We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To develop and validate the Discrepancy-based Evidence for Loss of Thinking Abilities (DELTA) score. The DELTA score characterizes the strength of evidence for cognitive decline on a continuous spectrum using well-established psychometric principles for improving detection of cognitive changes.
Methods:
DELTA score development used neuropsychological test scores from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (two tests each from Memory, Executive Function, and Language domains). We derived regression-based normative reference scores using age, gender, years of education, and word-reading ability from robust cognitively normal ADNI participants. Discrepancies between predicted and observed scores were used for calculating the DELTA score (range 0–15). We validated DELTA scores primarily against longitudinal Clinical Dementia Rating-Sum of Boxes (CDR-SOB) and Functional Activities Questionnaire (FAQ) scores (baseline assessment through Year 3) using linear mixed models and secondarily against cross-sectional Alzheimer’s biomarkers.
Results:
There were 1359 ADNI participants with calculable baseline DELTA scores (age 73.7 ± 7.1 years, 55.4% female, 100% white/Caucasian). Higher baseline DELTA scores (stronger evidence of cognitive decline) predicted higher baseline CDR-SOB (ΔR2 = .318) and faster rates of CDR-SOB increase over time (ΔR2 = .209). Longitudinal changes in DELTA scores tracked closely and in the same direction as CDR-SOB scores (fixed and random effects of mean + mean-centered DELTA, ΔR2 > .7). Results were similar for FAQ scores. High DELTA scores predicted higher PET-Aβ SUVr (ρ = 324), higher CSF-pTau/CSF-Aβ ratio (ρ = .460), and demonstrated PPV > .9 for positive Alzheimer’s disease biomarker classification.
Conclusions:
Data support initial development and validation of the DELTA score through its associations with longitudinal functional changes and Alzheimer’s biomarkers. We provide several considerations for future research and include an automated scoring program for clinical use.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.