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Abstract We prove the existence and uniqueness of maximizing measures for various classes of con-
tinuous integrands on metrizable (non-compact) spaces and close subsets of Borel probability measures.
We apply these results to various dynamical contexts, especially to hyperbolic mappings of the form
fλ(z) = λez , λ �= 0, and associated canonical maps Fλ of an infinite cylinder. It is then shown that,
for all hyperbolic maps Fλ, all dynamically maximizing measures have compact supports and, for all
0+-potentials φ, the set of (weak) limit points of equilibrium states of potentials tφ, t ↗ +∞, is non-
empty and consists of dynamically maximizing measures.
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1. Introduction

In this paper we deal with the general problem of the existence and uniqueness of
measures maximizing integrals of certain continuous functions ζ, which we call escap-
ing to −∞, defined on some metrizable spaces. The significance of such measures in a
dynamical context is explained well in [2–4]. The setting of the first part of our paper
does not require any dynamics. In fact, we fix a closed set Ω of Borel probability mea-
sures (note that if the referenced metrizable space J is not compact, then such a set does
not have to be compact either) and we look for measures in Ω that maximize integrals
of ζ. Obviously, if the space J is compact, then maximizing measures always exist. In a
non-compact case this problem becomes critical. We solve it positively in § 4 for all con-
tinuous potentials escaping to −∞ under mild assumptions on the set Ω of considered
measures. Section 5 contains auxiliary results (interesting in themselves) from topology
and measure theory. In § 6 we solve the problem of uniqueness of maximizing measures
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of potentials escaping to −∞. This is a delicate problem even in the best-understood
dynamical context case of subshifts of finite type, since one can very easily construct
potentials depending only on finitely many coordinates for which this uniqueness fails.
Developing the approach from [2,3], which in our case meets a different type of technical
difficulty, we solve the former problem for Gδ dense subsets in some naturally emerging
metric subspaces of the space of all continuous functions. Section 7 contains straightfor-
ward dynamical consequences of the general results proved in the previous sections. In
the last section, dealing, except at its very beginning, exclusively with hyperbolic expo-
nential functions and a natural subclass (1+-tame) of Hölder continuous potentials, we
undertake an approach stemming from thermodynamic formalism. First we show that
the Gibbs measures µφ of such potentials φ proven to exist in [8] (cf. [10] for the class
of potentials of the form z �→ −t Re z (t > 1)) turn out to be equilibrium states for φ.
We then demonstrate that the family {µtφ}t>1 is tight when t ↗ +∞, and that all its
limit points are dynamically maximizing measures for φ. Refining our estimates, as our
last result, we prove that all dynamically maximizing measures have compact supports.

2. Weak convergence and tightness

Let X be a metrizable topological space. We denote by C(X) the space of all real-valued
continuous functions defined on X, and by Cb(X) its subspace of bounded functions.
We denote by M(X) the space of all Borel probability measures on X endowed with
the topology of weak convergence. Recall that a sequence {µn}∞

n=1 ⊂ M(X) converges
weakly to a measure µ ∈ M(X) if and only if

lim
n→∞

∫
g dµn =

∫
g dµ

for every function g ∈ Cb(X). A family F ⊂ M(X) is said to be tight if and only if for
every ε > 0 there exists a compact set F ⊂ X such that µ(X \ F ) � ε for all µ ∈ F .
Note that if X is compact, then every family F ⊂ M(X) is obviously tight. We will,
however, be preoccupied mostly by metric spaces which are not necessarily compact, and
the concept of tightness is important to us because of the following well-known fact (see,
for example, [1]).

Theorem 2.1 (Prokhorov). If X is a Polish (complete metrizable and separable)
space, then every tight family of measures from M(X) is a pre-compact subset of M(X).

Since we will deal with several topologies on subsets of M(X), we will call any closed or
compact subset of M(X) (endowed with the weak convergence topology) weakly closed
or weakly compact.

3. Functions escaping to −∞

Let J be a metrizable topological space. A continuous function ζ : J → R is said to
escape to −∞ provided that, for every t ∈ R, there exists a compact set F ⊂ J such that
ζ(J \ F ) ⊂ (−∞, t). We then say that ζ ∈ C−∞(J). We shall prove the following easy
but interesting fact.
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Proposition 3.1. If J is a metrizable space, ζ ∈ C−∞(J), then, for every t ∈ R, the
set ζ−1([t, +∞)) is compact.

Proof. Suppose that ζ ∈ C−∞(J) and fix t ∈ R. Then there exists a compact set
F ⊂ J such that ζ(J \ F ) ⊂ (−∞, t). So, ζ−1([t, +∞)) ⊂ F and, since ζ−1([t, +∞)) is
closed, we conclude that this set is compact. In order to prove the converse, suppose that
the right-hand side of our equivalence is true and fix s ∈ R. Then ζ(J \ ζ−1([s,+∞))) =
ζ(ζ−1((−∞, s))) ⊂ (−∞, s) and, as ζ−1([s,+∞)) is compact, we are done. �

Proposition 3.2. If J is a metrizable space and C−∞(J) �= ∅, then J is a locally
compact σ-compact Polish space.

Proof. Let x ∈ J . Since x ∈ ζ−1((ζ(x) − 1, +∞)), ζ−1((ζ(x) − 1, +∞)) ⊂ J is an
open set, and ζ−1((ζ(x)−1, +∞)) ⊂ ζ−1([ζ(x)−1, +∞)), where the latter set is compact,
we see that J is locally compact. Thus, it is completely metrizable. Since

J =
∞⋃

n=0

ζ−1([n, +∞)),

the metrizable space J is σ-compact, and therefore separable. We are done. �

We also need the following straightforward proposition.

Proposition 3.3. If ζ ∈ C−∞(J), then the function ζ : J → R is bounded above and
it takes on its supremum.

Proof. Indeed, take an arbitrary t ∈ ζ(J). Then ζ−1([t, +∞)) is a compact subset of
J and therefore the supremum

sup(ζ) = sup(ζ|ζ−1([t,+∞))) < +∞

is attained on ζ−1([t, +∞)). �

It follows from this proposition that the integral
∫

ζ dµ (allowed to be −∞) is well
defined for every µ ∈ M(J) and is < +∞.

4. Existence of maximizing measures

Call a triple (J, ζ, Ω) maximizable if J is a metrizable space, ζ ∈ C−∞(J) and Ω is a
non-empty weakly closed subset of M(J) such that

∫
ζ dµ ∈ (−∞, +∞) for some µ ∈ Ω.

The set Ω is then called ζ-acceptable. Notice that this holds if, for instance, Ω contains at
least one measure with compact support. The name ‘maximizable’ will be wholly justified
by the last result of this section. For every T ∈ R set

Σ(ζ, Ω, T ) =
{

µ ∈ Ω :
∫

ζ dµ = T

}
and Σ+(ζ, Ω, T ) =

{
µ ∈ Ω :

∫
ζ dµ � T

}
.

We shall prove the following.
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Lemma 4.1. For every T ∈ R the set Σ+(ζ, Ω, T ) is weakly compact.

Proof. For every µ ∈ Σ+(ζ, Ω, T ) and every s > 0, we have

T �
∫

ζ dµ =
∫

ζ−1((−∞,−s))
ζ dµ +

∫
ζ−1([−s,+∞))

ζ dµ

� −sµ(ζ−1((−∞,−s))) + sup(ζ)µ(ζ−1([−s,+∞)))

� −sµ(ζ−1((−∞,−s))) + max{0, sup(ζ)}.

Hence, µ(ζ−1((−∞,−s))) � s−1(max{0, sup(ζ)} − T ). Therefore, for every ε > 0, tak-
ing sε = ε−1(max{0, sup(ζ)} − T ), we see that µ(ζ−1((−∞,−sε))) � ε for all µ ∈
Σ+(ζ, Ω, T ). Since J \ ζ−1((−∞,−sε)) = ζ−1([sε, +∞)) is a compact set, we therefore
see that Σ+(ζ, Ω, T ) forms a tight family of measures. Thus, by Prokhorov’s theorem,
Σ+(ζ, Ω, T ) is weakly pre-compact, and we are left to show that Σ+(ζ, Ω, T ) is weakly
closed in M(J). To this end, consider an arbitrary sequence {µn}∞

n=1 ⊂ Σ+(ζ, Ω, T ) con-
verging weakly to a measure µ ∈ M(J). Since Ω is weakly closed, µ ∈ Ω. For every k � 1
put

ζk = max{ζ,−k}.

Then ζk ∈ Cb(J(F )) for every k � 1 and the non-increasing sequence {ζk}∞
k=1 converges

pointwise to ζ. Using Lebesgue’s monotone convergence theorem, we therefore get∫
ζ dµ =

∫
lim

k→∞
ζk dµ = lim

k→∞

∫
ζk dµ

= lim
k→∞

(
lim

n→∞

∫
ζk dµn

)

� lim inf
k→∞

lim sup
n→∞

∫
ζ dµn � lim sup

n→∞
T = T.

So, µ ∈ Σ+(ζ, Ω, T ) and we are done. �

Let

s(ζ) = sup
{∫

ζ dµ : µ ∈ Ω

}
.

Since ζ ∈ C−∞(J), we have s(ζ) < +∞. Since Ω is ζ-acceptable, s(ζ) > −∞ and
Σ+(ζ, Ω, T ) �= ∅ for all T < s(ζ). Since in addition

Σ(ζ, Ω, s(ζ)) =
∞⋂

n=1

Σ+

(
ζ, Ω, s(φ) − 1

n

)
,

and since the sequence {
Σ+

φ

(
s(φ) − 1

n

)}
n�1

is descending, as an immediate consequence of Lemma 4.1 we get the following.

Corollary 4.2. The set Σ(ζ, Ω, s(ζ)) is non-empty and weakly compact.
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5. Topology and measure: auxiliary results

In this section we fix a metrizable space J and a function ζ ∈ C−∞(J). It is easy to verify
that the function ‖ · ‖ζ : Cb(J) → [0,∞) given by the formula

‖φ‖ζ = sup
{

|φ(z)|
1 + |ζ(z)| : z ∈ J

}

defines a norm on the linear space Cb(J). The metric ρζ : Cb(J) × Cb(J) → [0, +∞)
canonically associated with the norm ‖ · ‖ζ is given by the formula

ρζ(φ, ψ) = ‖ψ − φ‖ζ .

The topology induced by the metric ρζ obviously depends on the function ζ. In fact two
functions ζ1, ζ2 ∈ C−∞(J) induce the same topology (are equivalent) if and only if

sup
{

max
{

1 + |ζ2(z)
1 + |ζ1(z)| ,

1 + |ζ1(z)
1 + |ζ2(z)|

}
: z ∈ J

}
< +∞.

Despite this inconvenience, the most transparent advantage of working with the metric ρζ

instead of the metric induced by the standard supremum norm is that, even in the non-
compact case, we have the following.

Proposition 5.1. If ζ ∈ C−∞(J), then the metric space (Cb(J), ρζ) is separable.

Proof. Since, for every integer n, the inverse-image ζ−1([n, +∞)) is a compact set,
the Banach space (C(ζ−1([n, +∞))), ‖ · ‖∞) is separable. Let Sn ⊂ C(ζ−1([n, +∞))) be
a corresponding countable dense subset. Using Tietze’s theorem, extend each function
φ ∈ Sn to a function φ̃ ∈ Cb(J) such that sup(φ̃) = sup(φ) and inf(φ̃) = inf(φ). The set

S =
⋃
n∈Z

{φ̃ : φ ∈ Sn}

is obviously countable. We shall show that S is a dense subset of (Cb(J), ρζ). Indeed, fix
g ∈ Cb(J) and then ε > 0. Fix n � 0 so large that

2‖g‖∞ + 1
1 + n

� ε. (5.1)

By the definition of Sn and compactness of the set ζ−1([n, +∞)), there exists φ ∈ Sn

such that

|g(z) − φ(z)| � min{1, ε(1 + inf{|ζ(w)| : w ∈ ζ−1([n, +∞))})} (5.2)

for all z ∈ ζ−1([n, ∞)). Then, for every z ∈ ζ−1([n, +∞)), we have

|g(z) − φ̃(z)|
1 + |ζ(z)| =

|g(z) − φ(z)|
1 + |ζ(z)| � ε.
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It also follows from (5.2) that |φ(z)| � 1 + ‖g‖∞ for all z ∈ ζ−1([n, +∞)), and therefore
|φ̃(w)| � 1 + ‖g‖∞ for all w ∈ J . Hence, using (5.1), we find that if z ∈ ζ−1((−∞,−n)),
then

|g(z) − φ̃(z)|
1 + |ζ(z)| � |g(z)| + |φ̃(z)|

1 + n
� 2‖g‖∞ + 1

1 + n
� ε.

Thus, ρζ(g, φ̃) � ε. So, S is a dense subset of Cb(J), and we are done. �

Now let (J, ζ, Ω) be a maximizing triple. Set

Σ>(ζ, Ω,−∞) =
{

µ ∈ Ω :
∫

ζ dµ > −∞
}

=
⋃

T∈R

Σ+(ζ, Ω, T ).

In view of Proposition 5.1, we can fix a dense countable set {φn}∞
n=1 in the metric space

(Cb(J), ρζ). Define the function dζ : M(J) × M(J) → [0, +∞) by the formula

dζ(µ, ν) =
∞∑

n=1

2−n min
{

1,

∣∣∣∣
∫

φn dν −
∫

φn dµ

∣∣∣∣
}

. (5.3)

We shall prove the following.

Lemma 5.2. The function dζ restricted to the Cartesian product Σ>(ζ, Ω,−∞) ×
Σ>(ζ, Ω,−∞) defines a metric on Σ>(ζ, Ω,−∞).

Proof. Obviously, the only non-trivial task is to check that if dζ(µ, ν) = 0, then ν = µ.
Indeed, if dζ(µ, ν) = 0, then ∫

φn dν =
∫

φn dµ

for all n � 1. Since both measures µ and ν are in Σ>(ζ, Ω,−∞), both integrals∫
(1 + |ζ|) dν and

∫
(1 + |ζ|) dµ are finite. Put

R = max
{∫

(1 + |ζ|) dµ,

∫
(1 + |ζ|) dν

}
∈ (0, +∞).

Fix now an arbitrary function φ ∈ Cb(J) and fix ε > 0. By the choice of the sequence
{φn}∞

n=1, there exists n � 1 such that ρζ(φ, φn) < ε(2R)−1, which means that
|φ(z) − φn(z)| � ε(1 + |ζ(z)|)(2R)−1 for all z ∈ J . Hence,∣∣∣∣

∫
φ dµ −

∫
φ dν

∣∣∣∣ =
∣∣∣∣
∫

φ dµ −
∫

φn dµ +
∫

φn dµ −
∫

φn dν +
∫

φn dν −
∫

φ dν

∣∣∣∣
=

∣∣∣∣
∫

φ dµ −
∫

φn dµ +
∫

φn dν −
∫

φ dν

∣∣∣∣
�

∫
|φ − φn| dµ +

∫
|φ − φn| dν

� ε(2R)−1
∫

(1 + |ζ(z)|) dµ(z) + ε(2R)−1
∫

(1 + |ζ(z)|) dν(z)

� 1
2ε + 1

2ε = ε.

Letting ε ↘ 0, we thus obtain
∫

φ dµ =
∫

φ dν. Hence, µ = ν and we are done. �
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We will also need the following.

Lemma 5.3. Suppose that (J, ζ, Ω) is a maximizing triple. If µ ∈ Σ>(ζ, Ω,−∞),
µk ∈ Σ>(ζ, Ω,−∞) for all k � 1 and the sequence {µk}∞

k=1 converges weakly to µ, then

lim
k→∞

dζ(µk, µ) = 0.

Proof. Fix ε > 0. There then exists q � 1 so large that
∑∞

n=q+1 2−n � 1
2ε. Since the

sequence {µk}∞
k=1 converges weakly to µ, there exists l � 1 such that

∣∣∣∣
∫

φn dµk −
∫

φn dµ

∣∣∣∣ � 1
2ε

for all n = 1, 2, . . . , q and all k � l. Hence, for all k � l, we have that

dζ(µk, µ) �
q∑

n=1

2−n

∣∣∣∣
∫

φn dµk −
∫

φn dµ

∣∣∣∣ +
∞∑

n=q+1

2−n � 1
2ε + 1

2ε = ε.

We are done. �

Two functions φ, ψ ∈ C−∞(J) are said to be boundedly equivalent if and only if
sup{|ψ(z) − φ(z)| : z ∈ J} < +∞ (notice that if φ ∈ C−∞(J), ψ ∈ C(J) and
sup{|ψ(z) − φ(z)| : z ∈ J} < +∞, then ψ ∈ C−∞(J) and φ and ψ are boundedly equiv-
alent). We then write ψ ∼ φ. Obviously, bounded equivalence is an equivalence relation
on C−∞(J). The corresponding equivalence class of φ ∈ C−∞(J) is denoted by [φ]. Let
us record the following obvious fact.

Proposition 5.4. If φ, ψ ∈ C−∞(J) and ψ ∼ φ, then the norms ‖ · ‖ψ and ‖ · ‖φ are
equivalent and Σ>(ψ, Ω, −∞) = Σ>(φ, Ω,−∞).

As an immediate consequence of the previous results we get the following.

Corollary 5.5. Suppose that (J, ζ, Ω) is a maximizing triple. Then the following hold.

(a) The identity map
Id : Σ>(ζ, Ω,−∞) → Σ>(ζ, Ω,−∞)

from the space Σ>(ζ, Ω,−∞) endowed with the topology of weak convergence to
the space Σ>(ζ, Ω,−∞) endowed with the metric dζ , is continuous.

(b) Each weakly compact subset of Σ>(ζ, Ω,−∞) is a compact set in the metric space
(Σ>(ζ, Ω,−∞), dζ).

(c) If φ ∈ [ζ], then, for every T ∈ R, the set Σ+(φ, Ω, T ) is compact in the metric space
(Σ>(ζ, Ω,−∞), dζ).

(d) If φ ∈ [ζ], the set Σ(φ, Ω, s(φ)) is compact in the metric space (Σ>(ζ, Ω,−∞), dζ).
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Proof. Item (a) is a reformulation of Lemma 5.3. Item (b) is an immediate conse-
quence of item (a). Item (c) is in turn an immediate consequence of item (b) along
with Lemma 4.1 and Proposition 5.4. Eventually, item (d) is proved in the same way as
item (c), only one should apply Corollary 4.2 instead of Lemma 4.1. �

Again fix ζ ∈ C−∞(J). The formula

ρ̄ζ(φ, ψ) = sup
{

|ψ(z) − φ(z)|
1 + |ζ(z)| : z ∈ J

}

defines a metric on [ζ]. We shall prove the following.

Lemma 5.6. Let (J, ζ, Ω) be a maximizing triple. Then the function φ → s(φ), φ ∈ [ζ]
([ζ] endowed with the metric ρ̄ζ) is lower semi-continuous.

Proof. Fix φ ∈ [ζ]. By Corollary 4.2 there exists µ ∈ Ω such that s(φ) =
∫

φ dµ ∈ R.
Then

∫
(1 + |ζ|) dµ ∈ R. Fix ε > 0. Take an arbitrary

ψ ∈ Bρ̄

(
φ, ε

(∫
(1 + |ζ|) dµ

)−1)
.

Then for every z ∈ J we have

|ψ(z) − φ(z)| � ε

(∫
(1 + |ζ|) dµ

)−1

(1 + |ζ(z)|),

and therefore

s(φ) =
∫

φ dµ �
∫

ψ dµ +
∫

ε

( ∫
(1 + |ζ|) dµ

)−1

(1 + |ζ(z)|) dµ(z)

=
∫

ψ dµ + ε � s(ψ) + ε.

So,
lim inf

ρ̄ζ(ψ,φ)→0
s(ψ) � s(φ),

and we are done. �

We end this section with the following.

Lemma 5.7. Let (J, ζ, Ω) be a maximizing triple. Suppose that g, gn ∈ [ζ], n � 1,
and that limn→∞ gn = g with respect to the metric ρ̄ζ on [ζ]. If µn ∈ Σ(gn, Ω, s(gn)) for
all n � 1 and if the sequence {µn}∞

n=1 converges weakly to a measure µ ∈ M(J), then
µ ∈ Σ(g, Ω, s(g)).

Proof. Since Ω is weakly compact, µ ∈ Ω. Since g ∼ ζ,

A := sup{g(z) − ζ(z) |: z ∈ J} < +∞.
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Fix an arbitrary s > A+1. Take an arbitrary n � 1 so large, say n � q, that ρ̄ζ(gn, g) < 1
2 .

Then for every z ∈ g−1((−∞,−s)) we get

gn(z) < g(z) + 1
2 (1 + |ζ|)

� g(z) + 1
2 (1 + |g(z)| + A)

= g(z) + 1
2 (1 + A − g(z))

= 1
2g(z) + 1

2 (1 + A)

< − 1
2s + 1

2 (1 + A)

= 1
2 (1 + A − s) < 0. (5.4)

Hence, for all n � q, we obtain
∫

g−1([−s,+∞))
gn dµn �

∫
J

gn dµn = s(gn).

Since the set g−1([−s,+∞)) is compact (consequently the sequence {gn}∞
n=1 converges to

g uniformly on g−1([−s,+∞))) and since the sequence {µn}∞
n=1 converges weakly to µ,

we get
∫

g−1([−s,+∞))
g dµ � lim sup

n→∞

∫
g−1([−s,+∞))

gn dµn � lim sup
n→∞

s(gn) � s(g), (5.5)

where writing the last inequality sign we have used Lemma 5.6. Since g−1([−n, +∞))}∞
n=0

is an ascending sequence of Borel sets and since

∞⋃
n=0

g−1([−n, +∞)) = J,

applying (5.5), we get
∫

J

g dµ = lim
n→∞

∫
g−1([−n,+∞))

g dµ � s(g).

Hence, µ ∈ Σ(g, Ω, s(g)) and we are done. �

As a fact complementary to Lemma 5.7 we shall prove the following.

Lemma 5.8. Let (J, ζ, Ω) be a maximizing triple. Suppose that g, gn ∈ [ζ], n � 1,
and that limn→∞ gn = g with respect to the metric ρ̄ζ on [ζ]. If µn ∈ Σ(gn, Ω, s(gn)) for
all n � 1, then the sequence {µn}∞

n=1 is tight.

Proof. Fix ε > 0. Let A be the proof of Lemma 5.7. Then fix s > A + 1 so large that

1
2 (s − A − 1) > 1

4s, −4
s
(s(g) − 1) < 1

2ε,
sup(g) + 1

s
< 1

8ε. (5.6)
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Follow the proof of Lemma 5.7 verbatim from the beginning up to and including (5.4).
Since µn ∈ Σ(gn, Ω, s(gn)) for all n � 1 and using the first inequality in (5.6) along with
(5.4), we find, for all n � q, that

− 1
4sµn(g−1((−∞,−s))) �

∫
g−1((−∞,−s))

gn dµn

=
∫

J

gn dµn −
∫

g−1([−s,+∞))
gn dµn

= s(gn) −
∫

g−1([−s,+∞))
gn dµn.

Hence,

µn(g−1((−∞,−s))) � −4s(gn)
s

+
4
s

∫
g−1([−s,+∞))

gn dµn. (5.7)

It follows from Lemma 5.6 that, for all n � 1 sufficiently large, say n � q1 � q, we
have s(gn) � s(g) − 1. Since g−1([−s,+∞)) is a compact set, the sequence {gn}∞

n=1
converges to g uniformly on g−1([−s,+∞)). In consequence |gn(z) − g(z)| � 1 for all
z ∈ g−1([−s,+∞)) and all n � 1 sufficiently large, say n � q2 � q1. Therefore, we find
from (5.7) that, for all n � q2,

µn(g−1((−∞,−s))) � −4(s(g) − 1)
s

+
4
s

∫
g−1([−s,+∞))

(sup(g) + 1) dµn

= −4(s(g) − 1)
s

+
4
s
(sup(g) + 1)µn(g−1([−s,+∞)))

� −4(s(g) − 1)
s

+ 4 max{0, s−1(sup(g) + 1)}.

Now, by the last two inequalities from (5.6), we find for all n � q2 that

µn(g−1((−∞,−s))) < ε.

Since J \g−1((−∞,−s)) = g−1([−s,+∞)) is a compact set, the tightness of the sequence
{µn}∞

n=1 is proved. �

6. Uniqueness of maximizing measures

We say that a maximizing triple (J, ζ, Ω) is uniquely maximizing if Ω is a convex subset
of M(J). The main result of this section is the following theorem, motivated by [2,3].

Theorem 6.1. Let (J, ζ, Ω) be a uniquely maximizing triple. Suppose that (H, |‖ · |‖)
is a Banach space contained densely in the normed space (Cb(J), ‖ · ‖ζ) and that the
inclusion map from (H, |‖ · |‖) to (Cb(J), ‖ · ‖ζ) is continuous. Then there exists a dense
Gδ subset G of ζ +H ⊂ [ζ] (with the topology on ζ +H induced by the metric ρH(φ, ψ) =
|‖ψ − φ|‖) such that each function in G has a unique maximizing measure in Ω.
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Proof. Put
Hζ = ζ + H.

Since H is a dense subset of Cb(J), there exists by Proposition 5.1 a sequence
{φn}∞

n=1 ⊂ H forming a dense subset of Cb(J). Let dζ be the metric on Σ>(ζ, Ω,−∞)
(see Lemma 5.2) given by (5.3) with the above sequence {φn}∞

n=1. For every ε > 0 put

�ε = {φ ∈ [ζ] : diamdζ
(Σ(φ, Ω, s(φ))) < ε}.

We shall prove that �ε is an open subset of [ζ] and �ε ∩ Hζ is dense in Hζ (with respect
to the metric ρH). Suppose on the contrary that �ε is not open. Then there exist ψ ∈ �ε

and a sequence {ψn}∞
n=1 of functions from [ζ] such that limn→∞ ψn = ψ and ψn /∈ �ε

for all n � 1. Hence,
diamdζ

(Σ(ψn, Ω, s(φn))) � ε

for all n � 1. It therefore follows from Corollary 5.5 (d) that for every n � 1 there are
two measures µ,νn ∈ Σ(ψn, Ω, s(ψn)) such that

dζ(µn, νn) � ε. (6.1)

In view of Lemma 5.8 and Prokhorov’s theorem, we may assume without loss of gen-
erality that both sequences {µn}∞

n=1 and {νn}∞
n=1 converge weakly to the measures µ

and ν, respectively, in M(J). Since Ω is weakly closed, µ, ν ∈ Ω. Now it follows from
Lemma 5.7 that µ, ν ∈ Σ(ψ, Ω, s(ψ)), whereas using (6.1), we conclude from Corol-
lary 5.5 (b) (the set {µ, ν} ∪ {µn, νn : n � 1} is weakly compact) that dζ(µ, ν) � ε. But
diamdζ

(Σ(ψ, Ω, s(ψ))) < ε as ψ ∈ �ε. This contradiction finishes the proof that �ε is an
open subset of [ζ].

Now let us demonstrate that the set �ε ∩ Hζ is dense in Hζ . In order to do this, fix
ψ ∈ Hζ . For every k � 1, consider the continuous map πk : Σ>(ζ, Ω,−∞) → R

k defined
by the formula

πk(µ) =
(∫

φ1 dµ,

∫
φ2 dµ, . . . ,

∫
φk dµ

)
.

It follows from (5.3) that
diamdζ

(π−1
k (w)) � 2−k (6.2)

for all w ∈ R
k. Fix n � 1 so large that

2−n < ε. (6.3)

Since Ω is convex, so is the set Σ(ψ, Ω, s(ψ)). By Corollary 5.5 (d) this is also a com-
pact subset of Σ>(ζ, Ω,−∞). Hence, πn(Σ(ψ, Ω, s(ψ))) is a convex compact subset
of R

n. Thus, by Straszewicz’s theorem this set has a strictly extreme point, i.e. a point
pn = (p1, p2, . . . , pn) ∈ πn(Σ(ψ, Ω, s(ψ))) ⊂ R

n along with a vector (a1, a2, . . . , an) ∈ R
n

such that
n∑

i=1

aipi >

n∑
i=1

aiqi (6.4)
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for all (q1, q2, . . . , qn) ∈ πn(Σ(ψ, Ω, s(ψ))). Since all the functions φj , j � 1, are in Cb(J),

φ =
n∑

i=1

aiφi ∈ Cb(J).

Put

s̃(φ) = sup
{∫

φ dµ : µ ∈ Σ(ψ, Ω, s(ψ))
}

and

Σ̃(φ) =
{

µ ∈ Σ(ψ, Ω, s(ψ)) :
∫

φ dµ = s̃(φ)
}

.

Then using (6.4) we see that Σ̃(φ) ⊂ π−1
n (pn). It therefore follows from (6.2) and (6.3)

that
diamdζ

(Σ̃(φ)) < ε. (6.5)

We shall show that, for all t ∈ (0, 1) sufficiently small,

ψt := ψ + tφ ∈ �ε ∩ Hζ .

Indeed, for all t ∈ R, ψt − ζ = (ψ − ζ) + tφ ∈ H (ψ − ζ ∈ H since ψ ∈ Hζ and tφ ∈ H
since H is linear and {φj}∞

j=1 ⊂ H). We are therefore left to show that ψt ∈ �ε for all
t ∈ (0, 1) sufficiently small. In view of (6.5), there exists an open set U ⊂ Σ>(ζ, Ω,−∞)
such that

Σ̃(φ) ⊂ U (6.6)

and
diamdζ

(U) < ε. (6.7)

We shall show that, for all t ∈ (0, 1) sufficiently small,

Σ(ψt, Ω, s(ψt)) ⊂ U. (6.8)

Indeed, suppose on the contrary that there exists a sequence {tk}∞
k=1 ⊂ (0, 1) decreasing

to 0 such that Σ(ψtk
, Ω, s(ψtk

)) is not contained in U for any k � 1. This means that
for every k � 1 there exists a measure

µk ∈ Σ(ψtk
, Ω, s(ψtk

)) \ U. (6.9)

Since φ ∈ Cb(J), the sequence {ψtk
}∞

k=1 converges to ψ in the standard supremum met-
ric on [ζ], and consequently, limk→∞ ρ̄ζ(ψtk

, ψ) = 0. Hence, applying Lemma 5.8 and
Prokhorov’s theorem, and passing to a subsequence if necessary, we may assume without
loss of generality that the sequence {µk}∞

k=1 converges weakly to a measure µ ∈ Ω. Now,
making use of Lemma 5.7, Corollary 5.5 (a) and (6.9) we conclude that

µ ∈ Σ(ψ, Ω, s(ψ)) \ U. (6.10)
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Now take an arbitrary measure ν ∈ Σ(ψ, Ω, s(ψ)). Then, for every k � 1, we have
∫

ψ dν + tk

∫
φ dν =

∫
ψtk

dν �
∫

ψtk
dµk

=
∫

ψ dµk + tk

∫
φ dµk �

∫
ψ dν + tk

∫
φ dµk.

Thus,
∫

φ dν �
∫

φ dµk. Since the sequence {µk}∞
k=1 converges weakly to µ and since

φ ∈ Cb(J), we therefore find that
∫

ψ dν �
∫

φ dµ. This means that µ ∈ Σ̃(φ). Along
with (6.6) and (6.10), this gives a contradiction and (6.8) is established. This formula
and (6.7) show that diamdζ

(Σ(ψtk
, Ω, s(ψtk

))) < ε for all t ∈ (0, 1) sufficiently small.
Consequently, ψt ∈ �ε ∩ Hζ for all t ∈ (0, 1) sufficiently small. Since ψt − ψ = tφ ∈ H,
we see that

ρH(ψt, ψ) = |‖tφ|‖ = t|‖φ|‖ → 0,

when t ↘ 0. The proof that �ε ∩ Hζ is dense in Hζ with respect to the topology induced
by the metric ρH is finished. Putting G =

⋂∞
n=1 �1/n ∩ Hζ completes the proof of the

whole theorem. �

As an immediate consequence of this theorem we get the following.

Corollary 6.2. If (J, ζ, Ω) is a uniquely maximizing triple, then there exists a dense
Gδ subset G of [ζ] ([ζ] endowed with the complete supremum metric) such that each
function φ ∈ G has a unique maximizing measure in Ω (Σ(φ, Ω, s(φ)) is a singleton).

We now describe large classes of Banach spaces densely contained in Cb(J). Indeed,
given a ∈ (0, 1], δ > 0 and φ ∈ Cb(J) let

vα(φ) = inf{L � 0 : |φ(y) − φ(x)| � Lρα(x, y) ∀x ∈ J ∀y ∈ B(x, δ)}.

Let
Hα = {φ ∈ Cb(J) : vα(φ) < ∞}. (6.11)

Obviously, Hα is a linear subspace of Cb(J) and becomes a Banach space when endowed
with the norm ‖ · ‖α determined by the formula

‖φ‖α = ‖φ‖∞ + vα(φ).

Observe that the set Hα does not depend on δ and all norms defined with the various
δ induce the same topology on Hα. Since Ha is a dense subset of Cb(J) continuously
(because of (6.11)) embedded in Cb(J), as an immediate consequence of Theorem 6.1,
we get the following.

Corollary 6.3. If (J, ζ, Ω) is a uniquely maximizing triple, then there exists a dense
Gδ subset Gα of ζ +Hα such that each function φ ∈ G has a unique maximizing measure
in Ω (Σ(φ, Ω, s(φ)) is a singleton).
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7. Dynamical applications

Suppose that ζ : J → R is an escaping to −∞ continuous function and that T : J → J

is a continuous mapping. Then MT , the set of all Borel probability T -invariant measures
on J , is convex and weakly closed in M(J). Suppose that MT is ζ-acceptable, i.e. that∫

ζ dµ ∈ (−∞, +∞) for some µ ∈ MT . The triple (J, T, ζ) is then called dynamically
maximizable and each maximizing measure of ζ with respect to MT is called dynamically
maximizing. Notice that this holds if, for instance, MT contains at least one measure with
compact support; this in turn holds, for instance, if T has at least one periodic orbit. As
immediate consequences of Corollary 4.2, Theorem 6.1, Corollary 6.2 and Corollary 6.3,
respectively, we get the following four corollaries.

Corollary 7.1. Suppose that ζ : J → R is an escaping to −∞ continuous function
and that T : J → J is a continuous mapping. If the triple (J, T, ζ) is dynamically
maximizable, then ζ has at least one dynamically maximizing measure.

Corollary 7.2. Suppose that ζ : J → R is an escaping to −∞ continuous function
and that T : J → J is a continuous mapping. Suppose that (H, |‖ · |‖) is a Banach space
contained densely in the Banach space (Cb(J), ‖ · ‖ζ) and that the inclusion map from
(H, |‖·|‖) to (Cb(J), ‖ · ‖ζ) is continuous. If the triple (J, T, ζ) is dynamically maximizable,
then there exists a dense Gδ subset G of ζ +H ⊂ [ζ] (with the topology on ζ +H induced
by the metric ρH(φ, ψ) = |‖ψ−φ|‖) such that each function in G has a unique dynamically
maximizing measure.

Corollary 7.3. If (J, T, ζ) is a dynamically maximizing triple, then there exists a
dense Gδ subset G of [ζ] ([ζ] endowed with the complete supremum metric) such that
each function in G has a unique dynamically maximizing measure.

Corollary 7.4. Suppose that ζ : J → R is an escaping to −∞ continuous function
and that T : J → J is a continuous mapping. If the triple (J, T, ζ) is dynamically
maximizable, then there exists a dense Gδ subset Gα of ζ + Hα such that each function
in G has a unique dynamically maximizing measure.

All the corollaries listed above apply to such an abundance of cases that it is virtually
impossible to list some special ones. We will, however, describe in the next section one
large class of dynamical systems with non-compact phase space for which all the corol-
laries established in this section are true and which will be investigated in greater detail
and from wider perspectives in the next section.

8. The exponential family

We first consider the family {fλ : C → C}λ∈C\{0} of entire maps of the form

fλ(z) = λ exp(z).

The Fatou set of fλ consists of those points z ∈ C that admit an open neighbourhood Uz

such that the family {fn
λ |U}∞

n=1 of iterates of f , restricted to U is normal. The Julia set
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Jλ(f) is defined to be the complement of the Fatou set. Since the map fλ is periodic with
period 2πi, we consider it on the cylinder rather than on C. So, let Q be the quotient
space (the cylinder),

Q = C/∼,

where z1 ∼ z2 if and only if z1 − z2 = 2kπi for some k ∈ Z. Let π : C → Q be the natural
projection. Since the map π ◦ fλ : C → Q is constant on equivalence classes of relation ∼,
it canonically induces a conformal map

Fλ : Q → Q.

The map Fλ : Q → Q will be the main object of our considerations. The Julia set of Fλ

is defined to be
J(Fλ) = π(J(fλ)) (8.1)

and
Fλ(J(Fλ)) = J(Fλ) = F−1(J(Fλ)).

The cylinder Q is canonically endowed with a Euclidean metric which without confusion
will be denoted by the same symbol |w − z| for all z, w ∈ P . For every x ∈ R we set

Qx = {z ∈ Q : Re z � x} and J(F )x = {z ∈ J(F ) : Re z � x}.

We have thoroughly studied the fractal and dynamical properties of such maps in [9,10].
The papers [8,10] develop the appropriate versions of thermodynamic formalism and it
is evident from these that the right class of potentials to deal with is formed by Hölder
continuous functions (on the Julia set) lying within a bounded distance from the functions
of the form z �→ −κ Re z (κ > 0). Here is the spot where we meet the content of the
previous section. Indeed, notice that a continuous function ζ : J(Fλ) → R is escaping to
infinity if and only if

lim
Re z→+∞

ζ(z) = −∞.

Since the Julia set J(Fλ) is equal to the closure of its periodic points, we see that the
triple (J(Fλ), Fλ, ζ) (where ζ is escaping to infinity) is dynamically maximizable and we
may therefore formulate the following.

Remark 8.1. All the conclusions of Corollaries 7.1–7.4 hold with the triple (J, T, ζ)
replaced by (J(Fλ), Fλ, ζ).

From now on we assume that our exponential mapping f : C → C is hyperbolic, which
means that f has an attracting periodic orbit. We then analyse in greater detail the
dynamically maximizing measures of Hölder continuous functions. We single out from
them the class of 0+-tame functions and, using the ideas from thermodynamic formalism,
we demonstrate the existence of maximizing measures with compact support for such
functions. As an outcome of our method of the proof, we provide a more constructive
way of producing maximizing measures for 0+-tame functions. We start with the following
two auxiliary results.
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Lemma 8.2. If µ is a Borel probability measure on the real line R, then, for every
δ > 0, every α > 0 and every integer n ∈ Z, there exists xn ∈ [δn, δ(n + 1)) such that

+∞∑
n=−∞

∞∑
k=0

µ([xn − e−αk, xn + e−αk]) < ∞.

Proof. For every x ∈ R and every k ∈ Z write

Ix,k = [x − e−αk, x + e−αk)

and note that
∫ +∞

−∞ µ(Ix,k) dx = 2e−αk. Let

g(x) =
+∞∑

n=−∞

∞∑
k=0

µ(Ix+δn,k).

Then
∫ δ

0
g(x) dx =

∞∑
k=0

+∞∑
n=−∞

∫ δ(n+1)

δn

µ(Iy,k) dy =
∞∑

k=0

∫ +∞

−∞
µ(Iy,k) dy =

∞∑
k=0

2e−αk < +∞.

Hence, there exists x ∈ (0, δ) such that g(x) < +∞, and taking xn = x + δn completes
the proof. �

Lemma 8.3. If µ is a Borel probability measure on the cylinder Q, then for every
δ > 0 there exists a partition α of Q by rectangles with all sides of length less than or
equal to δ parallel to the coordinate axes such that, for every β > 0,

∞∑
n=0

∑
A∈α

µ(B(∂A, e−βn)) < ∞.

Proof. Let p1 : Q → R be the orthogonal projection onto the x-axis and let p2 :
Q → R be the orthogonal projection onto the circle R/2πZ. In view of Lemma 8.2 there
are points xn ∈ [ 12δn, 1

2δ(n + 1)] ⊂ R, n ∈ Z, y1 < y2 < · · · < yq ∈ R/2πZ such that
|yi+1 − yi| < δ and

+∞∑
n=−∞

∞∑
k=0

µ ◦ p−1
1 ([xn − e−βk, xn + e−βk]) < ∞,

q∑
j=1

∞∑
k=0

µ ◦ p−1
2 ([yj − e−βk, yj + e−βk]) < ∞.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.2)

Let α be the partition formed by all the rectangles [xn, xn+1] × [yj , yj+1(mod q)] ⊂ Q,
n ∈ Z, j = 1, 2, . . . , q. Then

∂α =
+∞⋃

n=−∞

q⋃
j=1

({xn} × S1) ∪ (R × {yj})
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and

B(∂α, e−βk) =
( +∞⋃

n=−∞
B(xn, e−βk) × S1

)
∪

( q⋃
j=1

R × B(yj , e−βk)
)

.

Hence, due to (8.2),

∞∑
k=0

∑
A∈α

µ(B(∂A, e−βk)) �
+∞∑

n=−∞
µ(B(xn, e−βk) × S1) +

q∑
j=1

µ(R × B(yj , e−βk))

�
+∞∑

n=−∞
µ ◦ p−1

1 (B(xn, e−βk)) +
q∑

j=1

µ ◦ p−1
2 (B(yj , e−βk))

< ∞.

We are done. �

We now pass to deal directly with Hölder continuous functions. Let

δ = 1
2 min{ 1

2 , dist(J(F ), {Fn(π(0)) : n � 0})}.

Since the map f : J(f) → J(f) is hyperbolic, we see that δ > 0. For every n � 1 and
every v ∈ J(F ), the map

F−n
v : B(Fn(v), 2δ) → Q

is then defined to be the holomorphic inverse branch of Fn on B(Fn(v), 2δ) sending
Fn(v) to v. It was proven in [10] that there exist two constants C � 1 and κ > 0 such
that

|(F−n
v )′(z)| � Ce−κn (8.3)

for all n � 0, all v ∈ J(F ) and all z ∈ B(Fn(v), δ). Let φ be a real-valued Hölder
continuous function defined on some Euclidean R-neighbourhood of the Julia set J(F ) ⊂
C, R ∈ (0, 1

2δ). Hölder continuity means here that

∃(α>0), ∀r ∈ (0, R), ∃Hr>0, if |y − x| � r, then |φ(y) − φ(x)| � Hr|y − x|α.

Let Re : C → R be the real part function (projection onto the real axis).

Definition 8.4. A Hölder continuous function φ : J(F ) → R is called κ-tame, κ ∈ R,
if φ ∈ [−κ Re], where Re : Q → R is the function ascribing to each point in the cylinder Q

its real part. This function is called 0+-tame if κ > 0 and 1+-tame if κ > 1.

For every function g : J(F ) → R and every n � 1 let

Sng =
n−1∑
j=0

g ◦ F j .

The following three basic facts have essentially been proved in [10] for the special case
φ(z) = −κ Re z, κ > 1. The complete proof in the case of an arbitrary 1+-tame function
requires only minor straightforward modifications and can be found in [8].
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Theorem 8.5. Let φ be 1+-tame. If f : C → C is hyperbolic, then, for every z ∈ J(F ),
the following limit exists and is independent of the point z:

P(φ) = lim
n→∞

1
n

log
∑

x∈F −n(z)

exp(Snφ(x)).

The number P(φ) is called the topological pressure of the potential φ. Since φ is a
1+-tame function, the series

∑
x∈F −1(z) exp(φ(x)) converges and is uniformly bounded

above with respect to the variable z. Since the logarithm of this upper bound is also an
upper bound of the pressure P(φ), we have obtained

P(φ) < +∞. (8.4)

Theorem 8.6. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then there exists a unique Borel probability measure mφ on J(F ) such that

mφ(F−n
v (B(z, δ))) =

∫
B(z,δ)

exp(Snφ(F−n
v (w)) − P(φ)n) dmφ(w)

for all n � 1, all z ∈ J(F ) and all v ∈ F−n(z).

Theorem 8.7. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then there exists a unique Borel probability F -invariant measure µφ absolutely continuous
with respect to mφ. In addition µφ is ergodic, equivalent to mφ and the Radon–Nikodým
derivative ψ = dµφ/dmφ has a continuous everywhere (on J(F )), positive and uniformly
bounded version.

For every Borel probability F -invariant measure µ on J(F ) let hµ denote the measure-
theoretic entropy of the measure µ with respect to the dynamical system F : J(F ) →
J(F ). Our first result, crucial for investigation of dynamically maximizing measures of
0+-tame functions and interesting in itself, is as follows.

Theorem 8.8. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then the invariant measure µφ is an equilibrium state of the potential φ, that is

P(φ) = sup
{

hµ(F ) +
∫

φ dµ

}

where the supremum is taken over all Borel probability F -invariant ergodic measures µ

with
∫

φ dµ > −∞,
∫

φ dµφ > −∞ and

P(φ) = hµφ
+

∫
φ dµφ.

Proof. We shall show first that if µ is a Borel probability F -invariant ergodic measure
on J(F ) with

∫
φ dµ > −∞, then

P(φ) � hµ +
∫

φ dµ.
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Let α be the partition constructed in Lemma 8.3 with diameter less than or equal to δ.
We shall demonstrate that there exists a Borel set Z ⊂ J(F ) such that µ(Z) = 1 and

µφ(αn(x)) � µ(αn(x)) (8.5)

for all x ∈ Z and all n � 1 sufficiently large (depending on x). If µ and µφ are not mutually
singular, then µ = µφ since both measures are ergodic, and (8.5) becomes obvious. So,
we may assume that µ and µφ are mutually singular. This means that there exists a
Borel set Y ⊂ J(F ) such that µφ(Y ) = 0 and µ(Y ) = 1. Seeking contradiction, suppose
now that there exists a compact set S ⊂ Y with the following two properties:

(a) µ(S) > 0;

(b) for every x ∈ S there exists an unbounded increasing sequence {nj(x)}∞
j=1 such

that
µφ(αnj(x)(x)) > µ(αnj(x)(x))

for all j � 1.

Since the measure µφ is regular and µφ(S) = 0, there exists ε > 0 such that µφ(B(S, ε)) <
1
2µ(S). Since, for every x ∈ J(F ) and every n � 0, αn(x) ⊂ F−n

x (B(Fn(x), δ)), looking
at (8.3) we see that

lim
n→∞

diam(αn(x)) = 0.

Fix ε > 0. For every x ∈ S there thus exists j(x) � 1 such that diam(αnj(x)(x)) < ε.
Since any two elements of the family {αnj(x)(x)}x∈S are either disjoint or one is contained
in the other, we can choose countably many points {xk}∞

k=1 ⊂ S such that all the sets
Ak = αnj(xk)(xk), k � 1, are mutually disjoint and

⋃
k�1 Ak ⊃ S. Using (b) we then get

µ(S) � µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak) <

∞∑
k=1

µφ(Ak) = µφ

( ∞⋃
k=1

Ak

)
� µφ(B(S, ε)) < 1

2µ(S).

This contradiction finishes the proof of (8.5). In view of Lemma 8.3 we find for every
β > 0 that

∞∑
n=1

∑
A∈α

µ(F−n(B(∂A, e−βn))) =
∞∑

n=1

∑
A∈α

µ(B(∂A, e−βn)) < ∞.

Therefore, µ(Z1) = 1, where Z1 is the set of all those z ∈ Z that Fn(z) ∈ B(∂A, e−βn)
for finitely many n only. Fix z ∈ Z1 and let q � 1 be such that Fn(z) /∈ B(∂A, e−βn) for
all n � q. For every k ∈ {0, 1, 2, . . . , n}, put F−k

∗ := F−k
F n−k(z) (so, F−k

∗ is the branch of
F−k sending the point Fn(z) back to Fn−k(z)).

Let p � 0 be an arbitrary real number such that Ce−κp � e−β(n−p). This equivalently
means that − log C +κp � βn−βp or (κ+β)p � βn− log C, and finally this means that

p � β

κ + β
n +

log C

κ + β
.
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So, putting

p = pn = E

(
β

κ + β
n +

log C

κ + β

)
+ 1,

we see that p satisfies the required inequality; in fact

Ce−κk � e−β(n−k)

for all k � p. This implies that α(Fn−k(z)) ⊃ F−k
∗ (B(Fn(z), δ)) for all p � k � n − q,

since, by (8.3), the preimage F−kB(Fn(z), δ) is contained in the ball B(Fn−k(z), Ce−κk)
Hence,

F−(n−k−q)(α(Fn−k(z))) ⊃ F−(n−k−q)
q ◦ F−k

∗ (B(Fn(z), δ)) = F
−(n−q)
∗ (B(Fn(z), δ)),

where F
−(n−k−q)
q : B(Fn−k(z), 2δ) → C is the holomorphic inverse branch of Fn−k−q

sending Fn−k(z) to F q(z). Thus,

αn−q−p(z) =
n−q⋂
k=p

F−(n−k−q)(α(Fn−k(z))) ⊃ F
−(n−q)
∗ (B(Fn(z), δ)).

Hence, using Theorems 8.6 and 8.7, we obtain

dµφ(αn−q−p(z)) � µφ(F−(n−q)
∗ (B(Fn(z), δ)))

� ψ(F q(z)) exp(Sn−qφ(F q(z)) − P(φ)n)mφ(B(Fn(z), δ))

� exp(Snφ(z) − P(φ)n)mφ(B(Fn(z), δ)),

where ψ = dµφ/dmφ and the comparability constant, call it C1, appearing in the above
formula depends on z but is independent of n. Consequently,

1
n

log(µφ(αn−q−p(z))) � log(C1)
n

+
1
n

Snφ(z) − P(φ) +
1
n

log(mφ(B(Fn(z), δ))). (8.6)

In view of the classical Birkhoff ergodic theorem and the Breiman–McMillan–Shannon
theorem (see [6, 11], cf. [7]), there exists an F -invariant Borel set Z2 ⊂ Z1 such that
µ(Z2) = 1, and, for all z ∈ Z2,

lim inf
n→∞

Re(Fn(z)) < ∞, lim
n→∞

1
n

Snφ(z) =
∫

φ dµ, lim
n→∞

1
n

log(µ(αn(z))) = −hµ.

(8.7)
Fix z ∈ Z2. There thus exists an unbounded increasing sequence {nj}∞

j=1 of positive
integers such that Re(Fnj (z)) � M for some M > 0 and all j � 1. Hence, there exists
T > 0 such that mφ(B(Fnj (z), δ)) � T for all j � 1. It therefore follows from (8.6)
and (8.7) that, for every z ∈ Z2,

lim inf
j→∞

1
nj

log(µφ(αnj−q−pnj
(F q(z)))) �

∫
φ dµ − P(φ).
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Combining this with (8.5) and the last part of (8.7), we get

−hµ � lim inf
j→∞

(
nj

nj − q − pnj

1
nj

log(µφ(αnj−q−pnj
(F q(z))))

)

� lim inf
j→∞

(
nj

nj − q − pnj

)(∫
φ dµ − P(φ)

)
.

But it follows from the definition of the sequence {pn}∞
n=1 that

lim inf
n→∞

n

n − q − pn
= lim inf

n→∞

(
1− q

n
−pn

n

)−1

= lim
n→∞

(
1−pn

n

)−1

=
(

1− β

κ + β

)−1

=
κ + β

κ
.

Hence, ∫
φ dµ − P(φ) � −hµ

κ

κ + β
.

Now letting β ↘ 0, we finally obtain

P(φ) � hµ +
∫

φ dµ.

Inequality
∫

φ dµφ > −∞ follows from [8, Lemma 8.3]. We shall now prove the easier
part of our theorem, that

P(φ) � hµφ
+

∫
φ dµφ.

Indeed, let α be the same partition as in the first part of the proof. Since F restricted
to each atom of the partition α is one-to-one, it follows that αn(x) ⊂ F−n

x (B(Fn(x), δ))
for all x ∈ J(F ) and all n � 0. Applying Birkhoff’s ergodic theorem and the Breiman–
McMillan–Shannon theorem for the F -invariant measure µφ and using Theorem 8.6 along
with Theorem 8.7, we therefore find, for µφ-a.e. x ∈ J(F ), that

−hµφ
� lim inf

n→∞

1
n

log µφ(F−n
x (B(Fn(x), δ)))

� lim inf
n→∞

1
n

(log(2ψ(x)) + Snφ(x) − P(φ)n)

= lim
n→∞

1
n

Snφ(x) − P(φ)

=
∫

φ dµφ − P(φ).

Thus, P(φ) � hµφ
+

∫
φ dµφ and we are done. �

As an immediate consequence of this theorem and (8.4) we obtain

hµφ
< +∞. (8.8)

Since φ is 1+-tame there exists a unique κ > 1 such that φ is κ-tame. Our aim is to
show that the family {µtφ}t�1 is tight. This requires several lemmas. We start with the
following.
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Lemma 8.9. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then

χφ := sup
t�1

{∣∣∣∣
∫

φ dµtφ

∣∣∣∣
}

< +∞.

Proof. It has been proved in [8] that
∫

φ dµtφ = P′(tφ) and that the function t �→
P(tφ) is convex. The latter means that the function t �→ P′(tφ) is non-decreasing. Hence,
P′(tφ) � P′(φ) for every t � 1, and consequently

∫
φ dµtφ �

∫
φ dµφ > −∞ for all t � 1.

The observation that sup{φ(z) : z ∈ J(F )} < +∞ therefore completes the proof. �

In the proofs of the following two lemmas, we occasionally use some results from [8].
They always correspond to analogous results from [10] and the difference between [10]
and [8] is that in [10] the potentials of the form const. + t Re z are considered, while [8]
deals with more general potentials t Re z plus a bounded Hölder continuous function.
The estimates we need here for this more general class of potentials are straightforward
modifications of the corresponding estimates from [10].

Lemma 8.10. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then the family {mtφ}t�1 is tight and its every limit measure (as t → +∞) has a compact
support.

Proof. By Theorem 8.8 and Lemma 8.9,

P(tφ) � −χφt (8.9)

for all t � 1. Corollary 3.13 from [8] applied to the potential tφ states that

mtφ(Qc
n) � 4C4|λ|tκ(tκ − 1)−1 exp(tAφ − P(tφ))e(1−tκ)n, (8.10)

where C4 > 0 is an absolute constant and Aφ = ‖φ + κ Re ‖∞. (Recall that Qc
n = {z ∈

Q : Re z > n}.) This corollary says in fact that the above estimate holds for all n � M(t),
where M(t) can be computed precisely:

M(t) = (2C2|λ|tκ exp(tAφ − P(tφ))(tκ − 1)−1)1/(κt−1),

and C2 > 0 is an absolute constant (compare Proposition 3.8 and Corollary 3.9 in [10],
in which a slightly simpler case φ(z) = − Re z is considered). We therefore have

lim sup
t↗+∞

M(t) = lim sup
t↗+∞

(
2C2

κt − 1

)1/(κt−1)

exp
(

tAφ − P(tφ + tκ log |λ|)
κt − 1

)

� lim sup
t↗+∞

(
2C2

κt − 1

)1/(κt−1)

exp
(

tAφ + χφt + tκ log |λ|
κt − 1

)

= exp
(

Aφ + χφ + κ log |λ|
κ

)
< ∞.
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Combining this and (8.10), we see that there exists M > 0 such that, for all t � 1 and
all n � M ,

mtφ(Qc
n) � 4C4

κt − 1
e(1−κt)n exp(tAφ − P(tφ) + tκ log |λ|). (8.11)

So, employing (8.9), we get

mtφ(Qc
n) � 4C4

κt − 1
exp((1 − κt)n + (Aφ + χφ + κ log |λ|)t).

Fix n0 � M so large that (κt − 1)n0 � (Aφ + χφ + κ log |λ|)t for every t � 1. Then, for
every n � n0 and every t � 1, we get

mtφ(Qc
n) � 2C4

κ − 1
exp((1 − κt)(n − n0)) � 4C4

κ − 1
exp((1 − κ)(n − n0)). (8.12)

Hence,
lim

n→∞

(
sup
t�1

{mtφ(Qc
n)}

)
= 0

and since each set Qn is compact, the proof of the tightness of the family {mtφ}t�1 is
complete. It also follows from (8.12) that, for every t � 1,

mtφ(Qc
n0+1) � 4C4

κ − 1
exp(1 − κt).

This implies that limt→+∞ mtφ(Qc
n0+1) = 0 and, consequently, m(Qn0+1) = 1 for every

limit measure m of the family {mtφ}t�1. Since Qn0+1 is a compact set, we are therefore
done. �

For every t � 1 let ψt = dµtφ/dmtφ. We will also need the following lemma.

Lemma 8.11. If f : C → C is hyperbolic and φ : J(F ) → C is a 1+-tame potential,
then there exists x > 1 such that

sup
t�1

sup
w∈J(F )cx

{ψt(w)} � 1.

Proof. Fix w ∈ J(F )c1, i.e Re w > 1. Treating w as an element of the strip {z ∈
C : −π < Im z � π}, for every k ∈ Z, let the point wk ∈ Q be the only element of
f−1(w + 2πik) (we treat here the function f as defined on the cylinder Q and taking
values in C). Let L̂tφ : Cb → Cb be the normalized Perron–Frobenius operator induced
by the potential tφ. It is given by the formula

L̂tφ(g)(w) = e−P(tφ)
∞∑

k=−∞
etφ(wk)g(wk). (8.13)

It has been proven in [8, Lemma 3.7] (following the proof of [10, Lemma 3.4]) that there
exists a function Kφ : R → [0,∞) such that

L̂n
tφ(1) �

Kt
φ(y)

mtφ(Qy)
(8.14)
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if n � 0, t � 1 and y is chosen so that the inequality

exp(−P(tφ))
+∞∑

k=−∞
exp(tφ(wk)) � 1 (8.15)

is true for all w such that Re w > y. Since we want to keep the same value of y for all
t � 1, we have to check that the inequality (8.15) is satisfied for all y > y0, where y0 is
independent of t. Since φ is a 1+-tame function, there is a unique κ > 1 such that φ is
κ-tame. Recall that Aφ = ‖φ + κ Re ‖∞. It is straightforward to calculate that

∞∑
k=−∞

etφ(wk) � 2etAφ |λ|κt
∞∑

k=0

(Re w + 2πk)−κt � 2etAφ |λ|κt Re w1−κt

κt − 1
. (8.16)

However, we already know (see Lemma 8.9 and Theorem 8.8) that P(tφ) � −χφt; thus,
looking at (8.16), we see that the inequality (8.15) will follow from

exp(t(χφ + Aφ))|λ|κt · y1−κt

κt − 1
� 1

2 . (8.17)

Taking logarithms, we have

t(χφ + Aφ) + κt log |λ| + (1 − κt) log y − log(κt − 1) � − log 2,

which is equivalent to

log y � log 2
κt − 1

− log(κt − 1)
κt − 1

+
t(χφ + Aφ)

κt − 1
(8.18)

and we see that this inequality is satisfied for all y � y0 for some y0 that depends on κ

and Aφ, but it is independent of t as required. It follows from (8.12) that mtφ(Qy) � 1
2

for all y sufficiently large and all t � 1. So, combining this and (8.14) we see that there
exists y > 1 (in fact all y sufficiently large are good) such that

L̂n
tφ(1) � 2Kt

φ(y) (8.19)

for all n � 0 and all t � 1. We fix this value y. Using (8.16) again for some x � y and
w ∈ J(F )cx, we get

∞∑
k=−∞

etφ(wk) � 2etAφ(|λ|)κt x1−κt

κt − 1
.

It therefore follows from (8.9) and (8.13) that

L̂tφ(1)(w) � 2eχφtetAφ(|λ|)κt x1−κt

κt − 1
� 2

κt − 1
e(χφ+Aφ)t(|λ|)κtx1−κt. (8.20)

Since

log
(

2
κt − 1

e(χφ+Aφ)t(|λ|)κtx1−κt

)

=
(

log
(

2
κt − 1

)
+ (χφ + Aφ)t + κ log(|λ|)t + log x − κt log x

)
,
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we therefore see from (8.20) that if x � y > 1 is sufficiently large, then

L̂tφ(1)(w) � (2Kt
φ(y))−1 (8.21)

for all t � 1. Applying the operator L̂tφ to inequality (8.19), using its monotonicity
(following from its positivity, which in turn follows immediately from (8.13)), and using
(8.21), we get

L̂n+1
tφ (1)(w) � L̂tφ(2Kt

φ(y)1)(w) = 2Kt
φ(y)L̂tφ(1)(w) � 1.

It therefore follows from [10, Theorem 4.4] (and its generalization, [8, Theorem 4.4]) that
ψt(w) � 1 for all t � 1 and all w ∈ J(F )cx. �

Combining this lemma and Lemma 8.10, we get the following.

Proposition 8.12. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame
potential, then the family {µtφ}t�1 is tight and its every limit measure (as t → +∞) has
a compact support.

It therefore follows from Prokhorov’s theorem that the set Mφ of all weak limit points
of the family {µtφ}t�1 (as t → +∞) is non-empty. The significance of the set Mφ is
explained by the following main result of this section.

Theorem 8.13. If f : C → C is hyperbolic and φ : J(F ) → R is a 1+-tame potential,
then the non-empty set Mφ is contained in the set of all dynamically maximizing measures
for φ. In particular, this latter set contains measures with compact supports.

Proof. In view of Proposition 8.12 and the paragraph following it, we are left to prove
that each measure in Mφ is maximizing for the function φ. So, fix a measure µ ∈ Mφ.
There then exists an increasing sequence {tn}∞

n=1 diverging to +∞ such that the sequence
{µtnφ}∞

n=1 converges weakly to µ. We shall show first that

lim sup
n→∞

∫
φ dµtnφ �

∫
φ dµ. (8.22)

Indeed, let φk ↘ φ be a sequence of bounded continuous functions converging pointwise
to φ (for example φk = max{φ,−k}). Fix any number T >

∫
φ dµ (note that we have

not ruled out the possibility that
∫

φ dµ = −∞). It follows from Lebesgue’s monotone
convergence theorem that T >

∫
φk dµ for all k � 1 sufficiently large. Fix one such k. Fix

also ε > 0. Since φk is a bounded continuous function and since the sequence {µtnφ}∞
n=1

converges weakly to µ, we have
∫

φk dµ >
∫

φk dµtnφ − ε for all n � 1 sufficiently large.
But

∫
φk dµtnφ �

∫
φ dµtnφ since φk � φ. Combining all these inequalities, we get

T >

∫
φk dµ >

∫
φk dµtnφ − ε >

∫
φ dµtnφ − ε

for all n � 1 sufficiently large. Hence, lim supn→∞
∫

φ dµtnφ � T + ε and, letting ε ↘ 0
and T ↘

∫
φ dµ, formula (8.22) follows. We have already established in the proof of
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Lemma 8.9 that the function t �→ P′(tφ) is non-decreasing. In particular, the limit
limt↗+∞ P′(tφ) exists and, looking at (8.22), we see that

lim
t↗+∞

P′(tφ) �
∫

φ dµ. (8.23)

Seeking contradiction, suppose now that µ is not a maximizing measure for the func-
tion φ. Then there exists a Borel probability F -invariant measure ν on J(F ) such that∫

φ dν >
∫

φ dµ. In particular,
∫

φ dν is a finite number and we fix any R ∈ R such
that

∫
φ dµ < R <

∫
φ dν. Since P(φ) < ∞, it therefore follows from Theorem 8.8 that

hν(F ) < ∞. Therefore, we may consider the linear function lν(t) = hν(F ) + t
∫

φ dν.
It then follows from (8.23) that l′ν(t) =

∫
φ dν > R > P′(tφ) for all t � 1 sufficiently

large. Consequently, lν(t) > P(tφ) for all t � 1 sufficiently large. But this contradicts
Theorem 8.8 and finishes the proof. �

Corollary 8.14. If f : C → C is hyperbolic and φ : J(F ) → R is a 0+-tame potential,
then the set of all maximizing measures contains at least one measure with compact
support.

Proof. The function φ is κ-tame with some κ > 0. So, the function 2φ/κ is 2-tame,
and since both functions φ and 2φ/κ have the same set of maximizing measures, an
application of Theorem 8.13 completes the proof. �

Since − log |F ′(z)| = − log |λ| + log |ez| = − log |λ| + Re z, the function − log |F ′| is
1-tame and consequently, 0+-tame. Therefore, the following result follows immediately
from Theorem 8.13.

Corollary 8.15. There exists a Borel probability F -invariant measure with µ with
compact support that minimizes the Lyapunov exponent χµ =

∫
log |F ′| dµ.

Now, we are in a position to prove a much stronger result that every maximizing
measure for φ has a compact support. This will be done in the sequence of lemmas
below.

Lemma 8.16. For every κ > 1, A > 0, there exists a constant D such that if ψ is
κ-tame and Aφ � A, then ∫

φ dµφ � D.

Proof. Let m0 and µ0 be respectively the conformal measure and the equilibrium
state for the potential φ0(z) = −κ Re(z). We have

∫
φ dm0 �

∫
(−κ Re(z) − Aφ) dm0 − Aφ − κ

∫
Re dm0 � −A − κ

∫
Re dm0.

So, applying Theorem 8.7, we conclude that there exists a constant C ∈ R such that
∫

φ dµ0 � C
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for all κ-tame potentials with Aφ � A. Using Theorem 8.8 we can write

hµφ
+

∫
φ dµφ � hµ0 +

∫
φ dµ0.

Thus, hµφ
+

∫
φ dµφ �

∫
φ dµ0 � C, and, consequently,

∫
φ dµφ � C − hµφ

.

Now, by Ruelle’s inequality (its proof working also in our context can be found in [5]),

hµφ
� 2 ·

∫
log |F ′| dµφ = 2

∫
(log |λ| + Re(z)) dµφ(z) = 2 log |λ| + 2

∫
Re(z) dµφ(z).

Consequently, ∫
φ dµφ � C − 2 log |λ| − 2

∫
Re(z) dµφ(z).

This gives

C − 2 log |λ| �
∫

φ dµφ + 2
∫

Re dµφ

=
∫ ((

1 +
2
κ

)
φ dµφ +

2
κ

(κ Re −φ)
)

dµφ

�
(

1 +
2
κ

) ∫
φ dµφ +

2
κ

Aφ

�
(

1 +
2
κ

) ∫
φ dµφ +

2
κ

A.

Hence, ∫
φ dµφ �

(
1 +

2
κ

)−1(
C − 2 log |λ| − 2A

κ

)
.

We are done. �

As an immediate consequence of this lemma and the proof of Lemma 8.9, we get the
following.

Lemma 8.17 (strengthening of Lemma 8.9). For every κ > 1, A > 0, there exists
a constant χ(κ, A) such that, for every κ-tame potential φ with Aφ � A, we have

sup
t�1

{∣∣∣∣
∫

φ dµtφ

∣∣∣∣
}

� χ(κ, A).

Lemma 8.18 (strengthening of Lemma 8.10). For every κ > 1 and every L > 0,
there exists S > 0 such that if φ is a κ-tame potential with φ+κ Re � L, then the family
mtφ is tight and every limit measure is supported in QS .
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Proof. It is sufficient to notice that the number n0 produced in the proof of
Lemma 8.10 is bounded above by a constant which depends only κ, A and χ(κ, A). �

Lemma 8.19 (strengthening of Lemma 8.11). For all κ > 1, α > 0 and A >

0 there exists x > 0 such that if φ is an α-Hölder continuous κ-tame potential with
‖φ + κ Re ‖α � A, then

sup
t�1

sup
w∈J(F )cx

{ψt(w)} � 1.

Proof. Since the supremum in the right-hand side of (8.18) is finite, we can choose
the common value y0 for all potentials φ satisfying the above conditions. This implies
that the inequality (8.14),

L̂n
tφ(1) �

Kt
φ(y)

mtφ(Qy)
,

is satisfied for all y � y0. Also, the estimates (8.11) and (8.12) are uniform, meaning
that there exists y1 = y1(κ, α, A) such that mtφ(Qy) � 1

2 for all y � y1, all t � 1 and all
potentials φ, as above. Now, it is straightforward to check that (see [8, Proposition 3.6
and Lemma 3.1]) for every κ > 1, α > 0 and A > 0 there exists a function K(y)
such that, for every κ-tame, α-Hölder continuous function φ with ‖φ + κ Re ‖α � L, we
have Kφ(y) � K(y). Now, we finish the proof by proceeding exactly as in the proof of
Lemma 8.11 beginning from the formula (8.14) with Kφ(y) replaced by K(y). �

As an immediate consequence of the last two lemmas and Theorem 8.13, we get the
following.

Proposition 8.20 (strengthening of Proposition 8.12 and Theorem 8.13). For
all α > 0, κ > 1 and L > 0, there exists S > 0 such that if φ is an α-Hölder continuous
κ-tame potential with ‖φ + κ Re ‖α � L, then there exists a maximizing measure for φ

with support in QS .

As the last, and particularly interesting, result of our paper we shall prove the following.

Theorem 8.21. If φ is a Hölder continuous 0+-tame function, then every maximizing
measure for φ has a compact support.

Proof. We may assume without loss of generality that φ is a 2-tame function. Let
α ∈ (0, 1] be a Hölder exponent of φ and let M = ‖φ+2 Re ‖α. Note that M is finite. Let
S be the number ascribed to α, κ = 2 and L = 2M according to Proposition 8.20. Note
also that there exists an α-Hölder continuous function ψ with the following properties:

(a) ψ = φ on QS ;

(b) ψ > φ on Qc
S ;

(c) ‖ψ + 2 Re ‖α � 2M .
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Let µ be any maximizing measure for φ. In view of Proposition 8.20 there exists ν, a
maximizing measure for ψ with support in QS . Then

∫
ψ dν =

∫
φ dν �

∫
φ dµ �

∫
ψ dµ �

∫
ψ dν.

So,
∫

(ψ − φ) dµ = 0, and it therefore follows from (a) and (b) that µ is supported
in QS . �
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