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Abstract

Accurately predicting the vulnerabilities of species to climate change requires a more detailed
understanding of the functional and life-history traits that make some species more susceptible
to declines and extinctions in shifting climates. This is because existing trait-based correlates of
extinction risk from climate and environmental disturbances vary widely, often being idiosyn-
cratic and context dependent. A powerful solution is to analyse the growing volume of biological
data on changes in species ranges and abundances using process-explicit ecological models that
run at fine temporal and spatial scales and across large geographical extents. These simulation-
based approaches can unpack complex interactions between species’ traits and climate and other
threats. This enables species-responses to climatic change to be contextualised and integrated
into future biodiversity projections and to be used to formulate and assess conservation policy
goals. By providing a more complete understanding of the traits and contexts that regulate
different responses of species to climate change, these process-driven approaches are likely to
result in more certain predictions of the species that are most vulnerable to climate change.

Impact statement

I review different approaches for detecting extinction risk from climate change using species
traits. This identified vital roles for process-explicit models in enriching knowledge of functional
and life history traits that regulate species’ responses to shifting climates. More frequent
application of these process-driven approaches to natural history and resurvey data will better
identify species that are most vulnerable to climate change.

Introduction

Anthropogenic climate change is already having measurable ecological impacts (Scheffers et al.,
2016), and these impacts are set to intensify in the coming decades (Steffen et al., 2018).
Consequently, accurate predictions of biodiversity responses to climate change are urgently
needed to better guide conservation, and prevent wide-scale climate-driven biodiversity loss
(Fordham et al., 2020). However, generating these predictions with a high level of confidence will
require a much stronger understanding of the ecological and biophysical mechanisms that cause
populations to decline, and species to go extinct in shifting climates (Briscoe et al., 2023; Urban
et al., 2016).

Most predictions of species’ vulnerability to climate change do not directly consider biological
processes (Urban, 2015), and this can affect their accuracy (Fordham et al., 2018). Ecological,
demographic and biophysical mechanisms are commonly omitted from climate-biodiversity
predictions due to insufficient knowledge and data on biotic responses to climate change (Pacifici
et al., 2015). Another reason is that the ecological models needed to directly simulate these
mechanistic responses are generally complex and computationally demanding, often requiring
specific training and high-performance computing (Briscoe et al., 2019). Consequently, the
proximate causes of climate-driven declines of species remain largely unclear (Moritz andAgudo,
2013).

Measurements of species functional traits (morphological, physiological and phenological
characteristics) that capture variation in life history (growth, reproduction and survival) strat-
egies (Box 1) have developed rapidly in recent decades (Kattge et al., 2020; Tobias et al., 2022;
Wilman et al., 2014), along with standards for collecting and collating this data, ensuring greater
interoperability (Edgar and Stuart-Smith, 2014). This information, which is now widely access-
ible through online databases, is being used to identify species traits associated with differences in
timings and rates of recent range shifts (Bradshaw et al., 2014; Estrada et al., 2015; Tingley et al.,
2012), and establish species and areas most vulnerable to future exposure to climate change
(Andrew et al., 2022; Foden et al., 2013; Garcia et al., 2014a). However, the strength of inference
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that can be made from these (and other) inter-specific trait-based
assessments, requires the processes affecting organismal perform-
ance in shifting climates and environments to be directly captured
in the functional and life-history traits being analysed, which does
not always happen (Beissinger and Riddell, 2021; Schleuning et al.,
2020).

Recent developments in macroecological and biophysical mod-
elling provide new opportunities to directly improve knowledge of
the functional and life-history traits that render some species
vulnerable to declines and extinctions. These mechanistic
approaches are enabling intrinsic traits that regulate species’
responses to climate and other environmental change to be disen-
tangled and deciphered (Tomlinson et al., 2024). Here, proposed
mechanisms are encoded into process-explicit models that simulate
movement, mortality and reproduction in networks of populations
across time. The patterns that they produce are validated against
real-world data or theoretical expectation, allowing complex inter-
actions between ecological and behavioural processes, climatic
drivers, and other threatening activities to be separated and dis-
sected (Pilowsky et al., 2022a). By mechanistically linking species’
traits to organismal responses to climate and environmental dis-
turbances, these process-driven simulation approaches can gener-
ate direct insights into the traits and ecological preferences of
species that are likely to increase vulnerability to climate change
(Canteri et al., 2022; Pearson et al., 2014). When implemented for
multiple species, these process-explicit models provide opportun-
ities to identify species at greatest risk of future population declines
and extinction, encouraging pre-emptive rather than reactionary
conservation efforts.

Here I examine approaches for predicting extinction risk from
climate change using shared measurable characteristics of organ-
isms. I outline why evidence for a relationship between species traits
and extinction remains elusive, explaining why process-explicit
models are needed to improve knowledge of the functional and life
history traits that make some species more vulnerable to declines
and extinction. Moreover, I describe how these approaches can be
applied to natural history and resurvey data to better anticipate the
potential ecological consequences of future climate change.

Trait-based vulnerability to extinction

Evidence suggests that measurable characteristics of organisms—so
called species’ biological traits—regulate the ecological processes of
population declines and loss of species distributions (Chichorro et al.,
2019; Kotiaho et al., 2005; Purvis et al., 2000). Ecological theory
predicts that risks of extinction should be higher for animals with
larger body sizes, smaller ranges, smaller population sizes and poorer
dispersal abilities (McKinney, 1997; Pimm et al., 1988). Larger-
bodied species tend to have slower life histories, smaller population
densities and bigger home ranges, making them particularly suscep-
tible to increased human-drivenmortality (Ripple et al., 2017). Plants
and animals with smaller ranges and population sizes are oftenmore
vulnerable to stochastic events (Matthies et al., 2004), while species
with reduced dispersal capacities are oftenmore prone to climate and
environmental disturbances because they are unable to move large
distances (Chichorro et al., 2022). Although these traits (supported
by theory) are relatively easy to measure or derive, comparative
analyses of extinction risk have shown that correlates of vulnerability
to population declines and range contractions vary widely, often
being idiosyncratic and context-dependent (Davidson et al., 2009;
Fisher and Owens, 2004; Owens and Bennett, 2000).

Accordingly, empirical studies have yielded opposing explan-
ations for biological mechanisms underlying patterns of extinction
risk (Beissinger, 2000) and the central question of what ecological
characteristics make certain species more vulnerable to population
declines and extinctions has never been fully resolved. What is
clear, however, is that the ecological mechanisms that put species
at risk of extinction are complex, and that they vary depending on
the threatening process or combination of processes, including
habitat loss, overexploitation and invasive species (González-Su-
árez et al., 2013; Owens and Bennett, 2000). This makes predicting
ecological outcomes (e.g., population declines, distributional shifts)
from species traits difficult, particularly since threatening processes
tend to operate in unison, often having synergistic effects (Brook
et al., 2008).

Linking species traits to climate change responses

While it is estimated that one in six species is at risk of extinction
from human-driven climate change (Urban, 2015), the proximate
causes of observed population declines and range contractions in
shifting climates remain poorly understood. Consequently, know-
ledge of how species traits mediate climate-driven changes in the
abundances and distributional boundaries of plants and animals is
unclear (Angert et al., 2011; Beissinger and Riddell, 2021; Cahill
et al., 2013). The reasons include a general lack of information on
functional and life-history responses to climate change for most
species (Garcia et al., 2014b), and the mainly statistical methods
being used to analyse the scarce amount of relevant data that is
available (Green et al., 2022).

Most predictions of vulnerability to climate change are done
correlatively—not mechanistically—mainly using statistical-based
ecological nichemodelling approaches (Elith and Leathwick, 2009).
Here, statistical relationships between aspects of climate and spe-
cies’ occurrences are used to estimate the climatic conditions
needed to maintain viable populations of a species today and how
these may shift in the future (Araujo and Peterson, 2012). Modest
data requirements, and simplifying assumptions, enable the poten-
tial impact of future climatic change on the distributions of thou-
sands of species to be explored efficiently (Warren et al., 2018),
providing useful statistical tools for forecasting impacts and design-
ing conservation interventions (Guisan et al., 2013). Spatial pro-
jections of climate change exposure from ecological niche models
have also been used to match species’ traits to responses to shifting
climates (Garcia et al., 2014a). However, the capacity of niche
modelling approaches to directly establish species traits that
increase extinction risk from future climate change is more limited
(Fordham et al., 2013a). This is because they predict potential
exposure to climate change—based on the availability of climatic-
ally suitable habitat—not extinction risk, with no direct limitations
imposed by species traits. Although, new approaches, which enable
phenotypic plasticity and local adaptation of fitness-related traits to
be accounted for in ecological niche models, are enabling climate-
survival responses to be better captured in projections of vulner-
ability to climate change (Benito Garzón et al., 2019).

An alternative way to establish trait-based vulnerabilities of
species to future climate change is to quantify their past effects
on local extinctions, and distributional shifts using statistical
models (Pacifici et al., 2015) (Table 1). Numerous studies have
now used natural history collections and repeated surveys to stat-
istically relate documented shifts in species geographic ranges to
recent climatic change (Bradshaw et al., 2014; Estrada et al., 2015;
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Moritz et al., 2008; Tingley et al., 2012). When analysed together,
using meta-analysis techniques, these studies of species range shifts
can be linked to inter-specific variation in traits, allowing ecological
function to be integrated into assessments of species’ vulnerability
to climate change, and resultant conservation priority schemes
(MacLean and Beissinger, 2017). This is done by asking, What
are the ecological implications of species functional and life-history
traits in changing climates for the fitness and persistence of species?

While these meta-analyses have detected negative impacts of
human-induced climatic change on population declines and range
shifts (Lenoir et al., 2020; Poloczanska et al., 2013), they have not
been able to consistently link variation in observed responses to
climatic change to different functional and life history traits (Angert
et al., 2011; Beissinger and Riddell, 2021; MacLean and Beissinger,
2017). This is probably because of a combination of (i) methodical
issues when quantifying population declines and range shifts
(Beissinger and Riddell, 2021); (ii) difficulties in obtaining precise
measurements of a wide enough spectrum of species traits
(Schleuning et al., 2020); and (iii) problems with disentangling
complex non-linear trait-based responses to climatic change, and
their interplay with other anthropogenic impacts (Taheri et al.,
2021).

Estimates of range shifts and changes in population trajectories
generally have inherent uncertainties owing to imperfect detection
and longitudinal changes in sampling effort and methods, which
makes trait-based inferences often challenging (Hébert and Gravel,
2023). Moreover, commonly available functional and life history
traits used in attribution studies of changes in distribution and

abundance—namely, body size, fecundity and habitat breadth—
are likely to only partially account for processes underpinning
observed responses of species to climatic change (Schleuning
et al., 2020). These issues, and a tendency for studies to use
analytical techniques that assume linear relationships between
species traits and demographic changes (Beissinger and Riddell,
2021), have meant that the biological traits of species identified as
predictors of range shifts and local extinctions under climate
change often differ widely between studies (Wheatley et al.,
2017). This is seen even for assemblages of similar species in
comparable ecosystems (Pinsky et al., 2013; Sunday et al., 2015).
Another important issue is that climatic changes over attribution
time periods are generally small compared to the effects of other
human pressures (habitat loss and degradation, over exploitation
etc.), making it difficult to confidently pinpoint species’ traits
associated with climate vulnerability (Fordham et al., 2016).

Alternatively, small-scale field experiments, laboratory micro-
cosm and larger-scalemesocosm experiments allow direct testing of
the importance of variation in functional and life history traits in
fluctuating environments, potentially improving knowledge of how
future climate change will affect species’ persistence, the structure
and function of ecological communities, and the food webs that
they are embedded in (Stewart et al., 2013). They do this by
providing tractable yet ecologically realistic bridges between sim-
plified experimental conditions and the real world (Fordham,
2015). These experimental approaches indicate that trophic pos-
ition, behaviour and life-history characteristics can all influence
responses to climatic warming (Bestion et al., 2015; Ullah et al.,
2018; Yvon-Durocher et al., 2015). While experiments can provide
valuable information on trait-based responses to climate change
that cannot be readily quantified from field-based surveys (Ullah
et al., 2024), their insights are most relevant to the climate and
environmental conditions under which the study was conducted,
which can be vastly different to local and regional future conditions
(De Boeck et al., 2015). Moreover, because experiments are difficult
and expensive to construct and maintain, experimental inferences
of climate change responses and vulnerabilities are available for
only a narrow range of largely short-lived species, based on experi-
ments that unavoidably simplify climatic forcing (Fordham, 2015).

While growth in experimental and observation data of species
responses to climate change—and their synthesis usingmetanalysis
—will undoubtably improve the taxonomic, spatial and temporal
scale of trait-based vulnerability assessments, process-explicit
simulation models provide an alternative and promising method-
ology for directly identifying ecological mechanisms of extinction
and generating trait-based predictions of climate change vulner-
ability (Green et al., 2022). By generating spatially and temporally

Table 1. Modelling approaches for identifying biological traits that predict vulnerability to climate change

Approach Life-history traits Functional traits Causation Spatially explicit Large extents Multiple interacting drivers

Statistical X X . X X .

Experimental X X X . . X

Biophysical X X X X X .

Individual-based X X X X . X

Population-based X . X X X X

Potential modelling approaches are statistical, experimental, biophysical, individual-based or population-based. Modelling approach determines capability to detect important functional as
well as life-history traits, and establish whether links to climate shifts are based on causation or not. Most approaches are spatially explicit, while some approaches can disentangle trait-based
responses at large (geographical) extents and in response to multiple (extrinsic) drivers of extinction risk that often interact synergistically. Note that “x” indicates that a function is present.

Box 1. Key definitions.

Biophysical model: physiological constraints of a species are used to model
the environmental conditions under which it can exist.
Functional traits: morphological, physiological, biochemical and
phenological characteristics expressed in the phenotypes of individual
organisms, which regulate responses to their environment.
Individual-based model: directly captures how individuals interact and
adapt to the system that the species is embedded in.
Life-history traits: Demographic characteristics of a species that affect its
fitness, including age at maturity, population growth rate, survival rates, sex
ratio etc.
Pattern-oriented modelling: an approach for using empirical patterns for
the selection and calibration of models of complex systems.
Population model: a mathematical model that simulates species’
demographic rates to address both the structure and dynamics of its
population.
Process-explicit model: causal based models that represent the dynamics
of a system as explicit functions of the events that drive change in that
system.
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explicit projections of range and abundance, these mechanistic
approaches enable important interactions between spatiotemporal
drivers and demographic, physiological and behavioural responses
to be disentangled (Pilowsky et al., 2022a).

Process-explicit models

Species attributes that increase their risk of extinction from climate
change can be dissected using process-driven models that simulate
complex interplay between extrinsic (climatic and environmental)
drivers and intrinsic (demographic, biophysical and behavioural)
factors. For example, by simulating movement, mortality and
reproduction in networks of populations across time, spatially-
and temporally-explicit population models enable demographic
responses to multiple and interacting anthropogenic impacts to
be established (Fordham et al., 2013b). These process-explicit
approaches have shown that vulnerability to extinction from future
climate change can be predicted using life-history traits (e.g., gen-
eration length, growth rate, natal dispersal distance) and other
ecological characteristics (e.g., range size, population size, niche
breadth) that affect organismal performance (Pearson et al., 2014).
Likewise, biophysical models that capture the exchange of energy
andmass between an organism and its environment have identified
functional traits (e.g., body surface area, basal metabolism, fur
depth and density) and behavioural mechanisms (e.g., dispersal
time, habitat use) that are likely to regulate species vulnerability to
future climate change (Briscoe et al., 2022; Kearney et al., 2021). In
biophysical approaches, the connection between trait and function
is explicit. However, for population-based approaches the link is
made without direct connections to species’ morphology, physi-
ology, or behaviour (Table 1).

Biophysical models are particularly suited to providing robust
predictions of range limits in new climates (Briscoe et al., 2019), and
are now often used to establish functional traits that are likely to
affect the distributional movements of species under future climate
change (Briscoe et al., 2016; Kearney et al., 2009; Levy et al., 2015).
These include the effects of shape, size, surface area and insulation
on thermal tolerance (Kearney et al., 2021), and the importance of
different life stages for fitness (Levy et al., 2015). Alternatively,
spatially and temporally explicit population models provide com-
putational frameworks that simulate geographic and demographic
declines from multiple and interacting environmental threats
(Fordham et al., 2018). This makes them particularly suitable for
establishing species attributes that increase risk of population
decline and extinction from multiple drivers of global change
(Green et al., 2022). Individual-based modelling approaches are,
in theory, better suited to identifying biological traits associated
with vulnerability to climate change, because they simulate vari-
ation in trait values at the individual level (DeAngelis and Mooij,
2005). However, these approaches are computationally demanding,
making them challenging to run at large geographic extents
(Table 1). Nevertheless, they have established the importance of
life-history and behavioural traits (particularly those mediating
dispersal) in response to climate and environmental disturbance
(Bocedi et al., 2014b).

Pattern-oriented detection of traits

A scarcity of ecological data on species’ responses to climate change
has long been viewed as a barrier to a wider application of

biophysical, population- and individual-based models in biodiver-
sity and climate change research, including trait-based analyses
(Urban et al., 2016).

Pattern-oriented modelling uses observations as filters for
evaluating whether an ecological model is adequate in its structure
and parameterisation to simulate biological processes (Pilowsky
et al., 2022b). Shifts in species geographic ranges and abundances
are often used as targets in pattern-oriented analysis, enabling
population-based, individual-based, and biophysical models to be
built and optimised using parameters with wide but plausible
ranges (Fordham et al., 2022; Grimm et al., 2005; Strubbe et al.,
2023), including for data depauperate, vulnerable species (Pilowsky
et al., 2023). These studies, using process-explicit models and
pattern oriented methods, have revealed the importance of life-
history traits in shifting climates and environments, including
dispersal distance, population growth rate and allee effect
(Fordham et al., 2024; Pilowsky et al., 2023).

Most recently, pattern-oriented modelling has emerged as a
powerful tool for mechanistically reconstructing species’ demo-
graphic responses to multiple millennia of climate and environ-
mental change, including periods when Earth’s climate warmed at
rates similar to what is being forecast for the 21st century
(Fordham et al., 2020). This is being done using inferences of
demographic and distributional change from fossils and ancient
DNA (aDNA). These inferences are utilised as independent val-
idation targets for identifying whether models have the structural
complexity and parameterization needed to simulate species’
range shifts and population declines that happened hundreds to
thousands of years ago (Pilowsky et al., 2022b). This multi-
disciplinary approach—integrating the fields of macroecology,
paleoecology, climatology, and genomics—is revealing species
attributes that increase extinction risk during periods of rapid
climatic change (Canteri et al., 2022). Applying this general
framework to a greater diversity of taxa and time frames, includ-
ing more recent observations of species range movements and
population changes, will likely provide a more thorough under-
standing of the demographic traits that regulate species’ responses
to climate change, leading to better predictions of the species that
are most vulnerable to future climate change (Fordham et al.,
2020).

Looking ahead –

Climatologists have for decades been using process-explicit models
and past observations to disentangle mechanisms of long-term
climate forcing (Braconnot et al., 2012; Sherwood et al., 2020).
Accordingly, a wider usage of process-explicit models for quanti-
fying and reporting climate-driven biodiversity dynamics is likely
to uncover the functional and life history traits that make some
species more prone to climate change, improving conservation
management and policy.

Fortunately, the computer modelling platforms needed to
unpack complex interactions between species traits and climate
change now exist and are widely accessible (Bocedi et al., 2014a;
Fordham et al., 2021; Kearney and Porter, 2020; Visintin et al.,
2020). However, these process-driven modelling approaches con-
tinue to be primarily used to simulate the impact of forecast climate
change on future species ranges and abundances (Briscoe et al.,
2019). This is despite having capacities to directly identify species
traits associated with demographic responses to observed climate
change (Pilowsky et al., 2022a). Future research should now centre
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on using process-explicit models to analyse the growing volume of
recent observations of spatiotemporal changes in species ranges
and abundances in response to accelerating climate change (Lenoir
et al., 2020; Rosenberg et al., 2019). Particularly, if these observed
demographic changes are used as targets in process-explicit and
pattern-oriented models (Figure 1). These establishedmethods and
data promise to provide a deeper understanding of the traits that
species use to respond to climate and environmental disturbances,
improving indicators of the future vulnerability of biodiversity to
worsening planetary change. Because process-explicit modelling
frameworks can be timely to construct, particularly when applied
to multiple species, the initial focus could be on developing these
process-driven approaches for select species that enable testing of
climate-sensitive traits previously identified with statistical analysis
of repeat survey data.

Longitudinal data on the abundances and ranges of a wide
diversity of Earth’s plants and animals, living in terrestrial, marine
and freshwater biomes, in open-access portals and databases has
grown rapidly in recent decades (Edgar and Stuart-Smith, 2014;
Sabatini et al., 2021). As has the diversity of species trait character-
istics in online databases (Tobias et al., 2022; Wilman et al., 2014).
As human-induced climate change worsens in the coming decades,
these resources will become invaluable, particularly if they are
regularly updated and expanded, enabling pronounced climate-
driven responses of biodiversity to be followed in-situ. Analyses
of these repeat survey data with process-driven modelling
approaches and pattern-oriented methods will overcome many of
the problems that have so far limited the identification of functional
and life history traits associated with extinction proneness to

climate change using correlative analytical methods. These include
problems with analysing data that is sparsely distributed in space
and time, and issues with disentangling complex non-linear trait-
based responses to climatic change and their interactions with other
anthropogenic threats.

Temporally and spatially explicit population models have
already been used to reconstruct the range and population
dynamics underpinning observed snapshots of trajectories of
abundances and distributions of birds in the UK at fine temporal
and spatial scales, and across large geographical extents (Fordham
et al., 2018). Applying these and other process-explicit modelling
methods to repeat survey data for species with diverse taxonomic
coverage, is likely to reveal generalisable functional and life-
history traits responsible for the fitness and persistence of species
in shifting climates (Figure 1). These findings are needed imme-
diately to strengthen the relevance of species traits in setting
national and international conservation policy goals (Kissling
et al., 2018).

Given that it is now possible to use process-explicit models to
establish ecological and demographic determinants of species range
shifts and population declines that occurred hundreds to thousands
of years ago, more emphasis should also be placed on identifying
biological responses to rapid climatic events that occurred in the
more distant past (Pilowsky et al., 2022a). Times and places where
paces and magnitudes of past and future forecasts closely match,
and where sufficient paleontological data on biotic responses to
these warming events exists, will provide important opportunities
to better anticipate andmanage the responses of species to changing
climates (Fordham et al., 2020).

Figure 1. Identifying biological traits using process-explicit models, pattern-oriented validation, and resurvey data. A) Spatially explicit populationmodels are built using life history
parameters drawn from wide but plausible ranges. B) These models simulate thousands of plausible patterns of spatiotemporal abundance. C) Pattern-oriented modelling
methods are used to validate these reconstructions of spatiotemporal abundance using observations of demographic change (shifts in range and abundance) from resurvey data.
D) This identifies parameter bounds for life history traits and establishes their relative importance for reconstructing observed shifts in species distributions and abundances in
response to climate and environmental disturbances.
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Conclusion

Process-explicit models are providing a more complete under-
standing of the functional and life-history traits that regulate spe-
cies’ responses to climate change. When run at fine temporal and
spatial scales, and across large geographical extents, they can iden-
tify traits that make certain species particularly vulnerable to cli-
mate change. A greater emphasis on using process-driven
modelling techniques to analyses the growing volume of data on
past changes in species ranges and abundances is likely to better
identify trait-based responses of species to climatic change, and
strengthen conservation policies for protecting species that are
most vulnerable to future climate warming.
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