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Abstract

Peatlands, covering approximately one-third of global wetlands, provide various ecological functions but are highly vulnerable to climate
change, with their changes in space and time requiring monitoring. The sub-Antarctic Prince Edward Islands (PEIs) are a key conservation
area for South Africa, as well as for the preservation of terrestrial ecosystems in the region. Peatlands (mires) found here are threatened by
climate change, yet their distribution factors are poorly understood. This study attempted to predict mire distribution on the PEIs using
species distribution models (SDMs) employing multiple regression-based and machine-learning models. The random forest model per-
formed best. Key influencing factors were the Normalized Difference Water Index and slope, with low annual mean temperature, with
low annual mean temperature, precipitation seasonality and distance from the coast being less influential. Despite moderate predictive abil-
ity, the model could only identify general areas of mires, not specific ones. Therefore, this study showed limited support for the use of SDMs
in predicting mire distributions on the sub-Antarctic PEIs. It is recommended to refine the criteria used to select environmental factors and
enhance the geospatial resolution of the data to improve the predictive accuracy of the models.
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Introduction

Wetlands are a critical global biome and include a variety of per-
manently or seasonally inundated freshwater habitats, such as
lakes, rivers, marshes and coastal and marine areas like estuaries,
lagoons, mangroves and reefs (Ramsar Convention on Wetlands
2018). They provide a wide range of ecosystem services, including
freshwater purification and provision, food, energy resources, ero-
sion control, habitats for wetland-dependent species and benefits
for human well-being and the environment (Millennium
Ecosystem Assessment 2005, Amler et al. 2015, Ramsar
Convention on Wetlands 2018). Mires, a subset of peatlands,
are wetlands where vegetation creates peat by depositing organic
material at the surface without entirely decomposing, due to
deposition occurring at or near the water table (Rydin et al.
1999, 2013, Joosten & Clarke 2002, Dartnall & Smith 2012).
Accounting for approximately one-third of all wetlands globally
(or ∼3% of the Earth’s surface), mires provide a variety of add-
itional ecological services, such as carbon storage, biomass pro-
duction, biodiversity conservation and climate regulation
(Joosten 2012, Grundling et al. 2017, Minasny et al. 2019).
However, mires are highly dependent on cool and humid climatic
conditions, along with low evaporation rates and high effective
moisture, making them particularly vulnerable to climate change

and other environmental stressors (Yu et al. 2009, Essl et al. 2012,
Harenda et al. 2018).

Wetland ecosystems, including mires, are dynamic and sensi-
tive to natural climatic variations. However, anthropogenic activ-
ities and climate change have increased the rate of change in
wetlands, leading to rapid degradation and biodiversity loss com-
pared to other ecosystems (MEA 2005). Human-induced green-
house gas emissions have exacerbated the natural greenhouse
effect, causing unprecedented changes in the global climate sys-
tem (Intergovernmental Panel on Climate Change 2021). In
areas that are experiencing drying because of climate change,
the high water table level required for peatlands is lowered, enab-
ling oxygen to permeate the peatlands, increasing peat degrad-
ation and consequently rapidly releasing stored carbon into the
atmosphere, contributing to greenhouse gas emissions (Joosten
& Clarke 2002, Harenda et al. 2018, Minasny et al. 2019, Food
and Agriculture Organization of the United Nations 2020).
Such changes have a direct impact on the local and indigenous
biota (Smith & Steenkamp 1990, Smith et al. 2001, Smith
2002). To better understand and address these ongoing changes,
it is essential to track and assess the distribution and rates of
loss of wetlands across landscapes.

The Prince Edward Islands (PEIs) are remote sub-Antarctic
islands that have a stable climate with regular rainfall, high
humidity and strong winds (Smith 2002, Pakhomov & Chown
2003, Smith & Mucina 2006, le Roux & McGeoch 2007), which
promote the presence of water bodies and peat formation, result-
ing in the occurrence of mires in the terrestrial vegetation
(Gremmen 1981, Dartnall & Smith 2012; Essl et al. 2012).
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However, similarly to other sub-Antarctic islands, the PEIs have
experienced significant climate changes (Pendlebury &
Barnes-Keoghan 2007, le Roux 2008). Since the 1960s steady
increases in the mean diurnal and annual temperatures and a
decrease in precipitation have been observed in the PEIs, resulting
in a drier and warmer climate (le Roux 2008). The mean annual
temperature increased from 5.4°C in the 1950s to 6.4°C in the
1990s, with average increases of 0.28°C and 0.24°C to daily max-
imum and minimum daily temperatures per decade, respectively,
resulting in an increase from a maximum daily temperature of
7.6°C in the 1950s to 8.6°C in the 1990s and an increase from a
minimum daily temperature of 2.8°C in the 1950s to 3.7°C in
the 2000s (le Roux & McGeoch 2007). The islands have also
experienced declining annual rainfall and increasing numbers of
days without rainfall, along with rising wind speeds and potential
evapotranspiration (le Roux & McGeoch 2007). Additionally,
there is anecdotal evidence that water bodies on Marion Island
are shrinking, resulting in drier conditions, including in mires,
where peat moisture content is decreasing (Hedding & Greve
2018). This latter observation aligns with the consistent decrease
in mire peat moisture content since 1966 (Chown & Smith 1993).
Selkirk (2007) reported similar trends in mires on sub-Antarctic
islands due to decreased precipitation and increasing wind
speed in some parts of the region.

Since peatland areas have distinct hydrologic regimes, climates,
chemistries, landforms, substrates and flora (Bourgeau-Chavez
et al. 2018, Minasny et al. 2019), it may be possible to characterize
and predict their occurrence using species distribution models
(SDMs), which were developed to evaluate the relationship between
known species occurrences and environmental factors thought to
affect their occurrence. SDMs are often used in research into the dis-
tribution of species, ecological repercussions of climate change, as
well as attempts to conserve species or biodiversity as a whole
(Guisan & Zimmermann 2000, McPherson et al. 2004, Franklin
2009), and these predictive models have also been used successfully
at both local and regional levels to map and detect wetlands (Hunter
et al. 2012, Hiestermann & Rivers-Moore 2015, Rebelo et al. 2017).
They have also been used in the sub-Antarctic context to determine
the distributions of plant communities in sub-Antarctic vegetation
(Fitzgerald et al. 2022) and to map sub-Antarctic cushion plants
using satellite imagery and terrain attributes (Bricher et al. 2013).
Könönen et al. (2023) recently used predictive models to model
the suitable environments for palsa mires and peat plateaus across
the Northern Hemisphere permafrost region.

The goal of this research is to investigate how well SDMs can
predict the distribution of mires on the PEIs and the underlying
drivers of their occurrence. However, preparing the data necessary
to train these models in Geographic Information Systems (GISs)
can be time-consuming (as noted by Brown 2014). To overcome
this challenge, the data used in this study were pre-processed and
visualized in QGIS and ArcGIS Pro, with remote sensing techni-
ques utilized to create and prepare additional data as required.
Therefore, this study employs a combination of SDMs, GIS and
remote sensing to simulate the distribution of mires across the
landscapes of the PEIs.

Materials and methods

Study area

The study area consists of the PEIs, which comprise two islands:
Marion Island (46°54′ S, 37°45′ E) and Prince Edward Island

(46°38′ S, 37°57′ E), located in the sub-Antarctic Ocean.
Marion Island is larger and has a low, approximately oval
shape, covering an area of 290 km2 and rising to ∼1230 m
above sea level (a.s.l.; Smith & Mucina 2006). Prince Edward
Island is smaller, covering an area of 46 km2 and rising to
∼672 m a.s.l. It has a distinctive asymmetric form and extensive
vertical relief, with cliffs up to 400 m high on the western side
and up to 500 m high to the north and south of the central
block (see Fig. 1; Gremmen 1981, Rudolph et al. 2020).

The PEIs have an oceanic climate that is characterized by low
temperatures with small seasonal variations, heavy rain, snow,
strong prevailing westerly winds (50 km per hour or greater),
high humidity and frequent cloud cover (Smith 2002,
Pakhomov & Chown 2003, Smith & Mucina 2006, le Roux &
McGeoch 2007, le Roux 2008). The climate on Marion Island var-
ies across the landscape due to variations in aspect, altitude and
recording height (le Roux 2008). The permanent meteorological
station on Marion Island has recorded mostly uninterrupted wea-
ther observations since 1948 (le Roux 2008). Although Prince
Edward Island has no meteorological records, its climate is
assumed to be similar to that of Marion Island due to its proxim-
ity, with a slightly lower diurnal temperature variation (le Roux
2008). Peat formation is common on the PEIs (Gremmen
1981), where the water table is close to the surface for most of
the year due to the wet and cool oceanic climate (Rydin et al.
1999, Raeymaekers et al. 2000). This results in the formation of
waterlogged mires, mostly in lowland areas, which can range
from a depth of a few centimetres to more than 4 m where
drainage is impeded (Gremmen 1981).

Occurrence data

The occurrence data used in this study were obtained from a vege-
tation field survey conducted on Marion Island from 2018 to
2020, which covered all of the main vegetation complexes pro-
posed by Gremmen & Smith (2008). Two methods were used
to collect data: 1) plots were laid out in a stratified random design
based on geology and 2) rapid transects were walked, with vege-
tation scored at random points along the transects. The vegetation
complex at each plot and point on the transects was visually esti-
mated according to Gremmen & Smith (2008) using plant species
abundances and topographical characteristics. One of the vegeta-
tion complexes recorded was mires, which are areas that are
waterlogged. A total of 1415 points were recorded, of which 255
indicated the presence of mires and 1160 indicated other vegeta-
tion complexes (Fig. 2). For this study, points that supported the
mire complex were used to indicate the presence of mires, while
the other vegetation complexes were classified as mire absences.

Environmental variables

To model the distribution of mires on the PEIs, the authors
selected SDM predictor variables that are believed to influence
peatland distribution. Peatlands develop in areas with distinct
hydrologic regimes, climates, chemistries, landforms, substrates
and flora (Bourgeau-Chavez et al. 2018, Minasny et al. 2019).
Three climate variables were chosen for this study, including
annual precipitation (Bio12), which was extracted from
WorldClim at a spatial resolution of 30 arc-seconds (∼1 km;
Fick & Hijmans 2017). Despite known high prediction errors in
remote Southern Ocean islands, such as the PEIs, due to the scar-
city of ground observations, the annual precipitation data from
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WorldClim2 were used because of its high spatial resolution
(∼1 km). This resolution was significantly finer than other avail-
able sources, especially given the small size of the islands, helping
to avoid having only a few pixels of precipitation data (Fick &
Hijmans 2017, Leihy et al. 2018). Additionally, two temperature
variables - daytime mean monthly temperature and night-time
mean monthly temperature - were obtained at a spatial resolution of
1 km (Leihy et al. 2018). Leihy et al. (2018) provided high-resolution
(1 km) Moderate Resolution Imaging Spectroradiometer (MODIS)
land surface temperature observations using a modified spatio-
temporal gap-filling method, covering a monthly time series from
2001 to 2015. Unlike WorldClim2, this dataset was validated using
fine-scale microclimate data and demonstrated a better ability to
describe the thermal heterogeneity of the region, particularly for
sub-Antarctic islands with steep elevational gradients and strong pre-
vailing winds.

A digital elevation model (DEM) with a spatial resolution of
1 m was obtained from South Africa’s National Geo-Spatial
Information (NGI). To prepare the DEM for hydrologic model-
ling, a depressionless DEM was generated using the default para-
meters of the ‘Fill Sinks’ tool in SAGA GIS (Wang & Liu 2006).
DEMs often contain artefact depressions that interrupt flow
paths and alter drainage directions; therefore, removing artefact
depressions from DEMs is essential for accurate flow routing,
ensuring realistic surface water flow representation and reliable

geomorphic and hydrologic modelling outcomes (Lindsay &
Creed 2005). The Topographic Wetness Index (TWI) was
extracted from the DEM using the ‘ArcPy’ script developed by
Wolf & Fricker (2013), which is based on the TWI algorithm of
Beven & Kirkby (1979). Distinct landform classes were extracted
from the DEM using a Topographic Position Index (TPI)
approach, which involved using two neighbourhood sizes to
create an annulus neighbourhood (Radius 1 = 50 m, Radius
2 = 200 m; Weiss 2001). Slope (in degrees) and distance from
the coast were also derived from the DEM. The geology and
soil layers were created by Rudolph et al. (2020) and Lubbe
(2010), respectively.

The study utilized remote sensing data in the form of Sentinel-2
imagery to extract two indices: Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Wetness Index
(NDWI) as proxies for local vegetation productivity and surface
wetness, respectively. These indices were extracted from geometric-
ally and radiometrically corrected images. Due to persistent cloud
cover, a mosaic of three images from 5 October 2020 and one
from 10 October 2020 was created for Marion Island, while a
cloud-free image from 10 November 2017 was used for Prince
Edward Island. The NDVI was used to assess vegetation product-
ivity using near-infrared and red bands, while the NDWI was
used as an indicator of surface wetness or the presence of surface
water using near-infrared and green bands. The Semi-Automatic

Figure 1. The Prince Edward Islands (PEIs) in relation to
South Africa. a.s.l. = above sea level.
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Classification Plugin (QGIS) (Congedo 2021) was used to down-
load Sentinel data, mask the clouds and create the mosaic.
Seasonality was not a significant consideration in the study, as
the mean monthly total rainfall and mean temperature on
Marion Island vary only slightly throughout the year, with
Marion Island experiencing a difference of 4.1°C between the cold-
est and warmest months, while the diurnal temperature varies by
only 1.9°C, and the difference in precipitation between the wettest
and driest months is 600 mm (ranging from 150 to 2100 mm;
Smith 2002, Smith & Mucina 2006, Sadiki 2019).

All of the variables used in the study were resampled to a uni-
form spatial resolution of 10 m using the WGS 84 UTM Zone
37S projection and the same extent (Table I). The DEM was
resampled to a 10 m spatial resolution to match the resolution
of the Sentinel-2 imagery using a bilinear resampling method.

Species distribution modelling

The distribution of mires on the PEIs was modelled using six
commonly used presence-absence SDM algorithms (Table II)
with default settings available within the ‘sdm’ package in R
(Naimi & Araújo 2016, R Core Team 2024). Validation of the
models utilized the 10-fold cross-validation with five replications
(Naimi & Araújo 2016).

Models were created using six variable scenarios, namely:

1) Climate variables
2) Topographic, geology, soil and satellite imagery variables

3) Wetland classification proxy variables, including:
a) The Ramsar Convention classification system
b) The Hydrogeomorphic (HGM) classification system
c) The International Union for Conservation of Nature

(IUCN) Global Ecosystem Typology 2.0
4) All predictor variables

For each variable scenario, collinearity between predictor vari-
ables was assessed using the variance inflation factor (VIF) step-
wise technique analysis (Naimi & Araújo 2016). If VIF values
were larger than 10, one of the collinear variables was removed
prior to modelling. The VIF values were recalculated as a stepwise
process until all values were below the threshold. A summary of
all predictor variables, after accounting for multicollinearity, is
presented for each scenario in Table III.

Scenario 1: Climate variables
This variable scenario only includes the climatic variables
(Table III). None of the three variables were removed based on
VIF.

Scenario 2: Topographic, geology, soil and satellite imagery
variables
This scenario includes all of the predictor variables with the
exclusion of climatic variables (Table III). Due to a strong
correlation between NDVI and NDWI, the former was removed,
leaving eight variables under this variable scenario (Table III).

Figure 2. Survey points on Marion Island showing mire presence and absence. The locations of the largest wetlands, as identified by Smith & Mucina (2006), are
circled in dashed green lines.
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This variable scenario is hereafter referred to as ‘topo-geo-sat
variables’.

Scenario 3: Wetland classification proxy variables
Scenario 3 consisted of three sub-versions, each based on a com-
mon wetland classification method, namely: 1) the Ramsar
Convention classification (Finlayson 2018), 2) the HGM classifi-
cation system (Brinson 1993) and 3) IUCN’s typology for wetland
ecosystem types (Keith et al. 2020b).

The Ramsar Convention classification system. The Ramsar
Convention classification system (Scenario 3a) categorizes wet-
lands into marine and coastal, inland and human-made, with
subcategories based on location, water permanence, soils, sub-
strates and flora (Finlayson 2018). As such, TWI was selected as
a proxy for water permanence and NDVI for vegetation.
Additionally, we included soil variables in this scenario. None
of the variables were removed due to collinearity. This variable
scenario is hereafter referred to as ‘Ramsar proxy variables’.

The HGM classification system. The HGM classification system
(Scenario 3b) is based on the premise that water flows from higher
to lower places and water collects in areas of gentler slopes, hence

hydrology and landforms are the most evident factors that can be
used to characterize wetlands (Semeniuk & Semeniuk 1995, Ollis
et al. 2013). The system categorizes wetlands into classes based on
geomorphic, water supply and hydrodynamic properties (Ollis
et al. 2013). Therefore, landforms (modelled using the TPI), sur-
face wetness (modelled using the NDWI) and TWI were selected
as proxy predictor variables for the occurrence of mires. None of
the three variables were removed based on VIF. This variable
scenario is hereafter referred to as ‘HGM proxy variables’.

The IUCN Global Ecosystem Typology 2.0. The IUCN Global
Ecosystem Typology 2.0 (Scenario 3c) describes the profiles of
biomes and ecosystem functional groups (EFGs), providing key
ecological traits of functionally different ecosystems and their dri-
vers (Keith et al. 2020a). Marion Island is structurally and func-
tionally characteristic of the most climatically harsh variety of
tundra, with some evidence of high Arctic polar deserts (Smith
2008). Smith & Mucina (2006) identified sub-Antarctic tundra
in the lowland areas and sub-Antarctic polar desert limited to
higher elevations as the two major biomes on the PEIs. Thus,
the PEIs can be classified within the polar-alpine biome of the
IUCN Global Ecosystem Typology 2.0, which encompasses the
extensive Arctic and Antarctic regions (Keith et al. 2020a).
Within this functional biome, the polar tundra and deserts EFG
is the most applicable to the PEIs, considering the two major
biomes identified by Smith & Mucina (2006). This functional
group is characterized by extreme cold temperatures and short
growing seasons that exclude trees and a continuous to sparse
cover of cold-tolerant mosses, liverworts, lichens, grasses, low
shrubs and other flowering plants, while permafrost substrates
accumulate peat due to slow decomposition rates. However, des-
pite its global recognition and wide application, the IUCN Global
Ecosystem Typology 2.0 has faced criticism for its inconsistencies
and potential unreliability, particularly regarding the classification
of biomes and EFGs (Mucina 2023). Mucina (2023) offers an
alternative perspective by categorizing all sub-Antarctic islands,
including the PEIs, under two global biomes: Antarctic Tundra
and Southern Polar Desert, both part of the Antarctic Zone zono-
biome. Despite these critiques, the IUCN Global Ecosystem

Table I. Predictor variables (n = 12) used in the study; variables are grouped into four variables scenarios.

Variable type Predictor variable Source

Topographic Distance from coast (m) Derived from DEM from NGI

Elevation (metres above sea level) Derived from DEM from NGI

Slope (°) Derived from DEM from NGI

Topographic Position Index (TPI) Derived from DEM from NGI

Topographic Wetness Index (TWI) Derived from DEM from NGI

Geology and soils Geology Rudolph et al. (2020)

Soils Lubbe (2010)

Satellite imagery Normalized Difference Vegetation Index (NDVI) Copernicus Sentinel data (2017, 2020)

Normalized Difference Water Index (NDWI) Copernicus Sentinel data (2017, 2020)

Climatic Daytime mean monthly temperature Leihy et al. (2018)

Night-time mean monthly temperature Leihy et al. (2018)

Bio12: Annual Precipitation Fick & Hijmans (2017)

DEM = digital elevation model; NGI = National Geo-Spatial Information.

Table II. Regression-based and machine learning species distribution modelling
used in the study.

Model Description Reference

BRT Boosted regression trees Elith et al. (2008)

CART Classification and regression
trees

Breiman et al. (1984)

GAM Generalized additive models Guisan et al. (2002)

GLM Generalized linear models McCullagh & Nelder
(1989)

MARS Multivariate adaptive regression
splines

Friedman (1991)

RF Random forests Breiman (2001)
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Typology 2.0 remains a widely acknowledged classification sys-
tem, which justifies its use in this context. Given the ecological
drivers of polar tundra and desert regions in the IUCN Global
Ecosystem Typology 2.0, the vegetation density proxy (NDVI),
temperature and precipitation were chosen as proxies for peatland
occurrence. NDVI effectively captures the health and distribution
of vegetation, which are crucial where plant cover directly reflects
wetland conditions. Temperature data are vital for understanding
permafrost dynamics (these are absent from the PEIs;
Boelhouwers et al. 2008) and seasonal thawing, which influence
peat accumulation and stability. Precipitation data are critical
for assessing water availability and the overall hydrological bal-
ance, which affect both soil moisture and the development of peat-
lands. None of the variables were removed based on VIF. This
variable scenario is hereafter referred to as ‘IUCN proxy variables’.

Scenario 4: All predictor variables
All 12 predictor variables (Table I) were considered under this
variable scenario. The VIF revealed a correlation between NDVI
and NDWI, as well as between Annual Precipitation and
Elevation. Therefore, NDVI and Elevation were removed due to
multicollinearity issues, resulting in total of 10 variables under
this variable scenario. This variable scenario is hereafter referred
to as ‘all variables’.

Model comparison

The area under the curve (AUC) of a receiver operating character-
istic plot and the true skill statistic (TSS) are commonly used to
assess SDM predictive performance (Fielding & Bell 1997,
Allouche et al. 2006), allowing for comparison across models,
and thus they were used in this study. AUC values vary from 0
to 1, with an AUC score between 0.9 and 1.0 indicating an excel-
lent model, between 0.8 and 0.9 indicating a good model, between
0.7 and 0.8 indicating a fair model, between 0.6 and 0.7 indicating
a poor model and between 0.5 and 0.6 indicating a failed model
(Swets 1988, González-Ferreras et al. 2016). As such, an AUC
of at least 0.7 is required for a model to be considered sufficient

for modelling species distributions (Swets 1988). Although it is
widely accepted as the standard technique for assessing SDM
correctness, others (see Mainali et al. 2015, Leroy et al. 2018,
Shambani et al. 2018) do not advocate using this metric as a com-
parison measure of model accuracy (Termansen 2006, Austin
2007, Lobo 2008, Peterson 2008, Jiménez-Valverde 2012). As a
result, the AUC is frequently employed in combination with
another metric when utilized as a measure of accuracy (Mainali
et al. 2015, Leroy et al. 2018).

As an alternative, Allouche et al. (2006) suggest using the TSS
as a measure of SDM success. The metric compares the propor-
tion of correct predictions to the proportion of hypothetical pre-
dictions, disregarding any predictions that may be due to random
guesses (Allouche et al. 2006). The TSS is not affected by species
prevalence and the size of the validation dataset (Allouche et al.
2006). Unlike the AUC, the TSS requires that the resulting con-
tinuous model predictions be transformed into binary predictions
based on a threshold (Fielding & Bell 1997). The threshold was
selected as the value that maximized the sum of sensitivity and
specificity, which is one of the better threshold selection methods
for presence-absence data (Liu et al. 2005). TSS values less than
0.2 are considered failed or null models, values between 0.2 and
0.4 are considered poor, values between 0.4 and 0.6 are considered
fair and values greater than 0.6 are considered good to excellent
models (González-Ferreras et al. 2016).

Results

Model comparison

The AUC and TSS for all 36 models in this study indicated poor
to fair model performance (AUC mean = 0.68, TSS mean = 0.34;
Table IV). The best models were developed on variables from
Scenarios 2 (topographic, geology, soil, and satellite imaging vari-
ables) and 4 (all variables; Fig. 3), while the modelling techniques
with the highest AUC and TSS scores were boosted regression
trees and random forest (RF) models (Fig. 4). The RF model
based on Scenario 4 variables performed the best overall, outper-
forming all other models for both measures, with an AUC value

Table III. Predictor variables for each scenario with collinearity accounted for by removing highly collinear variables (variance inflation factor > 10). Final variable
selection is shown. (See main text for details regarding the variable scenarios.)

Predictor variable

Variable scenario

Climate Topo-geo-sat Ramsar HGM IUCN All

Annual Precipitation (Bio12) X X X

Daytime mean monthly temperature X X X

Night-time mean monthly temperature X X X

Distance from coast X X

Elevation X

Slope X X

Topographic Wetness Index (TWI) X X X X

Topographic Position Index (TPI) X X X

Normalized Difference Vegetation Index (NDVI) X X

Normalized Difference Water Index (NDWI) X X X

Geology X X

Soils X X X
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of 0.74 and a TSS of 0.42 (Table IV). Therefore, the model was
selected as the best model to predict the distribution of mires
on the PEIs.

A variable importance analysis was performed to determine the
extent to which each predictor contributed to the prediction of mire
occurrence (Fig. 5). The most important variables were NDWI with
a 36% contribution to the model, followed by slope with a 29%
contribution to the model and night-time mean monthly tempera-
ture with a 13% contribution to the model. Annual precipitation,
distance from the coast, TPI and daytime mean monthly

temperature also made considerable contributions to the model,
with contributions ranging from 9% to 5%. Geology and soils
had minimal importance, contributing only 2% and 3% to the
model, respectively. As such, they were removed from the predictor
variables used to train the RF model to predict the distribution of
mires on the PEIs. This decision was also supported by the unavail-
ability of a soil dataset for Prince Edward Island; such a dataset was
only available for Marion Island. The removal of the two variables,
as expected due to their low relative importance to the model, did
not change model performance, with the performance

Figure 3. Box plots showing the distribution of area under the curve (AUC) and true skill statistic (TSS) values for each variable scenario for all species distribution
models.

Table IV. The mean area under the Curve (AUC) and true skill statistic (TSS) values and their standard deviations (SDs), associated with 10-fold cross-validation (five
replications) of models (see Table II for model definitions) run using six variable scenarios (see Table III for variable scenarios and main text for details regarding the
variable scenarios). Fair-performing models according to the AUC and TSS values are indicated in bold alone and bold and italics, respectively.

Model Metric

Variable scenario

Climate Topo-geo-sat Ramsar HGM IUCN All

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BRT AUC 0.65 0.06 0.72 0.07 0.67 0.06 0.70 0.06 0.68 0.05 0.73 0.06

TSS 0.30 0.10 0.40 0.12 0.36 0.09 0.37 0.10 0.35 0.07 0.41 0.08

CART AUC 0.60 0.03 0.68 0.06 0.66 0.06 0.64 0.06 0.68 0.04 0.71 0.07

TSS 0.18 0.07 0.29 0.10 0.30 0.10 0.26 0.10 0.30 0.07 0.35 0.11

GAM AUC 0.63 0.04 0.72 0.06 0.68 0.07 0.70 0.06 0.65 0.04 0.73 0.05

TSS 0.27 0.08 0.39 0.11 0.35 0.11 0.37 0.09 0.32 0.07 0.42 0.09

GLM AUC 0.62 0.04 0.71 0.04 0.66 0.03 0.70 0.04 0.66 0.04 0.71 0.04

TSS 0.27 0.08 0.38 0.06 0.32 0.06 0.37 0.07 0.33 0.07 0.39 0.07

MARS AUC 0.61 0.05 0.69 0.05 0.66 0.05 0.69 0.05 0.65 0.05 0.70 0.04

TSS 0.26 0.08 0.36 0.08 0.34 0.11 0.37 0.09 0.31 0.07 0.36 0.08

RF AUC 0.69 0.06 0.72 0.06 0.65 0.04 0.67 0.06 0.71 0.04 0.74 0.06

TSS 0.34 0.08 0.39 0.09 0.30 0.08 0.32 0.10 0.37 0.06 0.42 0.09
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measurement metrics remaining the same (AUC = 0.74, TSS =
0.42). Overall, the analysis indicated that environmental variables
related to topography, hydrology and climate were the most
important predictors of mire occurrence on the island.

The response curve for NDWI (Fig. 6a) indicates a steep
decline in the probability of mire occurrence as NDWI values
increase. NDWI values represent the proportion of surface
water, and as mires are known to occur where there is high soil
moisture, this suggests that mires are unlikely to occur in areas
where water is visible at the surface, such as open surface water.
Based on the response curve for the slope (Fig. 6b), there is an
increase in the probability of mire occurrence with increasing
slope from ∼30° to 62°. This suggests that mires are more likely

to occur on steeper slopes rather than flatter ones. However,
there is also some indication that mires may prefer slopes between
0° and 10°, although the probability of occurrence on such slopes
is lower than for steeper slopes.

The distribution of mires on the Prince Edward Islands

As no training data (mire presence-absence) exist for Prince
Edward Island, the model trained on Marion Island was projected
onto Prince Edward Island. The binary map indicates that mires
on Prince Edward Island mostly occur on the eastern side of the
island, while Prince Edward Island’s mires are prevalent in the

Figure 4. Box plots showing the distribution of area under the curve (AUC) and true skill statistic (TSS) values for each model type across all variable scenarios (see
Table II for model definitions).

Figure 5. Relative variable importance of the variables used in the prediction of the distribution of mires on Marion Island of the best model (random forest model
with all predictor variables). NDWI = Normalized Difference Water Index; TPI = Topographic Position Index; TWI = Topographic Wetness Index.
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Figure 6. Response curves for each of the eight variables (except the categorical variables (soils and geology)), indicating the effect of a predictor variable on the
probability of the response variable. Values closer to 1 on the y-axis indicate a high probability of occurrence at a range of predictor variable values on the x-axis.
The curves include standard deviation values, highlighted by greyed areas for continuous variables and error bars for categorical variables, which show the vari-
ability in predicted probabilities across different ranges of each predictor variable. a. Normalized Difference Water Index (NDWI): shows the effect of water presence
on the probability of occurrence. b. Slope (degrees): represents the impact of terrain slope on the probability of occurrence. c. Night-time mean monthly tempera-
ture (°C): shows how the average night-time temperature affects the probability of occurrence. d. Annual precipitation: displays the effect of total yearly rainfall on
the likelihood of the response variable. e. Distance from coast: Indicates how the proximity to the coast influences the probability of occurrence. f. Landforms
(Topographic Position Index): illustrates the influence of terrain shape, such as valleys or ridges, on the probability of occurrence. g. Daytime mean monthly tem-
perature: shows how average daytime temperatures affect the probability of occurrence. h. Topographic Wetness Index (TWI): represents the potential for water
accumulation based on topography.
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north-western and south-eastern parts of the island, where plains
are the dominant landform (Fig. 7).

Discussion

The ability of multiple regression-based and machine learning
species distribution modelling algorithms (Table II) to predict
the distribution of mires on the PEIs using several combinations
of predictor variables (Table III) was assessed in this study. The
best model in this study performed only ‘fairly’ (i.e. moderately
well; AUC = 0.74, TSS = 0.42). Therefore, the predictive power
of this study’s models was limited.

While the best model was able to identify general regions
where mires were known to occur, it was not as accurate at
predicting the occurrence of individual mires. One possible
explanation for this could be that some mires on the PEIs were

small and confined to a limited area, with an approximate size
of 3 × 3 m. The input data used in the model had a coarser reso-
lution than this. This mismatch in sampling and modelling
resolution may have resulted in limited matching between the
precise locations of mires and the predicted locations.
Additionally, the distribution of mires on Marion Island is patchy
in certain areas, with vegetation changing rapidly from mire to
non-mire vegetation and back again over short distances; this
variability has already noted by Momberg et al. (2021). Overall,
the study suggests that further refinement of the models and
more precise data collection may be necessary to improve the
accuracy of mire distribution predictions on the PEIs.

The models that performed the best in this study utilized vari-
ables from Scenario 2 (topo-geo-sat variables) and Scenario 4 (all
variables). The two most important predictor variables, slope and
NDWI, were consistently included in the best models across

Figure 7. Predicted distributions of mires on a. Marion
Island and b. Prince Edward Island. The white area on
the western side of Marion Island indicates a region
where mires could not be modelled due to the lack of
available satellite data and therefore no surface wetness
information being available.
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Scenarios 2 and 4. Conversely, models relying solely on climatic
variables (Scenario 1) performed the worst across all measures,
as shown in Fig. 3. The input variables, although resampled to
10 m of the satellite imagery, have different spatial resolutions
in their original format. Climate variables at 30 arc-seconds sim-
ply do not capture the spatial variations required for a fine-scale
study. The same applies to the coarse-scale geology and soil layers
that required removal before final modelling based mostly on
poor spatial resolution. The original spatial resolution of the
input variable is thus an important factor to consider for future
modelling. In addition, some variables might have been excluded
completely, as in many cases the required proxy data used to pre-
dict mire occurrence were not available. Regardless, a comparison
of the performance of models based on climatic factors to those
based on a combination of variables, including topography and
satellite imagery-derived variables, indicates that the latter better
determine the prevalence of mires across the terrain at the spatial
scale examined in this study.

The response curves of the model variables (shown in Fig. 6)
indicate that mires are more likely to occur in areas where
NDWI values (which serve as proxies for surface water) fall
between -0.75 and -0.25. This range of values indicates the lack
of open surface water and is commonly associated with land-cover
classifications such as vegetation, bare soil or rock. This implies
that while mires are habitats that require high soil moisture,
their water is typically not visible at the surface on the PEIs. As
mires are characterized by a layer of peat at the surface covered
by vegetation, this range of values is plausible. The finding that
the model suggests mires on the PEIs prefer slopes between 30°
and 62°, with some preferring gentler slopes between 0° and
10°, is somewhat surprising given that the largest mires on
Marion Island are known to occur on undulating landscapes
with gentle slopes. While this discrepancy may suggest that the
model is flawed, it is important to consider the complexity of
the landscape on Marion Island. Mires on Marion Island often
have exposed ridges and plateaus around their edges (Yeloff
et al. 2007), which may not have been captured at the scale of
the study (10 m), potentially leading to a generalization of slopes,
ridges and plateaus, influencing the modelling of mire occurrence.
Moreover, the variability in vegetation cover, soil moisture and
other factors across the island may also contribute to the incon-
sistency between the model’s predictions and observations.
These environmental factors can vary greatly over short distances,
as demonstrated by Momberg et al. (2021) on Marion Island,
where wind stress was linked to species richness, vegetation
cover and community composition using fine-scale, field-
collected data. As the model does not account for this fine-scale
variation, it struggles to accurately predict mire occurrence and
distribution. Therefore, it is necessary to conduct further investi-
gation to explore the potential sources of bias in the model and
refine it accordingly. Overall, the findings highlight the need for
caution when interpreting the results of species distribution mod-
elling, particularly in complex and heterogeneous landscapes
where small-scale variations may have significant impacts on
the occurrence and distribution of species.

The predicted distribution of mires on Marion Island and
Prince Edward Island (Fig. 7) corresponds somewhat to the
areas in which mires are described as common. Smith &
Mucina (2006) state that ‘mire vegetation is found in most low-
land areas, being most extensive below 200 m, but found up to
400 m altitude. On Marion Island approximately 30% of the
area below 100 m and approximately 3% of that between 100

and 300 m is occupied by mire vegetation; the largest mires on
Marion Island are found on the coastal plain between Repetto’s
Hill and Long Ridge, inland of East Cape, Macaroni Bay and
on the western coastal plain between Kleinkoppie and
Kampkoppie.’ However, it should be noted that mires on the west-
ern side of Marion Island are not as common as they are on the
eastern side. Figure 2 offers a visual depiction of this description.
Based on this description, the model was able to predict two of
the large mires known to exist on the eastern coast of Marion
Island, on the coastal plain between Repetto’s Hill and Long
Ridge, inland of East Cape, Macaroni Bay. Smith & Mucina
(2006) indicated that a third mire exists on the western coastal
plain between Kleinkoppie and Kampkoppie; however, the
model predicted a minimal extent of mires in this area. In add-
ition to the fact that prediction was impossible for a small section
of the area, this underestimation could suggest the absence of crit-
ical environmental factors. Additionally, variations in environ-
mental factors, such as climate, between the eastern and
western sides of the island could also affect the model’s predictive
ability.

For Prince Edward Island, the model suggests mires are com-
mon in the north-western and south-eastern sections of the
island, where plains represent the major landform and slopes
are gentler. Whether the SDM trained on data from Marion
Island can be used to accurately predict distributions of mires
on Prince Edward Island remains to be determined. While the
PEIs experience similar climates (le Roux 2008) and possess simi-
lar geologies and landforms, Marion Island has permanent
human habitation and many more invasive species than Prince
Edward Island (Greve et al. 2017, 2020). This is because, for con-
servation reasons, Prince Edward Island may only be accessed for
short periods of time at intervals greater than 4 years, and visits
sometimes happen even less frequently. Human activities and
invasive species affect not only individual species, but also ecosys-
tem processes (Smith 2002, Greve et al. 2017), which could poten-
tially influence the position of mires. With both islands thought to
be similar in environmental variables, this difference regarding
human activity (and invasive species presence) is worth noting,
as the prediction based on Marion Island data might not be suit-
able for mire prediction on Prince Edward Island. However, with-
out the relevant datasets required for Prince Edward Island to
perform such modelling, the results from Marion Islands provide
the next best option for modelling mire occurrence on Prince
Edward Island.

Conclusion

We showed some, but not very strong, support for the use of
SDMs in predicting mire distributions on sub-Antarctic Marion
Island. Our models identified most of the general areas in
which mires occur and would thus be useful in predicting for
potential mire presence over broader regions if the methods
used here are applied to other sub-Antarctic islands. While the
models were not very successful at identifying mires at finer
grain, improved geospatial layers at finer resolution could improve
prediction. Of note is that climate played almost no role in pre-
dicting the distribution of mires on Marion Island. This finding
implies that, within the range of climatic variation considered
in this study, non-climatic factors were more influential. Yet it
is also important to note that the impact of climate change on
mire distribution might not be immediately apparent unless
there are significant shifts in climatic conditions. Regardless,
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there are some indications that mires on Marion Island are drying
out due to ongoing climate change (Hedding & Greve 2018), and
such changes can be attributed to macroclimatic changes that
simultaneously affect the whole island. Considering the present
climatic trajectory on the PEIs, the islands can be expected to
become warmer and dryer, which will dry out mires and poten-
tially reduce their distribution over the terrain.
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