Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T11:47:46.409Z Has data issue: false hasContentIssue false

Adsorption of water on epitaxial graphene

Published online by Cambridge University Press:  18 August 2020

U. Burghaus*
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, USA
*
a)e-mail: [email protected]; www.uweburghaus.us/
Get access

Abstract

Graphene and its functionalization are still one of the most prominent two-dimensional crystals. In recent years, the wetting properties of graphene for water (i.e., its hydrophobic, hydrophilic, and also icophobic features) were controversially discussed as well as water intercalation and confined water, that have unusual characteristics. The dispute about wetting properties was originally based on contact angle (/engineering) measurements conducted at ambient pressure. In the meanwhile, detailed ultra-high vacuum (UHV) surface science works and theoretical studies are available. This brief review describes the current knowledge available in the literature about the water/graphene system as well as our own work using experimental UHV surface science techniques. The review starts with a definition of hydrophobicity and briefly touches on a possible correlation with icephobicity as well as discusses briefly confined water. Next, theoretical studies are reviewed, and finally, experimental works are described on which the review focusses. Finally, a brief outlook section discusses water adsorption on functionalized graphene.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, C.-H., Hsu, M.-H., Weng, C.-J., Peng, C.-W., Hung, W.-I., Chang, K.-C., Chuang, T.-L., Yen, Y.-C., and Yeh, J.-M.: 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as advanced anticorrosive coatings with a synergistic effect of superhydrophobicity and gas barrier property. J. Mater. Chem. A 1, 1386913877 (2013).CrossRefGoogle Scholar
Kreder, M.J., Alvarenga, J., Kim, P., and Aizenberg, J.: Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 1, 1 (2016).CrossRefGoogle Scholar
Chakradhar, A. and Burghaus, U.: Adsorption of water on graphene/Ru(0001)—An experimental ultra-high vacuum study. Chem. Commun. 50, 76987701 (2014).CrossRefGoogle Scholar
Chakradhar, A., Sivapragasam, N., Nayakasinghe, M.T., and Burghaus, U.: Support effects in the adsorption of water on CVD graphene: An ultra-high vacuum adsorption study. Chem. Commun. 51, 1146311466 (2015).CrossRefGoogle ScholarPubMed
Shan, J., Chakradhar, A., Yu, Z., and Burghaus, U.: Adsorption of water on a hydrophobic surface — The case of antimony(111). Chem. Phys. Lett. 517, 4650 (2011).CrossRefGoogle Scholar
Burghaus, U.: Adsorption of water on two-dimensional crystals: Water/graphene and water/silicatene (short review). Inorganics 4, 10 (2016).CrossRefGoogle Scholar
Komarneni, M., Sand, A., Goering, J., Burghaus, U., Lu, M., Veca, M., and Sun, Y.-P.: Possible effect of carbon nanotube diameter on gas-surface interactions — The case of benzene, water, and n-pentane adsorption on SWCNTs at ultra-high vacuum conditions. Chem. Phys. Lett. 476, 227231 (2009).CrossRefGoogle Scholar
Sivapragasam, N., Nayakasinghe, M.T., and Burghaus, U.: Adsorption kinetics and dynamics of CO2 on Ru(0001) supported graphene oxide. J. Phys. Chem. C 120, 2804928056 (2016).CrossRefGoogle Scholar
Chakradhar, A., Sivapragasam, N., Nayakasinghe, M.T., and Burghaus, U.: Adsorption kinetics of benzene on graphene: An ultra-high vacuum study. J. Vac. Sci. Technol. A 34, 021402 (2016).CrossRefGoogle Scholar
Sivapragasam, N., Nayakasinghe, M.T., and Burghaus, U.: Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study. J. Vac. Sci. Technol. 34, 041404 (2016).CrossRefGoogle Scholar
Chakradhar, A., Trettel, K.M., and Burghaus, U.: Benzene adsorption on Ru(0001) and graphene/Ru(0001) — How to synthesize epitaxial graphene without STM or LEED? Chem. Phys. Lett. 590, 146152 (2013).CrossRefGoogle Scholar
Sivapragasam, N., Nayakasinghe, M.T., Chakradhar, A., and Burghaus, U.: Effects of the support on the desorption kinetics of n-pentane from graphene: An ultra-high vacuum adsorption study. J. Vac. Sci. Technol. A 35, 061404 (2017).CrossRefGoogle Scholar
Burghaus, U.: Gas-surface interactions on two-dimensional crystals. Surf. Sci. Rep. 74, 141177 (2019).CrossRefGoogle Scholar
Burghaus, U.: Gas-carbon nanotubes interactions: a review of ultra-high vacuum surface science studies on CNTs. In Carbon Nanotubes - Research Trends (Nova Science, New York). ISBN 978-1-60692-236-1 (2009).Google Scholar
Thiel, P.A. and Madey, T.E.: The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211 (1987).CrossRefGoogle Scholar
Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).CrossRefGoogle Scholar
Smith, R.S. and Kay, B.D.: Molecular beam studies of kinetic processes in nanoscale water films. Surf. Rev. Lett. 4, 781 (1997).CrossRefGoogle Scholar
Shih, C.J., Strano, M.S., and Blankschtein, D.: Wetting translucency of graphene. Nat. Mater. 12, 866 (2013).CrossRefGoogle ScholarPubMed
Rafiee, J., Mi, X., Gullapalli, H., Thomas, A.V., Yavari, F., Shi, Y., Ajayan, P.M., and Koratkar, N.A.: Wetting transparency of graphene. Nat. Mater. 11, 217 (2012).CrossRefGoogle ScholarPubMed
Campbell, C.T.: Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1 (1997).CrossRefGoogle Scholar
Bakaev, V.A. and Steele, W.A.: On the computer simulation of a hydrophobic vitreous silica surface. J. Chem. Phys. 111, 9803 (1999).CrossRefGoogle Scholar
Morgan, G.A., Sorescu, D.C., Zubkov, T., and Yates, J.T. Jr.: The formation and stability of adsorbed formyl as a possible intermediate in Fischer-Tropsch chemistry on ruthenium. J. Phys. Chem. B 108, 36143624 (2004).CrossRefGoogle ScholarPubMed
Niemelä-Anttonen, H., Koivuluoto, H., Tuominen, M., Teisala, H., Juuti, P., Haapanen, J., Harra, J., Stenroos, C., Lahti, J., Kuusipalo, J., Mäkelä, J.M., and Vuoristo, P.: Icephobicity of slippery liquid infused porous surfaces under multiple freeze–thaw and ice accretion–detachment cycles. Adv. Mater. Interfaces 5, 1800828 (2018).CrossRefGoogle Scholar
Irajizad, P., Nazifi, S., and Ghasemi, H.: Historical perspective, icephobic surfaces: Definition and figures of merit. Adv. Colloid Interface Sci. 269, 203218 (2019).CrossRefGoogle Scholar
Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C.M., and Poulikakos, D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 30593066 (2011).CrossRefGoogle ScholarPubMed
Meuler, A.J., Smith, D., Varanasi, K.K., Mabry, J.M., McKinley, G.H., and Cohen, R.E. et al. : Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 11, 31003110 (2010).Google Scholar
Hejazi, V., Sobolev, K., and Nosonovsky, M.: From superhydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 3, 2194 (2013).CrossRefGoogle ScholarPubMed
Severin, N., Dorn, M., Kalachev, A., and Rabe, J.P.: Replication of single macromolecules with graphene. Nano Lett. 11, 24362439 (2011).CrossRefGoogle ScholarPubMed
Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., Santis, M.D., Gauthier, Y., Konvicka, C., Schmid, M., and Varga, P.: Two-dimensional oxide on Pd(111). Phys. Rev. Lett. 88, 246103 (2002).CrossRefGoogle Scholar
Leenaerts, O., Partoens, B., and Peeters, F.M.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 77, 125416 (2008).CrossRefGoogle Scholar
Ma, J., Michaelides, A., Alf, D., Schimka, L., Kresse, G., and Wang, E.: Adsorption and diffusion of water on graphene from first principles. Phys. Rev. B 84, 033402 (2011).CrossRefGoogle Scholar
Kysilka, J., Rube, M., Grajciar, L., Nachtigall, P., and Bludsk, O.: Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes. J. Phys. Chem. A 115, 11387 (2011).CrossRefGoogle ScholarPubMed
Wang, J. and Wang, L.: Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions. J. Mater. Res. 35, 15041513 (2020).CrossRefGoogle Scholar
Liu, J.C., Monson, P.A., and Swol, F.v.: Studies of a lattice model of water confined in a slit pore. J. Phys. Chem. C 111, 1597615981 (2007).CrossRefGoogle Scholar
Gründling, C., Lercher, J.A., and Goodman, D.W.: Preparation of mixed Al2O3/SiO2 thin films supported on Mo(100). Surf. Sci. 318, 97103 (1994).CrossRefGoogle Scholar
Qiang Li, J.S., Besenbacher, F., and Dong, M.: Two-dimensional material confined water. Acc. Chem. Res. 48, 119127 (2015).Google Scholar
Bampoulis, P., Sotthewes, K., Dollekamp, E., and Poelsema, B.: Water confined in two-dimensions: Fundamentals and applications. Surf. Sci. Rep. 73, 233264 (2018).CrossRefGoogle Scholar
Xu, K., Cao, P., and Heath, J.R.: Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 11881191 (2010).CrossRefGoogle ScholarPubMed
Shih, C.J., Wang, Q.H., Lin, S., Park, K.C., Jin, Z., Strano, M.S., and Blankschtein, D.: Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012).CrossRefGoogle ScholarPubMed
Gillan, M.J., Alfè, D., and Michaelides, A.: Perspective: How good is DFT for water? J. Chem. Phys. 144, 130901 (2016).CrossRefGoogle Scholar
Li, Z., Lepore, A.W., Salazar, M.F., Foo, G.S., Davison, B.H., Wu, Z., and Narula, C.K.: Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5. Green Chemistry 19, 43444352 (2017).CrossRefGoogle Scholar
Jiao, F. and Frei, H.: Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. Engl. 48, 18411844 (2009).CrossRefGoogle ScholarPubMed
Moshoeshoe, M., Nadiye-Tabbiruka, M.S., and Obuseng, V.: Properties and applications of zeolites. Am. J. Mater. Sci. 7, 196221 (2017).Google Scholar
Raj, R., Maroo, S.C., and Wang, E.N.: Wettability of graphene. Nano Lett. 13, 15091515 (2013).CrossRefGoogle ScholarPubMed
Kosinov, N., Gascon, J., Kapteijn, F., and Hensen, E.J.: Recent developments in zeolite membranes for gas separation. J. Memb. Sci. 499, 6579 (2016).CrossRefGoogle Scholar
Shirai, T., Watanabe, H., Fuji, M., and Takahashi, M.: Structural properties and surface characteristics on aluminum oxide powders. Nagoya Inst. Technol. 9, 2331 (2009).Google Scholar
Wehling, T.O., Lichtenstein, A.I., and Katsnelson, M.I.: First-principles studies of water adsorption on graphene: The role of the substrate. Appl. Phys. Lett. 93 (2008).CrossRefGoogle Scholar
Bermudez, V.M. and Robinson, J.T.: Effects of molecular adsorption on the electronic structure of single-layer graphene. Langmuir 27, 1102611036 (2011).CrossRefGoogle ScholarPubMed
Wang, Z. and Liu, C.J.: Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 11, 277 (2015).CrossRefGoogle Scholar
Feng, X., Maier, S., and Salmeron, M.: Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 134, 56625668 (2012).CrossRefGoogle ScholarPubMed
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S.P., Li, L., and Liu, H.: Study on the surface energy of graphene by contact angle measurements. Nat. Mater. 12, 925 (2013).CrossRefGoogle Scholar
Cao, P., Xu, K., Varghese, J.O., and Heath, J.R.: The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett. 11, 55815586 (2011).CrossRefGoogle ScholarPubMed
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S.P., Li, L., and Liu, H.: Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 12, 925931 (2013).CrossRefGoogle ScholarPubMed
Sahoo, S., Suib, S.L., and Alpay, S.P.: Graphene supported single atom transition metal catalysts for methane activation. ChemCatChem 10, 32293235 (2018).CrossRefGoogle Scholar
Singla, S., Anim-Danso, E., Islam, A.E., Ngo, Y., Kim, S.S., Naik, R.R., and Dhinojwala, A.: Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy. ACS Nano 11, 48994906 (2017).CrossRefGoogle ScholarPubMed
Voloshina, E., Usvyat, D., Schutz, M., Dedkovcd, Y., and Paulusa, B.: On the physisorption of water on graphene: A CCSD(T) study. Phys. Chem. Chem. Phys. 13, 1204112047 (2011).CrossRefGoogle Scholar
Chakarov, D.V., Osterlund, L., and Kasemo, B.: Water adsorption and coadsorption with potassium on graphite(0001). Langmuir 11, 12011214 (1995).CrossRefGoogle Scholar
Chakarov, D.V., Osterlund, L., and Kasemo, B.: Water adsorption on graphite (0001). Vacuum 46, 11091112 (1995).CrossRefGoogle Scholar
Kay, B.D., Lykke, K.R., Creighton, J.R., and Ward, S.J.: The influence of adsorbate-adsorbate hydrogen bonding in molecular chemisorption: NH3, HF, and H2O on Au(111). J. Chem. Phys. 91, 51205221 (1989).CrossRefGoogle Scholar
Hodgson, A. and Haq, S.: Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381451 (2009).CrossRefGoogle Scholar
Song, T.T., Yang, M., Chai, J.W., Callsen, M., Zhou, J., Yang, T., Zhang, Z., Pan, J.S., Chi, D.Z., Feng, Y.P., and Wang, S.J.: The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Sci. Rep. 6, 29221 (2016).CrossRefGoogle ScholarPubMed
Hu, S., Lozada-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvalov, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., and Geim, A.K.: Proton transport through one-atom-thick crystals. Nature 516, 227230 (2014).CrossRefGoogle ScholarPubMed
Zhou, M., Zhang, A., Dai, Z., Zhang, C., and Feng, Y.P.: Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene. J. Chem. Phys. 132, 194704 (2010).CrossRefGoogle ScholarPubMed
Ambrosetti, A. and Silvestrelli, P.L.: Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate. J. Chem. Phys. 144, 111101 (2016).CrossRefGoogle ScholarPubMed
Linderoth, T.R., Zhdanov, V.P., and Kasemo, B.: Water condensation kinetics on a hydrophobic surface. Phys. Rev. Lett. 90, 156103 (2003).CrossRefGoogle ScholarPubMed
Hinch, B.J. and Dubois, L.H.: Stable and metastable phases of water adsorbed on Cu(111). J. Chem. Phys. 96, 3262 (1992).CrossRefGoogle Scholar
Srivastava, S., Kashyap, P.K., Singh, V., Senguttuvan, T.D., and Gupta, B.K.: Nitrogen doped high quality CVD grown graphene as a fast responding NO2 gas sensor. New J. Chem. 42, 95509556 (2018).CrossRefGoogle Scholar
Chen, Y.W. and Cheng, H.P.: Interaction between water and defective silica surfaces. J. Chem. Phys. 134, 114703 (2011).CrossRefGoogle ScholarPubMed
Quiller, R.G., Baker, T.A., Deng, X., Colling, M.E., Min, B.K., and Friend, C.M.: Transient hydroxyl formation from water on oxygen-covered Au(111). J. Chem. Phys. 129, 064702 (2008).CrossRefGoogle Scholar
Nayakasinghe, M.T., Han, Y., Sivapragasam, N., Kilin, D., Oncel, N., and Burghaus, U.: Adsorption of formic acid on CH3NH3PbI3 lead-halide organic-inorganic perovskites. J. Phys. Chem. C 123, 2287322886.CrossRefGoogle Scholar
Almenningen, A., Bastiansen, O., Ewing, V., Hedberg, K., and Traetteberg, M.: The molecular structure of disiloxane, (SiH3)2O. Acta Chem. Scand. 17, 9 (1963).Google Scholar
Liu, R., Gong, T., Zhang, K., and Lee, C.: Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci. Rep. 7, 9761 (2017).CrossRefGoogle ScholarPubMed
Lian, B., Luca, S.D., You, Y., Alwarappan, S., Yoshimura, M., Sahajwalla, V., Smith, S.C., Leslie, G., and Joshi, R.K.: extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 9, 5106 (2018).CrossRefGoogle ScholarPubMed
Zhou, K., Vasu, K.S., and Cherian, C.T.: Electrically controlled water permeation through graphene oxide membranes. Nature 559, 236240 (2018).CrossRefGoogle ScholarPubMed
Mouhat, F., Coudert, F., and Bocquet, M.: Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566 (2020).CrossRefGoogle ScholarPubMed
Lin, C., Wei, W., and Hu, Y.H.: Catalytic behavior of graphene oxide for cement hydration process. J. Phys. Chem. Solids 89, 128133 (2016).CrossRefGoogle Scholar
Shan, J., Aarts, J.F.M., Kleyn, A.W., and Juurlink, L.B.F.: Co-adsorption of water and hydrogen on Ni(111). Phys. Chem. Chem. Phys. 10, 49945003 (2008).CrossRefGoogle Scholar
van der Niet, M.J.T.C., Dominicus, I., Koper, M.T.M., and Juurlink, L.B.F.: Hydrophobic interactions between water and pre-adsorbed D on the stepped Pt(533) surface. Phys. Chem. Chem. Phys. 10, 71697179 (2008).CrossRefGoogle ScholarPubMed
Kimmel, G.A., Petrik, N.G., Dohnalek, Z., and Kay, B.D.: Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer. Phys. Rev. Lett. 95, 166102 (2005).CrossRefGoogle ScholarPubMed
Wu, K.J., Peterson, L.D., Elliott, G.S., and Kevan, S.D.: Time-resolved electron energy loss spectroscopy study of water desorption from Ag(011). J. Chem. Phys. 91, 7964 (1989).CrossRefGoogle Scholar
Bolina, A.S., Wolff, A.J., and Brown, W.A.: Reflection absorption infrared spectroscopy and temperature-programmed desorption studies of the adsorption and desorption of amorphous and crystalline water on a graphite surface. J. Phys. Chem. B 109, 1683616845 (2005).CrossRefGoogle ScholarPubMed
Souda, R.: Nanoconfinement effects of water on hydrophilic and hydrophobic substrates at cryogenic temperatures. J. Phys. Chem. C 116, 2089520901 (2012).CrossRefGoogle Scholar
Nayakasinghe, M.T., Sivapragasam, N., and Burghaus, U.: Desulfurization-related surface chemistry on two-dimensional silica films: Adsorption of thiophene and short-chain alkanes on silicatene. J. Phys. Chem. C 122, 82448253 (2018).CrossRefGoogle Scholar
Kimmel, G.A., Matthiesen, J., Baer, M., Mundy, C.J., Petrik, N.G., Smith, R.S., Dohnalek, Z., and Kay, B.D.: No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 1283812844 (2009).CrossRefGoogle Scholar
Lim, T., and Ju, S.: Control of graphene surface wettability by using CF4 plasma. Surf. Coating. Technol. 328, 8993 (2017).CrossRefGoogle Scholar