We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Alzheimer’s disease (AD) is known to impact semantic access, which is frequently evaluated using the Category Fluency (Animals) test. Recent studies have suggested that in addition to overall category fluency scores (total number of words produced over time), poor clustering could signal AD-related cognitive difficulties. In this study, we examined the association between category fluency clustering performance (i.e., stating words sequentially that are all contained within a subcategory, such as domestic animals) and brain pathology in individuals with autosomal dominant Alzheimer’s disease (ADAD).
Methods:
A total of 29 non-demented carriers of the Presenilin1 E280A ADAD mutation and 32 noncarrier family members completed the category fluency test (Animals) and the Mini-Mental State Examination (MMSE). The participants also underwent positron emission tomography (PET) scans to evaluate in vivo amyloid-beta in the neocortex and tau in medial temporal lobe regions. Differences between carriers and noncarriers on cognitive tests were assessed with Mann-Whitney tests; associations between cognitive test performance and brain pathology were assessed with Spearman correlations.
Results:
Animal fluency scores did not differ between carriers and noncarriers. Carriers, however, showed a stronger association between animal fluency clustering and in vivo AD brain pathology (neocortical amyloid and entorhinal tau) relative to noncarriers.
Conclusion:
This study indicates that using category fluency clustering, but not total score, is related to AD pathophysiology in the preclinical and early stages of the disease.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.