Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:59:28.515Z Has data issue: false hasContentIssue false

Pain Influences Neuropsychological Performance Following Electrical Injury: A Cross-Sectional Study

Published online by Cambridge University Press:  18 January 2022

Katherine E. Dorociak*
Affiliation:
Department of Psychology, VA Palo Alto Health Care System, Palo Alto, CA, USA
Jason R. Soble
Affiliation:
Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA Department of Neurology, University of Illinois College of Medicine, Chicago, IL, USA
Patricia A. Rupert
Affiliation:
Department of Psychology, Loyola University Chicago, Chicago, IL, USA
Joseph W. Fink
Affiliation:
The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
Raphael C. Lee
Affiliation:
The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA Department of Surgery, Medicine, Anatomy and Organismal Biology, University of Chicago, Chicago, IL, USA
Magdalena Anitescu
Affiliation:
The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA Department of Anesthesia and Critical Care, University of Chicago Medicine, Chicago, IL, USA
David Weiss
Affiliation:
The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
Gerald Cooke
Affiliation:
The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA Department of Rehabilitation Medicine, U.S. Physiatry, LLC, Riverforest, IL, USA
Zachary J. Resch
Affiliation:
Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
Neil H. Pliskin
Affiliation:
Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA Department of Neurology, University of Illinois College of Medicine, Chicago, IL, USA The Chicago Electrical Trauma Rehabilitation Institute, Chicago, IL, USA
*
*Correspondence and reprint requests to: Katherine E. Dorociak, Department of Psychology, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA. E-mail: [email protected]

Abstract

Objective:

Electrical injury (EI) is a significant, multifaceted trauma often with multi-domain cognitive sequelae, even when the expected current path does not pass through the brain. Chronic pain (CP) research suggests pain may affect cognition directly and indirectly by influencing emotional distress which then impacts cognitive functioning. As chronic pain may be critical to understanding EI-related cognitive difficulties, the aims of the current study were: examine the direct and indirect effects of pain on cognition following EI and compare the relationship between pain and cognition in EI and CP populations.

Method:

This cross-sectional study used data from a clinical sample of 50 patients with EI (84.0% male; M age = 43.7 years) administered standardized measures of pain (Pain Patient Profile), depression, and neurocognitive functioning. A CP comparison sample of 93 patients was also included.

Results:

Higher pain levels were associated with poorer attention/processing speed and executive functioning performance among patients with EI. Depression was significantly correlated with pain and mediated the relationship between pain and attention/processing speed in patients with EI. When comparing the patients with EI and CP, the relationship between pain and cognition was similar for both clinical groups.

Conclusions:

Findings indicate that pain impacts mood and cognition in patients with EI, and the influence of pain and its effect on cognition should be considered in the assessment and treatment of patients who have experienced an electrical injury.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aase, D.M., Fink, J.W., Lee, R.C., Kelley, K.M., & Pliskin, N.H. (2014). Mood and cognition after electrical injury: A follow-up study. Archives of Clinical Neuropsychology, 29(2), 125130.CrossRefGoogle ScholarPubMed
Aiken, L.S., & West, S.G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Bailey, K.C., Soble, J.R., Bain, K.M., & Fullen, C. (2018). Embedded performance validity tests in the Hopkins Verbal Learning Test—Revised and the Brief Visuospatial Memory Test—Revised: A replication study. Archives of Clinical Neuropsychology, 33(7), 895900.CrossRefGoogle ScholarPubMed
Bair, M.J., Robinson, R.L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: a literature review. Archives of Internal Medicine, 163(20), 24332445.CrossRefGoogle ScholarPubMed
Barrash, J., Kealey, G.P., & Janus, T.J. (1996). Neurobehavioral sequelae of high voltage electrical injuries: Comparison with traumatic brain injury. Applied Neuropsychology, 3(2), 7581.CrossRefGoogle ScholarPubMed
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Beck depression inventory (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Bernstein, M.T., Resch, Z.J., Ovsiew, G.P., & Soble, J.R. (2021). A systematic review and meta-analysis of the diagnostic accuracy of the Advanced Clinical Solutions Word Choice Test as a performance validity test. Neuropsychology Review, doi: 10.1007/s11065-020-09468-y, Advance onlien publication.CrossRefGoogle ScholarPubMed
Boone, K.B. (2013). Clinical practice of forensic neuropsychology: An evidenced-based approach. Guilford Press.Google Scholar
Boone, K.B., Lu, P., & Herzberg, D. (2002). The dot counting test manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Brandt, J., & Benedict, R.H.B. (1997). Hopkins Verbal Learning Test-Revised. Odessa, FL: Psychological Assessment Resources.Google Scholar
Brown, S.C., Glass, J.M., & Park, D.C. (2002). The relationship of pain and depression to cognitive function in rheumatoid arthritis patients. Pain, 96(3), 279284.CrossRefGoogle ScholarPubMed
Bryan, B.C., Andrews, C.J., Hurley, R.A., & Taber, K.H. (2009). Electrical injury, part II: Consequences. The Journal of Neuropsychiatry and Clinical Neurosciences, 21(4), 356361.Google Scholar
Crews, W.D., Barth, J.T., Brelsford, T.N., Francis, J.P., & McArdle, P.A. (1997). Neuropsychological dysfunction in severe accidental electrical shock: Two case reports. Applied Neuropsychology, 4(4), 208219.CrossRefGoogle ScholarPubMed
Critchfield, E., Soble, J.R., Marceaux, J.C., Bain, K.M., Bailey, K.C., Webber, T.A.O’Rourke, J.J.F. (2019). Cognitive impairment does not cause performance validity failure: Analyzing performance patterns among unimpaired, impaired, and noncredible participants across six tests. The Clinical Neuropsychologist, 33(6), 10831101. doi: 10.1080/13854046.2018.1508615 CrossRefGoogle ScholarPubMed
Delis, D., Kaplan, E., Kramer, J., & Ober, B. (2000). California Verbal Learning Test (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J., Kaplan, E., & Ober, B.A. (2017). California Verbal Learning Test (3rd ed.). Pearson.Google Scholar
Dick, B.D., Eccleston, C., & Crombez, G. (2002). Attentional functioning in fibromyalgia, rheumatoid arthritis, and musculoskeletal pain patients. Arthritis Care & Research, 47, 639644.CrossRefGoogle ScholarPubMed
Duff, K., & McCaffrey, R.J. (2001). Electrical injury and lightning injury: A review of their mechanisms and neuropsychological, psychiatric, and neurological sequelae. Neuropsychology Review, 11(2), 101116.CrossRefGoogle ScholarPubMed
Eccleston, C. (1995). Chronic pain and distraction: An experimental investigation into the role of sustained and shifting attention in the processing of chronic persistent pain. Behaviour Research and Therapy, 33(4), 391405.CrossRefGoogle ScholarPubMed
Fritz, M.S., & MacKinnon, D.P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233239.CrossRefGoogle ScholarPubMed
Garland, E.L. (2012). Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways. Primary Care: Clinics in Office Practice, 39(3), 561571.CrossRefGoogle ScholarPubMed
Ghavami, Y., Mobayen, M.R., & Vaghardoost, R. (2014). Electrical burn injury: A five-year survey of 682 patients. Trauma Monthly, 19, 2933.CrossRefGoogle ScholarPubMed
Golden, C.J., & Freshwater, S.M. (2002). The Stroop Color and Word Test: A manual for clinical and experimental uses. Stoelting.Google Scholar
Grace, G.M., Nielson, W.R., Hopkins, M., & Berg, M.A. (1999). Concentration and memory deficits in patients with fibromyalgia syndrome. Journal of Clinical and Experimental Neuropsychology, 21(4), 477487.CrossRefGoogle ScholarPubMed
Green, P. (2003). Green’s Word Memory Test for Microsoft Windows. Edmonton, Alberta: Green’s Publishing Inc.Google Scholar
Grigorovich, A., Gomez, M., Leach, L., & Fish, J. (2013). Impact of posttraumatic stress disorder and depression on neuropsychological functioning in electrical injury survivors. Journal of Burn Care and Research, 34(6), 659665.CrossRefGoogle ScholarPubMed
Grossman, A.R., Tempereau, C.E., Brones, M.F., Kulber, H.S., & Pembrook, L.J. (1993). Auditory and neuropsychiatric behavior patterns after electrical injury. Journal of Burn Care and Research, 14(2), 169175.CrossRefGoogle ScholarPubMed
Hahn-Ketter, A.E., Whiteside, D.M., Pliskin, N., & Rice, L. (2016). Long-term consequences of electrical injury: Neuropsychological predictors of adjustment. The Clinical Neuropsychologist, 30(2), 216227.CrossRefGoogle ScholarPubMed
Hart, R.P., Martelli, M.F., & Zasler, N.D. (2000). Chronic pain and neuropsychological functioning. Neuropsychology Review, 10(3), 131149.CrossRefGoogle ScholarPubMed
Hart, R.P., Wade, J.B., & Martelli, M.F. (2003). Cognitive impairment in patients with chronic pain: The significance of stress. Current Pain and Headache Reports, 7(2), 116126.CrossRefGoogle ScholarPubMed
Hayes, A.F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Publications.Google Scholar
He, B., Baird, R., Butera, R., Datta, A., George, S., Hecht, B., & Zhang, Y.T. (2013). Grand challenges in interfacing engineering with life sciences and medicine. IEEE Transactions on Biomedical Engineering, 60(3), 589598.CrossRefGoogle ScholarPubMed
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expandec. Odessa, FL: Psychological Assessment Resources.Google Scholar
Iezzi, T., Duckworth, M.P., Vuong, L.N., Archibald, Y.M., & Klinck, A. (2004). Predictors of neurocognitive performance in chronic pain patients. International Journal of Behavioral Medicine, 11(1), 5661.CrossRefGoogle ScholarPubMed
Jamison, R.N., Sbrocco, T., & Parris, W.C. (1989). The influence of physical and psychosocial factors on accuracy of memory for pain in chronic pain patients. Pain, 37(3), 289294.CrossRefGoogle ScholarPubMed
Jennette, K.J., Williams, C.P., Resch, Z.J., Ovsiew, G.P., Durkin, N.M., O’Rourke, J.J.F.Soble, J.R. (2021). Assessment of differential neurocognitive performance based on the number of performance validity tests failures: A cross-validation study across multiple mixed clinical samples. The Clinical Neuropsychologist, doi: 10.1080/13854046.2021.1900398 Google ScholarPubMed
Ji, R.R., Nackley, A., Huh, Y., Terrando, N., & Maixner, W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology: The Journal of the American Society of Anesthesiologists, 129(2), 343366.CrossRefGoogle ScholarPubMed
Karp, J.F., Reynolds, C.F., Butters, M.A., Dew, M.A., Mazumdar, S., Begley, A.E., & Weiner, D.K. (2006). The relationship between pain and mental flexibility in older adult pain clinic patients. Pain Medicine, 7(5), 444452.CrossRefGoogle ScholarPubMed
Kim, C.T., & Bryant, P. (2001). Complex regional pain syndrome (type I) after electrical injury: A case report of treatment with continuous epidural block. Archives of Physical Medicine and Rehabilitation, 82(7), 993995.CrossRefGoogle ScholarPubMed
Larrabee, G.J. (2008). Aggregation across multiple indicators improves the detection of malingering: Relationship to likelihood ratios. The Clinical Neuropsychologist, 22(4), 666679.CrossRefGoogle ScholarPubMed
Lee, R.C. (1997). Injury by electrical forces: Pathophysiology, manifestations, and therapy. Current Problems in Surgery, 34(9), 677764.CrossRefGoogle ScholarPubMed
Lee, R.C., Burke, J.F., & Cravalho, E.G. (1992). Electrical trauma: The pathophysiology, manifestations and clinical management. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lee, R.C., & Kolodney, M.S. (1987). Electrical injury mechanisms: Electrical breakdown of cell membranes. Plastic and Reconstructive Surgery, 80(5), 672679.CrossRefGoogle ScholarPubMed
Lee, R.C., Zhang, D., & Hannig, J. (2000). Biophysical injury mechanisms in electrical shock trauma. Annual Review of Biomedical Engineering, 2(1), 477509.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment. Oxford: Oxford University Press.Google Scholar
Martelli, M.F., Zasler, N.D., Bender, M.C., & Nicholson, K. (2004). Psychological, neuropsychological, and medical considerations in assessment and management of pain. The Journal of Head Trauma Rehabilitation, 19(1), 1028.CrossRefGoogle ScholarPubMed
Massey, J.S., Meares, S., Batchelor, J., & Bryant, R.A. (2015). An exploratory study of the association of acute posttraumatic stress, depression, and pain to cognitive functioning in mild traumatic brain injury. Neuropsychology, 29, 530542.CrossRefGoogle ScholarPubMed
Moriarty, O., McGuire, B.E., & Finn, D.P. (2011). The effect of pain on cognitive function: A review of clinical and preclinical research. Progress in Neurobiology, 93(3), 385404.CrossRefGoogle ScholarPubMed
National Safety Council. (2016). Injury facts. Retrieved from https://injuryfacts.nsc.org Google Scholar
Nicholas, M., Vlaeyen, J.W., Rief, W., Barke, A., Aziz, Q., Benoliel, R., & Treede, R.D. (2019). The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain, 160(1), 2837.CrossRefGoogle ScholarPubMed
Noble, J., Gomez, M., & Fish, J.S. (2006). Quality of life and return to work following electrical burns. Burns, 32(2), 159164.CrossRefGoogle ScholarPubMed
Oosterman, J.M., Gibson, S.J., Pulles, W.L.J.A., & Veldhuijzen, D.S. (2013). On the moderating role of age in the relationship between pain and cognition. European Journal of Pain, 17(5), 735741.CrossRefGoogle ScholarPubMed
Pliskin, N., Fink, J., Malina, A., Moran, S., Kelley, K., Capelli-Schellpfeffer, M., & Lee, R.C. (1999). The neuropsychological effects of electrical injury. Annals New York Academy of Sciences, 888, 140149.CrossRefGoogle ScholarPubMed
Pliskin, N.H., Capelli-Schellpfeffer, M., Law, R.T., Malina, A.C., Kelley, K.M., & Lee, R.C. (1998). Neuropsychological symptom presentation after electrical injury. Journal of Trauma: Injury, Infection, and Critical Care, 44(4), 709715.CrossRefGoogle ScholarPubMed
Pliskin, N.H., Ammar, A.N., Fink, J.W., Hill, S.K., Malina, A.C., Ramati, A., & Lee, R.C. (2006). Neuropsychological changes following electrical injury. Journal of the International Neuropsychological Society, 12(1), 1723.CrossRefGoogle ScholarPubMed
Preacher, K.J., & Hayes, A.F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879891.CrossRefGoogle ScholarPubMed
Primeau, M. (2005). Neurorehabilitation of behavioral disorders following lightning and electrical trauma. Neurorehabilitation, 20(1), 2533.CrossRefGoogle ScholarPubMed
Ramati, A., Pliskin, N.H., Keedy, S., Erwin, R.J., Fink, J.W., Bodnar, E.N., & Sweeney, J.A. (2009a). Alteration in functional brain systems after electrical injury. Journal of Neurotrauma, 26(10), 18151822.CrossRefGoogle ScholarPubMed
Ramati, A., Rubin, L.H., Wicklund, A., Pliskin, N.H., Ammar, A.N., Fink, J.W., & Kelley, K.M. (2009b). Psychiatric morbidity following electrical injury and its effects on cognitive functioning. General Hospital Psychiatry, 31(4), 360366.CrossRefGoogle ScholarPubMed
Reitan, R.M., & Wolfson, D. (1993). The Halstead-Reitan neuropsychological test battery: Theory and clinical applications (2nd ed.). Neuropsychology Press.Google Scholar
Resch, Z.J., Pham, A.T., Abramson, D.A., White, D.J., DeDios-Stern, S., Ovsiew, G.P., & Soble, J.R. (2020). Examining independent and combined accuracy of embedded performance validity tests in the California Verbal Learning Test-II and Brief Visuospatial Memory Test—Revised for detecting invalid performance. Applied Neuropsychology: Adult, doi: 10.1080/23279095.2020.1742718, Advance online publication.Google ScholarPubMed
Resch, Z.J., Webber, T.A., Bernstein, M.T., Rhoads, T., Ovsiew, G.P., & Soble, J.R. (2021). Victoria Symptom Validity Test: A systematic review and cross-validation study. Neuropsychology Review, doi: 10.1007/s11065-021-09477-5 CrossRefGoogle Scholar
Rey, A. (1964). L’examen Clinique en psychologie. Paris: Presses Universitaires de France.Google Scholar
Schroeder, R.W., Twumasi-Ankrah, P., Baade, L.E., & Marshall, P.S. (2012). Reliable Digit Span: A systematic review and cross-validation study. Assessment, 19(1), 2130.CrossRefGoogle Scholar
Sherman, E.M.S., Slick, D.J., & Iverson, G.L. (2020). Multidimensional malingering criteria for neuropsychological assessment: A 20-year update of the malingered neuropsychological dysfunction criteria. Archives of Clinical Neuropsychology, 35(6), 735764. doi: 10.1093/arclin/acaa019 CrossRefGoogle ScholarPubMed
Shih, J.G., Shahrokhi, S., & Jeschke, M.G. (2017). Review of adult electrical burn injury outcomes worldwide: An analysis of low-voltage vs high-voltage electrical injury. Journal of Burn Care & Research, 38(1), 293298.CrossRefGoogle ScholarPubMed
Shura, R.D., Brearly, T.W., Rowland, J.A., Martindale, S.L., Miskey, H.M., & Duff, K. (2018). RBANS validity indices: A systematic review and meta-analysis. Neuropsychology Review, 28(3), 269284.CrossRefGoogle ScholarPubMed
Singerman, J., Gomez, M., & Fish, J.S. (2008). Long-term sequelae of low-voltage electrical injury. Journal of Burn Care & Research, 29(5), 773777.CrossRefGoogle ScholarPubMed
Soble, J.R., Alverson, W.A., Phillips, J.I., Critchfield, E.A., Fullen, C., O’Rourke, J.J.F.Marceaux, J.C. (2020). Strength in numbers or quality over quantity? Examining the importance of criterion measure selection to define validity groups in performance validity rest (PVT) research. Psychological Injury and Law, 13(1), 4456.CrossRefGoogle Scholar
Soble, J.R., Resch, Z.J., Schulze, E.T., Paxton, J.L., Cation, B., Friedhoff, C.CostinPliskin, N.H. (2019). Examination of the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) validity and substantive scales in patients with electrical injury. The Clinical Neuropsychologist, 33(8), 15011515.CrossRefGoogle ScholarPubMed
Theman, K., Singerman, J., Gomez, M., & Fish, J.S. (2008). Return to work after low voltage electrical injury. Journal of Burn Care & Research, 29(6), 959964.CrossRefGoogle ScholarPubMed
Tollison, D.C., & Langley, J.C. (1995). Pain Patient Profile manual. Minneapolis, MN: National Computer Services.Google Scholar
Tombaugh, T.N. (1996). Test of Memory Malingering (TOMM). New York, NY: Multi-Health.Google Scholar
Verdejo-Garcia, A., Lopez-Torrecillas, F., Calandre, E.P., Delgado-Rodriguez, A., & Bechara, A. (2009). Executive function and decision-making in women with fibromyalgia. Archives of Clinical Neuropsychology, 24(1), 113122.CrossRefGoogle ScholarPubMed
Vernon-Wilkinson, R., & Tuokko, H. (1993). The influence of pain symptoms on neuropsychological test scores. Archives of Clinical Neuropsychology, 9, 2.Google Scholar
Webber, T.A., Critchfield, E.A., & Soble, J.R. (2020). Convergent, discriminant, and concurrent validity of non-memory-based performance validity tests. Assessment, 27(7), 13991415.CrossRefGoogle Scholar
Wechsler, D. (2008). WAIS-IV: Administration and scoring manual. New York, NY: The Psychological Corporation.Google Scholar
Willoughby, S.G., Hailey, B.J., & Wheeler, L.C. (1999). Pain patient profile: A scale to measure psychological distress. Archives of Physical Medicine and Rehabilitation, 80(10), 13001302.CrossRefGoogle ScholarPubMed