We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Glutamate is the major excitatory neurotransmitter in the brain, with up to 40% of all synapses being glutamatergic. An altered glutamatergic transmission could play a critical role in working memory deficts observed in schizophrenia and could underline progressive changes such as grey matter loss throughout the brain. The aim of the study was to investigate if gray matter volume and working memory could be modulated by a genetic polymorphism related to glutamatergic function. Fifty schizophrenia patients underwent magnetic resonance and working memory testing outside of the scanner and were genotyped for rs4354668 EAAT2 polymorphism. Carriers of the G allele had lower gray matter volumes than T/T homozygote and worse working memory performance. Poor working memory performance was associated with gray matter reduction. Differences between the three genotypes are more relevant among patients showing poor performance at the 2-back task. Since glutamate abnormalities are known to be involved in excitotoxic processes, the decrease in cortical thickness observed in schizophrenia patients could be linked to an excess of extracellular glutamate. The differential effect of EAAT2 observed between good and poor performers suggests that the effect of EEAT2 on gray matter might reveal in the presence of a pathological process affecting gray matter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.