Using the kernel representation of a continuous-time Lévy-driven ARMA (autoregressive moving average) process, we extend the class of nonnegative Lévy-driven Ornstein–Uhlenbeck processes employed by Barndorff-Nielsen and Shephard (2001) to allow for nonmonotone autocovariance functions. We also consider a class of fractionally integrated Lévy-driven continuous-time ARMA processes obtained by a simple modification of the kernel of the continuous-time ARMA process. Asymptotic properties of the kernel and of the autocovariance function are derived.