We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Verbal memory deficits are linked to cannabis use. However, self-reported episodic use does not allow for assessment of variance from other factors (e.g., cannabis potency, route of consumption) that are important for assessing brain-behavior relationships. Further, co-occurring nicotine use may moderate the influence of cannabis on cognition. Here we utilized objective urinary measurements to assess the relationship between metabolites of cannabis, 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THCCOOH), and nicotine (cotinine) on verbal memory in young adults.
Method:
Adolescents and young adults (n = 103) aged 16–22 completed urinary drug testing and verbal memory assessment (RAVLT). Linear regressions examined the influence of THCCOOH and cotinine quantitative concentrations, and their interaction, on RAVLT scores, controlling for demographics and alcohol. Cannabis intake frequency was also investigated. Secondary analyses examined whether past month or recency of use related to performance, while controlling for THCCOOH and cotinine concentrations.
Results:
THCCOOH concentration related to both poorer total learning and long delay recall. Cotinine concentration related to poorer short delay recall. Higher frequency cannabis use status was associated with poorer initial learning and poorer short delay. When comparing to self-report, THCCOOH and cotinine concentrations were negatively related to learning and memory performance, while self-report was not.
Conclusions:
Results confirm the negative relationship between verbal memory and cannabis use, extending findings with objective urinary THCCOOH, and cotinine concentration measurements. No moderating relationship with nicotine was found, though cotinine concentration independently associated with negative short delay performance. Findings support the use of both urinary and self-report metrics as complementary methods in substance use research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.