The best power-laws in the
IR, marked by solid lines, are in close agreement with the data. We repeat this procedure
for all the selected planes and collect in figure 4 the scaling exponents of circulation
moments for orders p = 1−10, with statistical uncertainties (obtained using the student’s
t-distribution with 95 % confidence intervals) subsumed by symbol thicknesses.

Two notable observations should be made about figure 4. First, in the inner layer
(y+ � 70) the data for all moment orders are best fitted by straight lines ζp = ky p without
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Figure 2. (a) Mean velocity profile and (b) mean shear distribution for Reτ = 5200, with dots highlighting the
selected heights. The discrete points marked on the profiles correspond to planes on which circulation statistics
are presented. Their colours carry over to figure 3. (c–f ) Second-order circulation moments (or the variance
of circulation) as a function of the loop area A/η2, with line colours corresponding to the selected heights in
(a) and (b). Inset shows the corresponding local exponents, with dash-dotted line indicating the scaling in the
IR for each case.

intercepts, where ky increases with wall distance. This property implies that circulation
in the inner planes resides on space-filling unifractal sets. Not surprisingly, the slopes
of unifractality ky in figure 4 are identical to the scaling exponents of their variance
〈|ΓA|2〉 ∼ Aky in figure 2.

The second observation is that circulation in outer planes (y+ � 0.1Reτ ) exhibits a
bifractal behaviour. A single linear relation with zero intercept cannot be fitted to the data
but can be approximated well by two straight lines, one for p < 2, the other for p � 2. The
former is consistent with K41, while the latter can be fitted by the relation

ζp = hp + (2 − D), (3.1)

where h is the Hölder exponent representing the degree of singularity and D represents
the corresponding fractal dimension. Note that the Hölder exponent quantifies degree
of local singularity of a relevant physical quantity, with the smaller h signifying a
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Figure 3. Determination of power-law scaling exponents by fitting circulation moments within the IR
at (a) y+ = Reτ and (b) y+ = 5. Symbols are simulation data at Reτ = 5200, and solid lines (colours
corresponding to the positions depicted in figures 2a, b) are the fitting results.
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Figure 4. The IR scaling exponents ζp as a function of moment order p at different heights for Reτ = 5200.
The long-dashed line is the K41 prediction, ζp = 4p/3. The solid line indicates the unifractal model for results
above the log layer, while the short-dashed lines passing through the origin indicate unifractality below the log
layer. Symbols are consistent with figures 2(a,b).

stronger singularity, see e.g. Frisch (1995). Impressively, both h = 1.05 and the dimension
D = 1.38 are invariant with respect to the wall-normal height in the outer region,
suggesting the universality of circulation in this region.

In summary, circulation in the outer region resides on a single bifractal set with known
Hölder exponent as well as dimension, similar to HIT. On the other hand, circulation in the
inner layer resides in sub-K41 unifractal sets whose dimension varies with the height of
the wall. The transition to the outer bifractal behaviour appears quite gradual. The uniform
bifractal behaviour in the outer region compared with the unifractality in the inner region
highlights the influence on flow structures from different levels of mean shear.

We now turn to the PDFs of circulation. Clearly, as shown in figure 5(a), the PDFs are
essentially Gaussian in the inner region. This is also reflected in the circulation flatness
F(A) = 〈Γ 4

A〉/〈Γ 2
A〉2, which is approximately 3 in the scaling region represented by the

shaded region in figure 5(c). Based on the Gaussian PDF, one readily has the relation
between pth order moments and the variance: 〈|ΓA|p〉 ∝ 〈|ΓA|2〉p/2. Because 〈|ΓA|2〉 ∼
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IRs. (c) Circulation flatness F(A) at different heights as a function of loop size for Reτ = 5200; dashed line
indicates the Gaussian flatness of 3. The grey shading highlights the iR A/δ2 ∼ 10−3 to 10−1. Symbols and
line colours are consistent with figures 2(a)–2(b).

Aky has been validated in figure 2, we have 〈|ΓA|p〉 ∼ Aky p/2, and thus ζp = ky p. In
contrast, the PDFs in the outer region depart strongly from the Gaussian distribution,
with approximately stretched exponential functions (figure 5b), so a bifractal intermittency
appears. The difference between inner and outer regions could be attributed to viscous
effect, as it can damp out extreme events and suppress intermittency, leading to Gaussian
PDFs near the wall. Also note in figure 5(a) the non-monotonic PDFs at y+ = 5, 15
and 70. These might be due to the non-monotonic variation of the root mean square
of the streamwise velocity fluctuation u′

rms , which has its maximum at y+ = 15. Such
a maximum corresponds to prominent velocity streaks, which are induced by wall-
normal motions (e.g. sweeps and ejections) of streamwise vortices, so that circulation in
wall-parallel planes is less intense and hence has a narrower PDF at y+ = 15.

The data considered so far are for square loops. We now explore the impact of the
aspect ratio of rectangular loops to assess the area rule, which states that the circulation
properties depend only on the loop area (Migdal 1994). This rule was verified conclusively
by Iyer et al. (2019, 2021) in HIT at high Reynolds numbers, and somewhat tentatively
because of the low Reynolds numbers by Cao et al. (1996) in HIT and by Benzi et al.
(1997) in shear flows. For the present case, figure 6(a) shows the PDFs of ΓA for six
rectangular loops with the same area A = 1908η2, but varying aspect ratios rx : ry from
1 : 1 to 9 : 1. The PDFs collapse well when both sides of the rectangle lie within the IR but,
as expected, deviations occur when one side of the loop extends outside the IR (for loops
with rx/η > 100). Furthermore, figure 6(b) shows the circulation variance as a function
of area for two different aspect ratios, that is, rx : ry = 1 : 1 and 1 : 2. In general, the two
curves collapse well with each other, particularly within the IR (A/η2 � 104). Indeed,
as shown in the inset of figure 6(b), the differences between the two data sets are less
than 2 %. These plots provide clear evidence that circulation properties depend only on the
loop area instead of its shape. This is an important conclusion as it suggests the existence of
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Figure 6. (a) Normalised probability density function of normalised circulation around closed loops with a
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relative difference for data for the two loop ratios; it is close to unity shown by the dashed line.

dynamical invariance with respect to variously shaped vortical structures such as hairpins,
horseshoes and vortex-packets.

4. Extended self-similarity at moderate Reynolds numbers
We now investigate whether the bifractality of the circulation in the centre plane persists
for lower Reynolds numbers. The circulation moments are shown in figure 7(a), with
the flatness at different Reynolds numbers shown in figure 7(b), and the relative scaling
exponents shown in figure 7(c). Several points are made below.

First, from the bottom-right inset of figure 7(a), there is no clear IR for Reτ � 1000.
But ESS (Benzi et al. 1997) extends the scaling regime, i.e. 〈|ΓA|p〉1/p versus 〈|ΓA|2〉,
as shown in the main graph of figure 7(a) for Reτ = 550. The extended scaling range
enables a robust determination of the relative scaling exponents as the power law over
several decades of the new abscissa. The least-square fit by a power law achieves errors
within 3 % over four decades of 〈|ΓA|2〉, shown in the top-left inset of figure 7(a). We have
also examined the ESS scaling for Reτ = 5200, which is closely in agreement with direct
measurement in the IR, thus validating the reliability of ESS.

Second, we note that the ESS of Reτ = 180 and 550 are closer to the slope of K41
compared with higher Reτ , whose explanations could be found in figure 7(b). That is, for
small Reτ , the viscous effect is stronger, and the flatness is closer to the Gaussian value
F(A) = 3, and thus the intermittency of circulation is weaker. However, compared with
the Gaussian value, there are still deviations in the IR, e.g. F(A) ≈ 4.5 at A/η2 ∼ 102, so
bifractality is maintained even for Reτ = 180 and 550.

Finally, the last point of the previous paragraph is expanded here. The relative scaling
exponents shown in figure 7(c) depart from the K41 paradigm ζp/ζ2 = p/2 for high
order p, where ζ2 is the scaling exponents for order 2. Similar to the linear relation of
(3.1), the relative exponents for p > 2 can be fitted by the straight line

ζp/ζ2 = [hp + (2 − D)]/ζ2, (4.1)

where ζ2 = 8/3 by taking K41’s scaling as a common normalisation (it does not
necessarily mean that K41 is valid for low Reτ ). For Reτ = 1000 and 5200, the data
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Figure 7. (a) The ESS plot of 〈|ΓA|p〉1/p versus 〈|ΓA|2〉 at the channel centre for Reτ = 550. Symbols are data,
and lines are the power-law fits. The top-left inset shows the relative difference between the fits and data; the
bottom-right inset shows the centre-plane circulation variance for Reτ = 180, 550, 1000 and 5200 (from top to
bottom), with the dash-dotted lines representing the K41’s scaling. (b) Circulation flatness at the channel centre
for all Reτ cases (symbols) compared with the Gaussian value 3 (dashed line). (c) The ESS scaling exponents
ζp/ζ2 at the channel centre for all Reτ . The dashed line is K41, and the solid lines are the monofractal fits. Data
of three-dimensional HIT (Iyer et al. 2019), quantum turbulence (Müller et al. 2021) and quasi-two-dimensional
turbulence (Zhu et al. 2023) are also included for comparison.

collapse with the same h = 1.05 and D = 1.38 as shown in figure 4, indicating an
asymptotical Reτ -invariance. For Reτ = 180 and 550, they are higher than those of Reτ �
1000 with h = 1.18 and D = 1.54, closer to the observation of HIT (Iyer et al. 2019),
quasi-two-dimensional turbulence (Zhu et al. 2023) and quantum turbulence (Polanco
et al. 2021; Müller & Krstulovic 2024). Therefore, the bifractality of circulation is a
general property of turbulence despite differences in geometries and Reynolds numbers
of turbulent structures.

Note that for lower Reynolds numbers (Reτ ≤ 1000), the verification of area rule is not
performed here, as the IR has not been well developed. Also, in planes that are not parallel
to the wall, due to the inhomogeneous and anisotropic effect, the shape and orientation of
Eulerian loops may affect the statistics of circulation and deserve future studies.

5. Conclusion
We have demonstrated that circulation in wall-parallel planes of wall turbulence is a
bifractal as long as the height is above the log layer, irrespective of the Reynolds number;
this is in agreement with the findings of Iyer et al. (2019) in HIT. Below the log layer,
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the bifractality diminishes, transitioning to a space-filling behaviour with a scaling
exponent lower than the K41 prediction. In particular, the bifractal parameters in the outer
region are essentially independent of the height, suggesting a uniform geometric feature
of wall-normal vorticity, and the area rule is validated for rectangle loops demonstrating
invariant circulation statistics with respect to the loop aspect ratio. Near the wall,
circulation PDF in the IR shows a Gaussian distribution compared with the stretched tails
of the PDF of outer flow, consistent with the difference between inner unifractality and
outer bifractality.

Several intriguing questions arise from this work that warrant further exploration.
(i) As we have seen, a transition occurs between the non-intermittent scaling near the
wall and the bifractality in the outer region. Determining more precise details of this
transition and examining the corresponding flow patterns and properties could enhance
our understanding of intermittency in wall turbulence. (ii) While in HIT and quantum
turbulence, connections between circulation and vortical structures are well studied
(Polanco et al. 2021; Moriconi et al. 2022), they remain unexplored in wall flows, and
it is unclear why ζp deviates from K41 at p = 3. (iii) It would be very interesting to detect
the circulation statistics in x–y and y–z planes, which contain information of spanwise
and streamwise vorticity and are expected to provide quantitative insights into near-wall
vortex structures. They will not have the advantage of homogeneity as for wall-parallel
planes, so the boxes on which to compute the circulation have to be guided by our sense of
the physics of the vertical structure of the channel flow. (iv) Finally, the relative simplicity
of the scaling properties of circulation, in contrast to the multifractal nature of velocity
increments, cannot be overemphasised.
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