We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent studies suggest that close-range blast exposure (CBE), regardless of acute concussive symptoms, may have negative long-term effects on brain health and cognition; however, these effects are highly variable across individuals. One potential genetic risk factor that may impact recovery and explain the heterogeneity of blast injury’s long-term cognitive outcomes is the inheritance of an apolipoprotein (APOE) ε4 allele, a well-known genetic risk factor for Alzheimer’s disease. We hypothesized that APOE ε4 carrier status would moderate the impact of CBE on long-term cognitive outcomes.
Methods:
To test this hypothesis, we examined 488 post-9/11 veterans who completed assessments of neuropsychological functioning, psychiatric diagnoses, history of blast exposure, military and non-military mild traumatic brain injuries (mTBIs), and available APOE genotypes. We separately examined the effects of CBE on attention, memory, and executive functioning in individuals with and without the APOE ε4 allele.
Results:
As predicted, we observed a differential impact of CBE status on cognition as a function of APOE ε4 status, in which CBE ε4 carriers displayed significantly worse neuropsychological performance, specifically in the domain of memory. These results persisted after adjusting for clinical, demographic, and genetic factors and were not observed when examining other neurotrauma variables (i.e., lifetime or military mTBI, distant blast exposure), though these variables displayed similar trends.
Conclusions:
These results suggest APOE ε4 carriers are more vulnerable to the impact of CBE on cognition and highlight the importance of considering genetic risk when studying cognitive effects of neurotrauma.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.