Hostname: page-component-6587cd75c8-rlsgg Total loading time: 0 Render date: 2025-04-24T02:44:07.589Z Has data issue: false hasContentIssue false

Bioturbation increases time averaging despite promoting shell disintegration: a test using anthropogenic gradients in sediment accumulation and burrowing on the southern California shelf

Published online by Cambridge University Press:  07 November 2024

Adam Tomašových*
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
Susan M. Kidwell
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
Ran Dai
Affiliation:
Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4375, U.S.A.
Clark R. Alexander
Affiliation:
Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia 31411, U.S.A.
Darrell S. Kaufman
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, U.S.A.
Stewart Edie
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, U.S.A.
Jill S. Leonard-Pingel
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A. School of Earth Sciences, Ohio State University Newark, Newark, Ohio 43055, U.S.A.
Jesse E. McNinch
Affiliation:
Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi 39180-6199, U.S.A.
Thomas Parker
Affiliation:
Marine Biology Laboratory, County Sanitation Districts of Los Angeles County, Carson, California 90745, U.S.A.
Heidi M. Wadman
Affiliation:
Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi 39180-6199, U.S.A.
*
Corresponding author: Adam Tomašových; Email: [email protected]

Abstract

Bioturbation can increase time averaging by downward and upward movements of young and old shells within the entire mixed layer and by accelerating the burial of shells into a sequestration zone (SZ), allowing them to bypass the uppermost taphonomically active zone (TAZ). However, bioturbation can increase shell disintegration concurrently, neutralizing the positive effects of mixing on time averaging. Bioirrigation by oxygenated pore-water promotes carbonate dissolution in the TAZ, and biomixing itself can mill shells weakened by dissolution or microbial maceration, and/or expose them to damage at the sediment–water interface. Here, we fit transition rate matrices to bivalve age–frequency distributions from four sediment cores from the southern California middle shelf (50–75 m) to assess the competing effects of bioturbation on disintegration and time averaging, exploiting a strong gradient in rates of sediment accumulation and bioturbation created by historic wastewater pollution. We find that disintegration covaries positively with mixing at all four sites, in accord with the scenario where bioturbation ultimately fuels carbonate disintegration. Both mixing and disintegration rates decline abruptly at the base of the 20- to 40-cm-thick, age-homogenized surface mixed layer at the three well-bioturbated sites, despite different rates of sediment accumulation. In contrast, mixing and disintegration rates are very low in the upper 25 cm at an effluent site with legacy sediment toxicity, despite recolonization by bioirrigating lucinid bivalves. Assemblages that formed during maximum wastewater emissions vary strongly in time averaging, with millennial scales at the low-sediment accumulation non-effluent sites, a centennial scale at the effluent site where sediment accumulation was high but bioturbation recovered quickly, and a decadal scale at the second high-sedimentation effluent site where bioturbation remained low for decades. Thus, even though disintegration rates covary positively with mixing rates, reducing postmortem shell survival, bioturbation has the net effect of increasing the time averaging of skeletal remains on this warm-temperate siliciclastic shelf.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Literature Cited

Akam, S. A., Swanner, E. D., Yao, W. L., Hong, H., and Peckmann, J.. 2023. Methane-derived authigenic carbonates–A case for a globally relevant marine carbonate factory. Earth-Science Reviews 243:104487.CrossRefGoogle Scholar
Albano, P. G., Hua, Q., Kaufman, D. S., Tomašových, A., Zuschin, M., and Agiadi, K.. 2020. Radiocarbon dating supports bivalve-fish age coupling along a bathymetric gradient in high-resolution paleoenvironmental studies. Geology 48:589593.CrossRefGoogle Scholar
Alexander, C. R., and Lee, H. J.. 2009. Sediment accumulation on the Southern California Bight continental margin during the twentieth century. Geological Society of America Special Paper 454:6987.Google Scholar
Aller, R. C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology 90:7995.CrossRefGoogle Scholar
Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114:331345.CrossRefGoogle Scholar
Aller, R. C. 2004. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor. Journal of Marine Research 62:815835.CrossRefGoogle Scholar
Allison, P. A., and Briggs, D. E.. 1993. Burgess Shale biotas: burrowed away? Lethaia 26:184185.CrossRefGoogle Scholar
A. M., Bush, and Bambach, R. K.. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Arlinghaus, P., Zhang, W., Wrede, A., Schrum, C., and Neumann, A.. 2021. Impact of benthos on morphodynamics from a modeling perspective. Earth-Science Reviews 221:103803.CrossRefGoogle Scholar
Bandy, O. L., Ingle, J. C. Jr., and Resig, J. M.. 1964. Foraminifera, Los Angeles County area, California. Limnology and Oceanography 9:124137.CrossRefGoogle Scholar
Belanger, C. L., and Bapst, D. W.. 2023. Simulating our ability to accurately detect abrupt changes in assemblage-based paleoenvironmental proxies. Palaeontologia Electronica 26:26.2.a24.Google Scholar
Best, M. M., Ku, T. C., Kidwell, S. M., and Walter, L. M.. 2007. Carbonate preservation in shallow marine environments: unexpected role of tropical siliciclastics. Journal of Geology 115:437456.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I.. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Boudreau, B. P. 1986. Mathematics of tracer mixing in sediments. II, Nonlocal mixing and biological conveyor-belt phenomena. American Journal of Science 286:199238.CrossRefGoogle Scholar
Boudreau, B. P. 1994. Is burial velocity a master parameter for bioturbation? Geochimica et Cosmochimica Acta 58:12431249.CrossRefGoogle Scholar
Bradshaw, C., and Scoffin, T. P.. 2001. Differential preservation of gravel-sized bioclasts in alpheid-versus callianassid-bioturbated muddy reefal sediments. Palaios 16:185191.2.0.CO;2>CrossRefGoogle Scholar
Brandt, D. S. 1986. Preservation of event beds through time. Palaios 1:9296.CrossRefGoogle Scholar
Brasier, M. D., Antcliffe, J. B., and Callow, R. H.. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran–Cambrian transition and the impact of metazoan mixing. Pp. 519567 in Allison, P. A. and Bottjer, D. J. eds. Taphonomy: process and bias through time. Springer, Dordrecht, Netherlands.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Desai, B., Carmona, N. B., Burns, F., Meek, D., and Eglington, B.. 2022. Infaunalization and resource partitioning during the Mesozoic marine revolution. Geology 50:786790.Google Scholar
Cherns, L., and Wright, V. P.. 2009. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756771.CrossRefGoogle Scholar
Davies, D. J., Powell, E. N. and Stanton, R. J. Jr. 1989. Relative rates of shell dissolution and net sediment accumulation - a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor?. Lethaia 22:207212.CrossRefGoogle Scholar
Diaz, M. R., and Eberli, G. P.. 2022. Microbial contribution to early marine cementation. Sedimentology 69:798822.CrossRefGoogle Scholar
Diener, D. R., Fuller, S. C., Lissner, A., Haydock, C. I., Maurer, D., Robertson, G., and Gerlinger, T.. 1995. Spatial and temporal patterns of the infaunal community near a major ocean outfall in Southern California. Marine Pollution Bulletin 30:861878.CrossRefGoogle Scholar
Dominguez, J. G., Kosnik, M. A., Allen, A. P., Hua, Q., Jacob, D. E., Kaufman, D. S., and Whitacre, K.. 2016, Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour's molluscan record. Palaios 31:563574.CrossRefGoogle Scholar
Drake, D. E. 1994. Appendix D: results of grain size and settling analyses of sediment on the Palos Verdes margin. Pp. 135 in Lee, H. J., ed. The distribution and character of contaminated effluent-affected sediment, Palos Verdes Margin, Southern California. U.S. Geological Survey Expert Report, Menlo Park, Calif.Google Scholar
Drake, D. E., Cacchione, D. A., and Karl, H. A.. 1985. Bottom currents and sediment transport on San Pedro Shelf, California. Journal of Sedimentary Research 55:1528.Google Scholar
Drake, D. E., Eganhouse, R., and McArthur, W.. 2002. Physical and chemical effects of grain aggregates on the Palos Verdes margin, southern California. Continental Shelf Research 22:967986.CrossRefGoogle Scholar
Droser, M. L., D. J. and Bottjer, . 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.2.3.CO;2>CrossRefGoogle Scholar
Durham, S. R., Dietl, G. P., Hua, Q., Handley, J. C., Kaufman, D., and Clark, C. P.. 2023. Age variability and decadal time-averaging in oyster reef death assemblages. Geology 51:10671071.CrossRefGoogle Scholar
Eganhouse, R. P., and Pontolillo, J.. 2000. Depositional history of organic contaminants on the Palos Verdes Shelf, California. Marine Chemistry 70:317338.CrossRefGoogle Scholar
Eganhouse, R. P., Pontolillo, J., and Leiker, T. J.. 2000. Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California. Marine Chemistry 70:289315.CrossRefGoogle Scholar
Ekdale, A. A., Muller, L. N., and Novak, M. T.. 1984. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 45:189223.CrossRefGoogle Scholar
Fabrikant, R. 1984. The effect of sewage effluent on the population density and size of the clam Parvilucina tenuisculpta. Marine Pollution Bulletin 15:249253.CrossRefGoogle Scholar
Ferré, B., Sherwood, C. R., and Wiberg, P. L.. 2010. Sediment transport on the Palos Verdes shelf, California. Continental Shelf Research 30:761780.CrossRefGoogle Scholar
Finnegan, S., Gehling, J. G., and Droser, M. L.. 2019. Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages. Paleobiology 45:235245.CrossRefGoogle Scholar
Foster, D. W. 1985. BIOTURB: a Fortran program to simulate the effects of bioturbation on the vertical distribution of sediment. Computers and Geosciences 11:3954.CrossRefGoogle Scholar
Garuglieri, E., Marasco, R., Odobel, C., Chandra, V., Teillet, T., Areias, C., Sánchez-Román, M., Vahrenkamp, V., and Daffonchio, D.. 2024. Searching for microbial contribution to micritization of shallow marine sediments. Environmental Microbiology 26:e16573.CrossRefGoogle ScholarPubMed
Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., and Zettler, M. L.. 2017. Towards benthic ecosystem functioning maps: quantifying bioturbation potential in the German part of the Baltic Sea. Ecological Indicators 73:574588.CrossRefGoogle Scholar
Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M., and Laing, B. A.. 2018. Early Cambrian origin of the shelf sediment mixed layer. Nature Communications 9:1909.CrossRefGoogle ScholarPubMed
Griffis, R. B., and Suchanek, T. H.. 1991. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Marine Ecology Progress Series 79:171183.CrossRefGoogle Scholar
Guillén, J., Bourrin, F., Palanques, A., De Madron, X. D., Puig, P., and Buscail, R.. 2006. Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Marine Geology 234:129142.CrossRefGoogle Scholar
Guinasso, N. L. Jr., and Schink, D. R.. 1975. Quantitative estimates of biological mixing rates in abyssal sediments. Journal of Geophysical Research 80:30323043.CrossRefGoogle Scholar
Hampton, M. A., Karl, H. A., and Murray, C. J.. 2002. Acoustic profiles and images of the Palos Verdes margin: implications concerning deposition from the White's Point outfall. Continental Shelf Research 22:841857.CrossRefGoogle Scholar
Hickey, B. M. 1992. Circulation over the Santa Monica-San Pedro basin and shelf. Progress in Oceanography 30 : 37115.CrossRefGoogle Scholar
Hickman, C. S. 1994. The genus Parvilucina in the Eastern Pacific: making evolutionary sense of a chemosymbiotic species complex. Veliger 37:4361.Google Scholar
Hohmann, N. 2021. Incorporating information on varying sediment accumulation rates into paleontological analyses. Palaios 36:5367.CrossRefGoogle Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26(Suppl. 4):148168.CrossRefGoogle Scholar
Hülse, D., Vervoort, P., van de Velde, S. J., Kanzaki, Y., Boudreau, B., Arndt, S., Bottjer, D. J., et al. 2022. Assessing the impact of bioturbation on sedimentary isotopic records through numerical models. Earth-Science Reviews 234:104213.CrossRefGoogle Scholar
Hupp, B. N., Kelly, D. C., Zachos, J. C., and Bralower, T. J.. 2019. Effects of size-dependent sediment mixing on deep-sea records of the Paleocene–Eocene Thermal Maximum. Geology 47:749752.CrossRefGoogle Scholar
Jenkyns, H. C. 1975. Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. Pp. 249271 in Hsü, K. J. and Jenkyns, H. C., eds. Pelagic sediments: on land and under the sea. International Association of Sedimentologists, Wiley, New York.CrossRefGoogle Scholar
Jones, G. F., and Thompson, B. E.. 1984. The ecology of Parvilucina tenuisculpta (Carpenter, 1864) (Bivalvia: Lucinidae) on the southern California borderland. Veliger 26:188198.Google Scholar
Jones, B. H., Noble, M. A., and Dickey, T. D.. 2002. Hydrographic and particle distributions over the Palos Verdes Continental Shelf: spatial, seasonal and daily variability. Continental Shelf Research 22:945965.CrossRefGoogle Scholar
Jumars, P. A., Nowell, A. R., and Self, R. F.. 1981. A simple model of flow-sediment-organism interaction. Marine Geology 42:155172.CrossRefGoogle Scholar
Kanzaki, Y., Hülse, D., Kirtland Turner, S., and Ridgwell, A.. 2021. A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0. Geoscientific Model Development 14:59996023.CrossRefGoogle Scholar
Keen, T. R., Slingerland, R. L., Bentley, S. J., Furukawa, Y., Teague, W. J., and Dykes, J. D.. 2012. Sediment transport on continental shelves: storm bed formation and preservation in heterogeneous sediments. Pp. 295310 in Li, M. Z., Sherwood, C. R., and Hill, P. R., eds. Sediments, morphology and sedimentary processes on continental shelves: advances in technologies, research, and applications. International Association of Sedimentologists, Wiley, New York.CrossRefGoogle Scholar
Kemnitz, N., Berelson, W., Hammond, D., Morine, L., Figueroa, M., Lyons, T. W., Scharf, S., et al. 2020. Evidence of changes in sediment accumulation rate and sediment fabric in a low oxygen setting: Santa Monica Basin, CA. Biogeosciences 17:23812396.CrossRefGoogle Scholar
Kidwell, S. M. 1986. Models for fossil concentrations: paleobiologic implications. Paleobiology 12:624.CrossRefGoogle Scholar
Kidwell, S. M. 1989. Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. Journal of Geology 97:124.CrossRefGoogle Scholar
Kidwell, S. M. 1991. The stratigraphy of shell concentrations. Pp. 211290 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology. Plenum Press, New York.CrossRefGoogle Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.CrossRefGoogle Scholar
Kidwell, S. M., and Brenchley, P. J.. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction? Geology 22:11391143.2.3.CO;2>CrossRefGoogle Scholar
Kidwell, S. M., Best, M. M., and Kaufman, D. S.. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33 :729–732.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., and Wüst, R. A.. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Kaufman, D. S., and Wüst, R. A.. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.CrossRefGoogle Scholar
Kosnik, M. A., Kaufman, D. S., and Hua, Q.. 2013. Radiocarbon-calibrated multiple amino acid geochronology of Holocene molluscs from Bramble and Rib Reefs (Great Barrier Reef, Australia). Quaternary Geochronology 16:7386.CrossRefGoogle Scholar
Kowalewski, M. 1996. Time-averaging, overcompleteness, and the geological record. Journal of Geology 104:317326.CrossRefGoogle Scholar
Kuehl, S. A., DeMaster, D. J., and Nittrouer, C. A.. 1986. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research 6:209225.CrossRefGoogle Scholar
[LACSD] Los Angeles County Sanitation Districts. 2011. Joint Water Pollution Control Plant biennial receiving water monitoring report 2010–2011. Los Angeles County Sanitation Districts, Whittier, Calif.Google Scholar
Lange, S. M., Krause, S., Ritter, A. C., Fichtner, V., Immenhauser, A., Strauss, H., and Treude, T.. 2018. Anaerobic microbial activity affects earliest diagenetic pathways of bivalve shells. Sedimentology 65:13901411.CrossRefGoogle Scholar
Larson, D. W., and Rhoads, D. C.. 1983. The evolution of infaunal communities and sedimentary fabrics. Pp. 627648 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Lee, H. J., Sherwood, C. R., Drake, D. E., Edwards, B. D., Wong, F., and Hamer, M.. 2002. Spatial and temporal distribution of contaminated, effluent-affected sediment on the Palos Verdes margin, southern California. Continental Shelf Research 22:859880.CrossRefGoogle Scholar
Leonard-Pingel, J. S., Kidwell, S. M., Tomašových, A., Alexander, C. R., and Cadien, D. B. 2019. Gauging benthic recovery from 20th century pollution on the southern California continental shelf using bivalves from sediment cores. Marine Ecology Progress Series 615:101119.CrossRefGoogle Scholar
Lescinsky, H. L., Edinger, E., and Risk, M. J.. 2002. Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios 17:171191.2.0.CO;2>CrossRefGoogle Scholar
Li, B., Cozzoli, F., Soissons, L. M., Bouma, T. J., and Chen, L.. 2017. Effects of bioturbation on the erodibility of cohesive versus non-cohesive sediments along a current-velocity gradient: a case study on cockles. Journal of Experimental Marine Biology and Ecology 496:8490.CrossRefGoogle Scholar
McGann, M. 2009. Review of impacts of contaminated sediment on microfaunal communities in the Southern California Bight. Geological Society of America Special Paper 454:413455.Google Scholar
McMurtry, G. M., Schneider, R. C., Colin, P. L., Buddemeier, R. W., and Suchanek, T. H.. 1986. Vertical distribution of fallout radionuclides in Enewetak lagoon sediments: effects of burial and bioturbation on the radionuclide inventory. Bulletin of Marine Science 38:3555.Google Scholar
Meadows, C. A., Grebmeier, J. M., and Kidwell, S. M.. 2023. Arctic bivalve dead-shell assemblages as high temporal-and spatial-resolution archives of ecological regime change in response to climate change. Geological Society of London Special Publication 529:99130.CrossRefGoogle Scholar
Meldahl, K. H. 1987. Sedimentologic and taphonomic implications of biogenic stratification. Palaios 2:350358.CrossRefGoogle Scholar
Meldahl, K. H., Flessa, K. W., and Cutler, A. H.. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.CrossRefGoogle Scholar
Meysman, F. J., Boudreau, B. P., and Middelburg, J. J.. 2003. Relations between local, nonlocal, discrete and continuous models of bioturbation. Journal of Marine Research 61:391410.CrossRefGoogle Scholar
Miller, M. F., and Myrick, J. L.. 1992. Population fluctuations and distributional controls of Callianassa californiensis: effect on the sedimentary record. Palaios 7:621625.CrossRefGoogle Scholar
Morse, J. W., and Casey, W. H.. 1988. Ostwald processes and mineral paragenesis in sediments. American Journal of Science 288:537560.CrossRefGoogle Scholar
Munnecke, A., Wright, V. P., and Nohl, T.. 2023. The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: a stratigraphic sedimentological perspective. Earth-Science Reviews 239:104366.CrossRefGoogle Scholar
Nawrot, R., Berensmeier, M., Gallmetzer, I., Haselmair, A., Tomašových, A., and Zuschin, M.. 2022. Multiple phyla, one time resolution? Similar time averaging in benthic foraminifera, mollusk, echinoid, crustacean, and otolith fossil assemblages. Geology 50:902906.CrossRefGoogle Scholar
Niedoroda, A. W., Swift, D. J., Reed, C. W., and Stull, J. K.. 1996. Contaminant dispersal on the Palos Verdes continental margin: III. Processes controlling transport, accumulation and re-emergence of DDT-contaminated sediment particles. Science of the Total Environment 179:109133.CrossRefGoogle Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.2.0.CO;2>CrossRefGoogle Scholar
Olszewski, T. D., and Kaufman, D. S.. 2015. Tracing burial history and sediment recycling in a shallow estuarine setting (Copano Bay, Texas) using postmortem ages of the bivalve Mulinia lateralis. Palaios 30:224237.CrossRefGoogle Scholar
Orr, P. J., Benton, M. J., and Briggs, D. E.. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology 31:769772.CrossRefGoogle Scholar
Orvain, F. 2005. A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana. Marine Ecology Progress Series 286:4356.CrossRefGoogle Scholar
Parsons-Hubbard, K. 2005. Molluscan taphofacies in recent carbonate reef/lagoon systems and their application to sub-fossil samples from reef cores. Palaios 20:175191.CrossRefGoogle Scholar
Parsons-Hubbard, K. M., Callender, W. R., Powell, E. N., Brett, C. E., Walker, S. E., Raymond, A. L., and Staff, G. M.. 1999. Rates of burial and disturbance of experimentally-deployed molluscs; implications for preservation potential. Palaios 14:337351.CrossRefGoogle Scholar
Parsons-Hubbard, K., Hubbard, D., Tems, C., and Burkett, A.. 2014. The relationship between modern mollusk assemblages and their expression in subsurface sediment in a carbonate lagoon, St. Croix, US Virgin Islands. Pp. 143167 in Hembree, D. I., Platt, B. F., and Smith, J. J., eds. Experimental approaches to understanding fossil organisms: lessons from the living. Topics in Geobiology. Springer, New York.CrossRefGoogle Scholar
Pastore, M. 2018. Overlapping: an R package for estimating overlapping in empirical distributions. Journal of Open Source Software 3:1023.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Petro, S. M., Ritter M, M. D. N.. Pivel, A. G., and Coimbra, J. C.. 2018. Surviving in the water column: defining the taphonomically active zone in pelagic systems. Palaios 33:8593.CrossRefGoogle Scholar
Powell, E. N. 1992. A model for death assemblage formation: can sediment shelliness be explained? Journal of Marine Research 50:229265.CrossRefGoogle Scholar
Powell, E. N., Kraeuter, J. N., and Ashton-Alcox, K. A.. 2006. How long does oyster shell last on an oyster reef? Estuarine, Coastal and Shelf Science 69:531542.CrossRefGoogle Scholar
Queirós, A. M., Stephens, N., Cook, R., Ravaglioli, C., Nunes, J., Dashfield, S., Harris, C., et al. 2015. Can benthic community structure be used to predict the process of bioturbation in real ecosystems? Progress in Oceanography 137:559569.CrossRefGoogle Scholar
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Dugdale, R. C., et al. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change 26:317365.CrossRefGoogle Scholar
Ranasinghe, J. A., Schiff, K. C., Montagne, D. E., Mikel, T. K., Cadien, D. B., Velarde, R. G., and Brantley, C. A.. 2010. Benthic macrofaunal community condition in the Southern California Bight, 1994–2003. Marine Pollution Bulletin 60:827833.CrossRefGoogle ScholarPubMed
Reid, R. P., and MacIntyre, I. G.. 1998. Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. Journal of Sedimentary Research 68:928946.CrossRefGoogle Scholar
Reid, R. P., MacIntyre, I. G., and James, N. P.. 1990. Internal precipitation of microcrystalline carbonate: a fundamental problem for sedimentologists. Sedimentary Geology 68:163170.CrossRefGoogle Scholar
Rhoads, D. C., Swanson, M., and Evans, J.. 1999. REMOTS® survey of the Orange County Outfall and Newport. Science Applications International Corporation Report 469. San Diego, Calif.Google Scholar
Ridgwell, A. 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22:PA4102.CrossRefGoogle Scholar
Rittenberg, S. C., Mittwer, T., and Ivler, D.. 1958. Coliform bacteria in sediments around three marine sewage outfalls. Limnology and Oceanography 3:101108.CrossRefGoogle Scholar
Ritter, M. D. N., Erthal, F., Kosnik, M. A., Coimbra, J. C., and Kaufman, D. S.. 2017. Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:572583.CrossRefGoogle Scholar
Ritter, M. D. N., Erthal, F., and Coimbra, J. C.. 2019. Depth as an overarching environmental variable modulating preservation potential and temporal resolution of shelly taphofacies. Lethaia 52:4456.CrossRefGoogle Scholar
Ritter, M. D. N., Erthal, F., Kosnik, M. A., Kowalewski, M., Coimbra, J. C., Caron, F., and Kaufman, D. S.. 2023. Onshore-offshore trends in the temporal resolution of molluscan death assemblages: how age-frequency distributions reveal Quaternary sea-level history. Palaios 38:148157.CrossRefGoogle Scholar
Rivers, J. M., James, N. P., and Kyser, T. K.. 2008. Early diagenesis of carbonates on a cool-water carbonate shelf, southern Australia. Journal of Sedimentary Research 78:784802.CrossRefGoogle Scholar
Rogers, R. R., and Kidwell, S. M.. 2000. Associations of vertebrate skeletal concentrations and discontinuity surfaces in terrestrial and shallow marine records: a test in the Cretaceous of Montana. Journal of Geology 108:131154.CrossRefGoogle Scholar
Rosenberg, R. 1977. Benthic macrofaunal dynamics, production, and dispersion in an oxygen-deficient estuary of west Sweden. Journal of Experimental Marine Biology and Ecology 26:107133CrossRefGoogle Scholar
Rosenberg, R., Nilsson, H. C., and Diaz, R. J.. 2001. Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuarine, Coastal and Shelf Science 53:343350.CrossRefGoogle Scholar
Rude, P. D., and Aller, R. C.. 1991. Fluorine mobility during early diagenesis of carbonate sediment: an indicator of mineral transformations. Geochimica et Cosmochimica Acta 55:24912509.CrossRefGoogle Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89:569584.CrossRefGoogle Scholar
Sadler, P. M. 1993. Models of time-averaging as a maturation process: how soon do sedimentary sections escape reworking? Short Courses in Paleontology 6:188209.CrossRefGoogle Scholar
Santschi, P. H., Guo, L., Asbill, S., Allison, M., Kepple, A. B., and Wen, L. S.. 2001. Accumulation rates and sources of sediments and organic carbon on the Palos Verdes shelf based on radioisotopic tracers (137Cs, 239,240Pu, 210Pb, 234Th, 238U and 14C). Marine Chemistry 73:125152.CrossRefGoogle Scholar
Savrda, C. E. 1995. Ichnologic applications in paleoceanographic, paleoclimatic, and sea-level studies. Palaios 10:565577.CrossRefGoogle Scholar
Scarponi, D., Kaufman, D., Amorosi, A., and Kowalewski, M.. 2013. Sequence stratigraphy and the resolution of the fossil record. Geology 41:239242.CrossRefGoogle Scholar
Schiff, K., Greenstein, D., Dodder, N., and Gillett, D. J.. 2016. Southern California bight regional monitoring. Regional Studies in Marine Science 4:3446.CrossRefGoogle Scholar
Seilacher, A., Buatois, L. A., and Mángano, M. G.. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227:323356.CrossRefGoogle Scholar
Sepkoski, J. J. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. Pp. 371385 in Einsele, G. and Seilacher, A., eds. Cyclic and event stratification. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L.. 1991. Secular changes in Phanerozoic event bedding. Pp. 298312 in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer-Verlag, Berlin.Google Scholar
Sherwood, C. R., Drake, D. E., Wiberg, P. L., and Wheatcroft, R. A.. 2002. Prediction of the fate of p,p′-DDE in sediment on the Palos Verdes shelf, California, USA. Continental Shelf Research 22:10251058.CrossRefGoogle Scholar
Shull, D. H. 2001. Transition-matrix model of bioturbation and radionuclide diagenesis. Limnology and Oceanography 46:905916.CrossRefGoogle Scholar
Shull, D. H., and Yasuda, M.. 2001. Size-selective downward particle transport by cirratulid polychaetes. Journal of Marine Research 59:453473.CrossRefGoogle Scholar
Simões, M. G., Kowalewski, M., Torello, F. D. F., Ghilardi, R. P., and de Mello, L. H. C.. 2000. Early onset of modern-style shell beds in the Permian sequences of the Paraná Basin: implications for the Phanerozoic trend in bioclastic accumulations. Revista Brasileira de Geociências 30:499503.CrossRefGoogle Scholar
Simon, A., Poulicek, M., Velimirov, B., and MacKenzie, F. T.. 1994. Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167195.CrossRefGoogle Scholar
Slater, R. A., Gorsline, D. S., Kolpack, R. L., and Shiller, G. I.. 2002. Post-glacial sediments of the Californian shelf from Cape San Martin to the US–Mexico border. Quaternary International 92:4561.CrossRefGoogle Scholar
Smith, C. R. 1992. Factors controlling bioturbation in deep-sea sediments and their relation to models of carbon diagenesis. Pp. 375393 in Rowe, G. T. and Pariente, V., eds. Deep-sea food chains and the global carbon cycle. NATO Science Series C. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Smith, C. R., and Rabouille, C.. 2002. What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography 47:418426.CrossRefGoogle Scholar
Soissons, L. M., da Conceiçâo, T. G., Bastiaan, J., van Dalen, J., Ysebaert, T., Herman, P. M., Cozzoli, F., and Bouma, T. J.. 2019. Sandification vs. muddification of tidal flats by benthic organisms: a flume study. Estuarine, Coastal and Shelf Science 228:106355.CrossRefGoogle Scholar
Solan, M., Ward, E. R., White, E. L., Hibberd, E. E., Cassidy, C., Schuster, J. M., Hale, R., and Godbold, J. A.. 2019. Worldwide measurements of bioturbation intensity, ventilation rate, and the mixing depth of marine sediments. Scientific Data 6:58.CrossRefGoogle ScholarPubMed
Song, S., Santos, I. R., Yu, H., Wang, F., Burnett, W. C., Bianchi, T. S., Dong, J., et al. 2022. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nature Communications 13:4903.CrossRefGoogle ScholarPubMed
Stein, E. D. and Cadien, D. B.. 2009. Ecosystem response to regulatory and management actions: the southern California experience in long-term monitoring. Marine Pollution Bulletin 59:91100.CrossRefGoogle ScholarPubMed
Storms, J. E. 2003. Event-based stratigraphic simulation of wave-dominated shallow-marine environments. Marine Geology 199:83100.CrossRefGoogle Scholar
Stull, J. K., Baird, R. B., and Heesen, T. C.. 1986a. Marine sediment core profiles of trace constituents offshore of a deep wastewater outfall. Journal (Water Pollution Control Federation) 28:985991.Google Scholar
Stull, J. K., Haydock, C. I., and Montagne, D. E.. 1986b. Effects of Listriolobus pelodes (Echiura) on coastal shelf benthic communities and sediments modified by a major California wastewater discharge. Estuarine, Coastal and Shelf Science 22:117.CrossRefGoogle Scholar
Stull, J. K., Haydock, C. I., Smith, R. W., and Montagne, D. E.. 1986c. Long-term changes in the benthic community on the coastal shelf of Palos Verdes, Southern California. Marine Biology 91:539–511.CrossRefGoogle Scholar
Stull, J. K., Swift, D. J., and Niedoroda, A. W.. 1996. Contaminant dispersal on the Palos Verdes continental margin: I. Sediments and biota near a major California wastewater discharge. Science of the Total Environment 179:7390.CrossRefGoogle Scholar
Sulpis, O., Agrawal, P., Wolthers, M., Munhoven, G., Walker, M., and Middelburg, J. J.. 2022. Aragonite dissolution protects calcite at the seafloor. Nature Communications 13:1104.CrossRefGoogle ScholarPubMed
Swift, D. J., Stull, J. K., Niedoroda, A. W., Reed, C. W., and Wong, G. T.. 1996. Contaminant dispersal on the Palos Verdes continental margin II. Estimates of the biodiffusion coefficient, DB, from composition of the benthic infaunal community. Science of the Total Environment 179:91107.CrossRefGoogle Scholar
Swinbanks, D. D., and Luternauer, J. L.. 1987. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. Journal of Paleontology 61:315332.CrossRefGoogle Scholar
Tarhan, L. G. 2018. The early Paleozoic development of bioturbation—evolutionary and geobiological consequences. Earth-Science Reviews 178:177207.CrossRefGoogle Scholar
Tarhan, L. G., and Droser, M. L.. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography Palaeoclimatology Palaeoecology 399:310322.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., Planavsky, N. J., and Johnston, D. T.. 2015. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience 8:865869.CrossRefGoogle Scholar
Tarhan, L. G., Zhao, M., and Planavsky, N. J.. 2021. Bioturbation feedbacks on the phosphorus cycle. Earth and Planetary Science Letters 566:116961.CrossRefGoogle Scholar
Teal, L. R., Bulling, M. T., Parker, E. R., and Solan, M.. 2008. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology 2:207218.CrossRefGoogle Scholar
Teal, L. R., Parker, E. R., and Solan, M.. 2013. Coupling bioturbation activity to metal (Fe and Mn) profiles in situ. Biogeosciences 10:23652378.CrossRefGoogle Scholar
Terry, R. C., and Novak, M.. 2015. Where does the time go? Mixing and the depth-dependent distribution of fossil ages. Geology 43:487490.CrossRefGoogle Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2017. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proceedings of the Royal Society B 284:20170328.CrossRefGoogle ScholarPubMed
Tomašových, A., and Schlögl, J.. 2008. Analyzing variations in cephalopod abundances in shell concentrations: the combined effects of production and density-dependent cementation rates. Palaios 23 : 648666.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., Barber, R. F. and Kaufman, D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.CrossRefGoogle Scholar
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S., Vidović, J., and Zuschin, M.. 2017. Stratigraphic unmixing reveals repeated hypoxia events over the past 500 yr in the northern Adriatic Sea. Geology 45:363366.CrossRefGoogle Scholar
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S., Kralj, M., Cassin, D., Zonta, R., and Zuschin, M.. 2018. Tracing the effects of eutrophication on molluscan communities in sediment cores: outbreaks of an opportunistic species coincide with reduced bioturbation and high frequency of hypoxia in the Adriatic Sea. Paleobiology 44:575602.CrossRefGoogle Scholar
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S., Mavrič, B., and Zuschin, M.. 2019a. A decline in molluscan carbonate production driven by the loss of vegetated habitats encoded in the Holocene sedimentary record of the Gulf of Trieste. Sedimentology 66:781807.CrossRefGoogle ScholarPubMed
Tomašových, A., Kidwell, S. M., Alexander, C. R., and Kaufman, D. S.. 2019b. Millennial-scale age offsets within fossil assemblages: result of bioturbation below the taphonomic active zone and out-of-phase production. Paleoceanography and Paleoclimatology 34:954977.CrossRefGoogle Scholar
Tomašových, A., Gallmetzer, I., Haselmair, A., and Zuschin, M.. 2022. Inferring time averaging and hiatus durations in the stratigraphic record of high-frequency depositional sequences. Sedimentology 69:10831118.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., and Dai, R.. 2023. A downcore increase in time averaging is the null expectation from the transit of death assemblages through a mixed layer. Paleobiology 49:527562.CrossRefGoogle Scholar
Torres, M. E., Hong, W. L., Solomon, E. A., Milliken, K., Kim, J. H., Sample, J. C., Teichert, B. M., and Wallmann, K.. 2020. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth-Science Reviews 200:102960.CrossRefGoogle Scholar
Trauth, M. H. 2013. TURBO2: a MATLAB simulation to study the effects of bioturbation on paleoceanographic time series. Computers and Geosciences, 61:110.CrossRefGoogle Scholar
Tribble, G. W. 1993. Organic matter oxidation and aragonite diagenesis in a coral reef. Journal of Sedimentary Research 63:523527.Google Scholar
van de Mortel, H., Delaigue, L., Humphreys, M. P., Middelburg, J. J., Ossebaar, S., Bakker, K., Alexandre, J. T., van Leeuwen-Tolboom, A. W. E., Wolthers, M., and Sulpis, O.. 2024. Laboratory observation of the buffering effect of aragonite dissolution at the seafloor. Journal of Geophysical Research: Biogeosciences 129:e2023JG007581.CrossRefGoogle Scholar
Van De Velde, S., and Meysman, F. J.. 2016. The influence of bioturbation on iron and sulphur cycling in marine sediments: a model analysis. Aquatic Geochemistry 22:469504.CrossRefGoogle Scholar
Walbran, P. D. 1996. 210Pb and 14C as indicators of callianassid bioturbation in coral reef sediment. Journal of Sedimentary Research 66:259264.Google Scholar
Walker, S. E., and Goldstein, S. T.. 1999. Taphonomic tiering: experimental field taphonomy of molluscs and foraminifera above and below the sediment–water interface. Palaeogeography, Palaeoclimatology, Palaeoecology 149:227244.CrossRefGoogle Scholar
Wapnick, C. M., Precht, W. F., and Aronson, R. B.. 2004. Millennial-scale dynamics of staghorn coral in Discovery Bay, Jamaica. Ecology Letters 7 : 354361.CrossRefGoogle Scholar
Watkins, J. G. 1961. Foraminiferal ecology around the Orange County, California, ocean sewer outfall. Micropaleontology 7:199206.CrossRefGoogle Scholar
Wheatcroft, R. A. 1992. Experimental tests for particle size-dependent bioturbation in the deep ocean. Limnology and Oceanography 37:90104.CrossRefGoogle Scholar
Wheatcroft, R. A., and Martin, W. R.. 1994. Appendix E: solid-phase bioturbation processes on the Palos Verdes Shelf. Pp. 135 in Drake, D. E., Sherwood, C. R., and Wiberg, P. L., eds. Predictive modeling of the natural recovery of the contaminated effluent-affected sediment, Palos Verdes margin, Southern California. U.S. Geological Survey Expert Report, Menlo Park, Calif.Google Scholar
Wheatcroft, R. A., and Martin, W. R.. 1996. Spatial variation in short-term (234Th) sediment bioturbation intensity along an organic-carbon gradient. Journal of Marine Research 54:763792.CrossRefGoogle Scholar
Willis, B. J., Sun, T., and Ainsworth, R. B.. 2022. Sharp-based shoreface successions reconsidered in three-dimensions: a forward stratigraphic modelling perspective. Depositional Record 8:685717.CrossRefGoogle Scholar
Wolf, S. C., and Gutmacher, C. E.. 2004. Geologic and bathymetric reconnaissance overview of the San Pedro shelf region, Southern California. U.S. Geological Survey Open-File Report 2004–1049. https://pubs.usgs.gov/of/2004/1049.Google Scholar
Wrede, A., Dannheim, J., Gutow, L., and Brey, T.. 2017. Who really matters: influence of German Bight key bioturbators on biogeochemical cycling and sediment turnover. Journal of Experimental Marine Biology and Ecology 488:92101.CrossRefGoogle Scholar
Wright, V. P., and Cherns, L.. 2016. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology 59:753765.CrossRefGoogle Scholar
Zhang, L. J., Fan, R. Y., and Gong, Y. M.. 2015. Zoophycos macroevolution since 541 Ma. Scientific Reports 5:14954.CrossRefGoogle ScholarPubMed
Zhu, Q., and Aller, R. C.. 2013. Planar fluorescence sensors for two-dimensional measurements of H2S distributions and dynamics in sedimentary deposits. Marine Chemistry 157:4958.CrossRefGoogle Scholar