We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
In this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.
We show that the valuation ring $F_q [[t]]$ in the local field $F_q \left( t \right)$ is existentially definable in the language of rings with no parameters. The method is to use the definition of the henselian topology following the work of Prestel-Ziegler to give an ∃-$F_q $-definable bounded neighbouhood of 0. Then we “tweak” this set by subtracting, taking roots, and applying Hensel’s Lemma in order to find an ∃-$F_q $-definable subset of $F_q [[t]]$ which contains $tF_q [[t]]$. Finally, we use the fact that $F_q $ is defined by the formula $x^q - x = 0$ to extend the definition to the whole of $F_q [[t]]$ and to rid the definition of parameters.
Several extensions of the theorem are obtained, notably an ∃-∅-definition of the valuation ring of a nontrivial valuation with divisible value group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.