We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most recordings of verbal fluency tasks include substantial amounts of task-irrelevant content that could provide clinically valuable information for the detection of mild cognitive impairment (MCI). We developed a method for the analysis of verbal fluency, focusing not on the task-relevant words but on the silent segments, the hesitations, and the irrelevant utterances found in the voice recordings.
Methods:
Phonemic (‘k’, ‘t’, ‘a’) and semantic (animals, food items, actions) verbal fluency data were collected from healthy control (HC; n = 25; Mage = 67.32) and MCI (n = 25; Mage = 71.72) participants. After manual annotation of the voice samples, 10 temporal parameters were computed based on the silent and the task-irrelevant segments. Traditional fluency measures, based on word count (correct words, errors, repetitions) were also employed in order to compare the outcome of the two methods.
Results:
Two silence-based parameters (the number of silent pauses and the average length of silent pauses) and the average word transition time differed significantly between the two groups in the case of all three semantic fluency tasks. Subsequent receiver operating characteristic (ROC) analysis showed that these three temporal parameters had classification abilities similar to the traditional measure of counting correct words.
Conclusion:
In our approach for verbal fluency analysis, silence-related parameters displayed classification ability similar to the most widely used traditional fluency measure. Based on these results, an automated tool using voiced-unvoiced segmentation may be developed enabling swift and cost-effective verbal fluency-based MCI screening.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.