The Dutch Identity is a useful way to reexpress the basic equations of item response models that relate the manifest probabilities to the item response functions (IRFs) and the latent trait distribution. The identity may be exploited in several ways. For example: (a) to suggest how item response models behave for large numbers of items—they are approximate submodels of second-order loglinear models for 2J tables; (b) to suggest new ways to assess the dimensionality of the latent trait—principle components analysis of matrices composed of second-order interactions from loglinear models; (c) to give insight into the structure of latent class models; and (d) to illuminate the problem of identifying the IRFs and the latent trait distribution from sample data.