We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Traumatic brain injury (TBI)-induced anxiety is a common but under-investigated disorder, for which neuroinflammation is a significant contributor. Here we aim to investigate the protective effects of genistein, a plant-derived anti-inflammatory drug, against TBI-induced anxiety, and the underlying mechanisms.
Methods:
A rat model of TBI was constructed using the lateral fluid percussion injury method. Genistein at the doses of 5, 10, and 20 mg/kg were used to treat rats at 30 min, 12 h, 24 h, 48 h, and 72 h up to 14 days after TBI. The evaluation of neurological deficit was performed preoperatively, on days 1, 3, 7, and 14 after TBI. The elevated plus maze test was carried out to assess anxiety and explorative behaviours, and the open field test was performed to assess locomotive activities. Brain injury was assessed by measuring brain water content and TdT-mediated dUTP Nick-End Labeling staining. Inflammatory responses were examined using enzyme-linked immunosorbent assay. The mRNA and protein expression were analysed using real-time polymerase chain reaction and Western blot, respectively.
Results:
In the behavioural level, genistein treatment alleviated TBI-induced anxiety behaviours and neurological deficit in rats. In the meanwhile, brain oedema was also reduced by genistein treatment, showing alleviating effects of genistein at the pathological level. TUNEL staining also showed reduced apoptosis in rats treated with genistein. Genistein also inhibited Nlrp3/caspase-1 signalling, unveiling the effects of genistein in altering molecular pathways in brains with TBI.
Conclusion:
Genistein alleviates anxiety-like behaviours in TBI rats, which may be mediated via inhibiting Nlrp/caspase-1 signalling pathway.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.