We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Key lifestyle-environ risk factors are operative for depression, but it is unclear how risk factors cluster. Machine-learning (ML) algorithms exist that learn, extract, identify and map underlying patterns to identify groupings of depressed individuals without constraints. The aim of this research was to use a large epidemiological study to identify and characterise depression clusters through “Graphing lifestyle-environs using machine-learning methods” (GLUMM).
Methods
Two ML algorithms were implemented: unsupervised Self-organised mapping (SOM) to create GLUMM clusters and a supervised boosted regression algorithm to describe clusters. Ninety-six “lifestyle-environ” variables were used from the National health and nutrition examination study (2009–2010). Multivariate logistic regression validated clusters and controlled for possible sociodemographic confounders.
Results
The SOM identified two GLUMM cluster solutions. These solutions contained one dominant depressed cluster (GLUMM5-1, GLUMM7-1). Equal proportions of members in each cluster rated as highly depressed (17%). Alcohol consumption and demographics validated clusters. Boosted regression identified GLUMM5-1 as more informative than GLUMM7-1. Members were more likely to: have problems sleeping; unhealthy eating; ≤ 2 years in their home; an old home; perceive themselves underweight; exposed to work fumes; experienced sex at ≤ 14 years; not perform moderate recreational activities. A positive relationship between GLUMM5-1 (OR: 7.50, P < 0.001) and GLUMM7-1 (OR: 7.88, P < 0.001) with depression was found, with significant interactions with those married/living with partner (P = 0.001).
Conclusion
Using ML based GLUMM to form ordered depressive clusters from multitudinous lifestyle-environ variables enabled a deeper exploration of the heterogeneous data to uncover better understandings into relationships between the complex mental health factors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.