Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:36:00.057Z Has data issue: false hasContentIssue false

Sb–Au-bearing chalcedonies in hot geothermal systems: insights from the jasperoids of Poggio Peloso (southern Tuscany, Italy)

Published online by Cambridge University Press:  16 January 2023

Elisabetta Gliozzo*
Affiliation:
Department of Humanities Research and Innovation, University of Bari, Bari 70121, Italy
Andrea Brogi
Affiliation:
Department of Earth and Geoenvironmental Sciences, University of Bari, Bari 70121, Italy CNR – Institute of Geosciences and Earth Resources, Pisa 56121, Italy
Giovanni Ruggieri
Affiliation:
CNR – Institute of Geosciences and Earth Resources, Florence 50100, Italy
Antonio Langone
Affiliation:
CNR – Institute of Geosciences and Earth Resources, Pavia 27100, Italy Department of Earth and Environmental Sciences, University of Pavia, Pavia 27100, Italy
*
Author for correspondence: Elisabetta Gliozzo, Email: [email protected]

Abstract

Detailed characterization was performed on the chalcedonies from the jasperoids of the Pietratonda–Poggio Peloso Sb–Au deposit (southern Tuscany, Italy). The main purpose was to retrieve information on the geothermal fluids that formed the chalcedonies and the source of antimony concentrations. Investigations were performed using optical microscopy, laser ablation inductively coupled plasma mass spectroscopy and X-ray diffraction on both the chalcedonies and the lithotypes cropping out in the area. The results obtained allow the chalcedonies of Pietratonda–Poggio Peloso to be described as a unicum, based on the very high contents of Sb that do not find a comparison in the literature. The textures showed multiple generations of silica that agree well with an environment characterized by multiple injections of mineralizing solutions, bearing variable physicochemical characteristics. The transport likely took place in an alkaline environment, while the acidification of the water may have favoured the precipitation at varying temperatures but not higher than 225 °C. The rocks from which the constituents may have been leached are the hosting carbonates and the surrounding metamorphic rocks. Among the examined rocks, the metamorphic rocks showed the most numerous and significant correspondences with the chalcedonies and were the only ones in which discrete amounts of gold contents were found.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, F, Alessandroni, M, Antonellini, M, Tondi, E and Giorgioni, M (2010) From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490, 197213. doi: 10.1016/j.tecto.2010.05.005.CrossRefGoogle Scholar
Aldinucci, M, Brogi, A and Sandrelli, F (2005) The metamorphic units of the eastern side of Monte Leoni (Northern Apennines, Italy). Bollettino della Società Geologica Italiana 124, 313–32.Google Scholar
Aleksandrova, VA, Drits, VA and Sokolova, GV (1973) Crystal structure of ditrioctahedral chlorite. Soviet Physics Crystallography 18, 50–3.Google Scholar
Bagby, WC and Berger, BR (1985) Geologic characteristics of sediment-hosted, disseminated precious-metal deposits in the Western United States. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 169202. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists. doi: 10.5382/Rev.02.08.Google Scholar
Barbier, E (2002) Geothermal energy technology and current status: an overview. Renewable and Sustainable Energy Reviews 6, 365. doi: 10.1016/S1364-0321(02)00002-3.CrossRefGoogle Scholar
Bartole, R (1995) The North Tyrrhenian–Northern Apennines post-collisional system: constraints for a geodynamic model. Terra Nova 7, 730. doi: 10.1111/j.1365-3121.1995.tb00664.x.CrossRefGoogle Scholar
Batini, F, Brogi, A, Lazzarotto, A, Liotta, D and Pandeli, E (2003) Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 26, 239–44. doi: 10.18814/epiiugs/2003/v26i3/015.CrossRefGoogle Scholar
Bau, M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology 93, 219–30. doi: 10.1016/0009-2541(91)90115-8.CrossRefGoogle Scholar
Beer, M (1992) Achate und andere Mineralien aus den nordostböhmischen Melaphyren. Mineralien Welt 4, 4751.Google Scholar
Berger, BR and Silberman, ML (1985) Relationships of trace-element patterns to geology in hot-spring-type precious-metal deposits. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 233–48. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists. doi: 10.5382/Rev.02.10.CrossRefGoogle Scholar
Bernard-Romero, MA, Taran, YA and Pennisi, M (2010) Geochemistry of boron in fluids of Los Humeros and Los Azufres hydrothermal systems, Mexico. In Water-Rock Interaction (eds Birkle, P and Torres-Alvarado, IS), pp. 145–8. London: Taylor & Francis Group.Google Scholar
Bernoulli, D (2001) Mesozoic–Tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, GB and Martini, IP), pp. 307–26. Dordrecht: Kluwer Academic Publishers.Google Scholar
Bertini, G, Cappetti, G and Fiordalisi, A (2005) Characteristics of geothermal fields in Italy. Giornale di Geologia Applicata 1, 247–54.Google Scholar
Bingqiu, Z, Jinmao, Z, Lixin, Z and Yaxin, Z (1986) Mercury, arsenic, antimony, bismuth and boron as geochemical indicators for geothermal areas. Journal of Geochemical Exploration 25, 379–88. doi: 10.1016/0375-6742(86)90085-3.CrossRefGoogle Scholar
Blankenburg, H-J (1988) Achat. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie.Google Scholar
Boschi, C, Dini, A, Dallai, L, Ruggieri, G and Gianelli, G (2009) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chemical Geology 265, 209–26. doi: 10.1016/j.chemgeo.2009.03.016.CrossRefGoogle Scholar
Bowell, RH, Foster, RP and Gize, AP (1993) The mobility of gold in tropical rain forest soils. Economic Geology 88, 9991016. doi: 10.2113/gsecongeo.88.5.999.CrossRefGoogle Scholar
Boyle, RW and Jonasson, IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration 2, 251–96. doi: 10.1016/0375-6742(73)90003-4.CrossRefGoogle Scholar
Braga, R (1980) L’antimonite in Toscana: genesi e descrizione dei giacimenti. Lazio Minerale 5–7, 1626.Google Scholar
Brigatti, MF, Frigieri, P and Poppi, L (1998) Crystal chemistry of Mg-, Fe-bearing muscovites – 2M1 . American Mineralogist 83, 775. doi: 10.2138/am-1998-7-809.CrossRefGoogle Scholar
Brizzi, G and Sabelli, C (1985) Minerali di Poggio Peloso (GR). Rivista Mineralogica Italiana 8, 135–43.Google Scholar
Brogi, A (2006) Foliation relationships and structural facing vs. vergence determinations in refolded low-grade metamorphic rocks: an example from the Tuscan Metamorphic “Basement” (Northern Apennines, Italy). Journal of Structural Geology 28, 115–28. doi: 10.1016/j.jsg.2005.07.009.CrossRefGoogle Scholar
Brogi, A (2008) Kinematics and geometry of Miocene low-angle detachments and exhumation of the metamorphic units in the hinterland of the Northern Apennines (Italy). Journal of Structural Geology 30, 220. doi: 10.1016/j.jsg.2007.09.012.CrossRefGoogle Scholar
Brogi, A (2011) Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, Northern Apennines). Tectonophysics 499, 5476. doi: 10.1016/j.tecto.2010.12.005.CrossRefGoogle Scholar
Brogi, A, Alcicek, MC, Liotta, D, Capezzuoli, E, Zucchi, M and Matera, PF (2021) Step-over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics 89, 101941. doi: 10.1016/j.geothermics.2020.101941.CrossRefGoogle Scholar
Brogi, A and Cerboneschi, A (2007) Upper crust “boudinage” during post-collisional Miocene extension in Tuscany: insights from the southern part of the Larderello geothermal area (Northern Apennines, Italy). Geodinamica Acta 20, 327–51. doi: 10.3166/ga.20.327-351.CrossRefGoogle Scholar
Brogi, A, Fabbrini, L and Liotta, D (2011) Sb–Hg ore deposit distribution controlled by brittle structures: the case of the Selvena mining district (Monte Amiata, Tuscany, Italy). Ore Geology Reviews 41, 3548. doi: 10.1016/j.oregeorev.2011.06.004.CrossRefGoogle Scholar
Brogi, A, Fidolini, F and Liotta, D (2013) Tectonic and sedimentary evolution of the Upper Valdarno Basin: new insights from the lacustrine S. Barbara Basin. Italian Journal of Geosciences 132, 8197. doi: 10.3301/IJG.2012.08.Google Scholar
Brogi, A and Fulignati, P (2012) Tectonic control on hydrothermal circulation and fluid evolution in the Pietratonda–Poggio Peloso (southern Tuscany, Italy) carbonate-hosted Sb-mineralization. Ore Geology Reviews 44, 158–71. doi: 10.1016/j.oregeorev.2011.11.003.CrossRefGoogle Scholar
Brogi, A and Giorgetti, G (2012) Tectono-metamorphic evolution of the siliciclastic units in the Middle Tuscan Range (inner Northern Apennines): Mg–carpholite bearing quartz veins related to syn-metamorphic syn-orogenic foliation. Tectonophysics 526–529, 167–84. doi: 10.1016/j.tecto.2011.09.015.CrossRefGoogle Scholar
Brogi, A, Lazzarotto, A, Liotta, D, Ranalli, G and Crop-18 Working Group (2005) Crustal structures in the geothermal areas of southern Tuscany (Italy): insights from the CROP 18 deep seismic reflection lines. Journal of Volcanology and Geothermal Research 148, 6080. doi: 10.1016/j.jvolgeores.2005.03.014.CrossRefGoogle Scholar
Brogi, A and Liotta, D (2008) Highly extended terrains, lateral segmentation of the substratum and basin development: the middle–late Miocene Radicondoli basin (inner northern Apennines, Italy). Tectonics 27, 120. doi: 10.1029/2007TC002188.CrossRefGoogle Scholar
Brogi, A, Liotta, D, Capezzuoli, E, Matera, PF, Kele, S, Soligo, M, Tuccimei, P, Ruggieri, G, Yu, T-L, Shen, C-C and Huntington, K (2020) Travertine deposits constraining transfer zone neotectonic activity in geothermal areas: an example from the inner Northern Apennines (Bagno Vignoni-Val d’Orcia area, Italy). Geothermics 85, 101763. doi: 10.1016/j.geothermics.2019.101763.CrossRefGoogle Scholar
Brogi, A, Liotta, D, Ruggieri, G, Capezzuoli, E, Meccheri, M and Dini, A (2016) An overview on the characteristics of geothermal carbonate reservoirs in southern Tuscany. Italian Journal of Geosciences 135, 1729. doi: 10.3301/IJG.2014.41.CrossRefGoogle Scholar
Brookins, D (1989) Aqueous geochemistry of rare earth elements. In Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, BR and McKay, GA), pp. 201–25. Reviews in Mineralogy vol. 21. Berlin: De Gruyter.CrossRefGoogle Scholar
Cabioch, G, Camoin, G, Webb, GE, Le Cornec, F, Garcia Molina, M, Pierre, C and Joachimski, MM (2006) Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu (South-West Pacific). Sedimentary Geology 185, 297318. doi: 10.1016/j.sedgeo.2005.12.019.CrossRefGoogle Scholar
Cackler, PR, Glascock, MD, Neff, H, Iceland, H, Pyburn, KA, Hudler, D, Hester, TR and Chiarulli, BM (1999) Chipped stone artefacts, source areas, and provenance studies of the Northern Belize chert-bearing zone. Journal of Archaeological Science 26, 389–97. doi: 10.1006/jasc.1998.0340.CrossRefGoogle Scholar
Cady, SL, Wenk, H-R and Sintubin, M (1998) Microfibrous quartz varieties: characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contributions to Mineralogy and Petrology 130, 320–35. doi: 10.1007/s004100050368.CrossRefGoogle Scholar
Calcagnile, G and Panza, G (1981) The main characteristics of the lithosphere asthenosphere system in Italy and surrounding regions. Pure and Applied Geophysics 119, 865–79. doi: 10.1007/BF01131263.CrossRefGoogle Scholar
Candela, PA (2003) Ores in the Earth’s crust. In Treatise on Geochemistry, Volume 3 (ed. Rudnick, RL), pp. 411–31. Oxford: Elsevier. doi: 10.1016/B0-08-043751-6/03028-0.CrossRefGoogle Scholar
Capezzuoli, E, Ruggieri, G, Rimondi, V, Brogi, A, Liotta, D, Alçiçek, MC, Alçiçek, H, Bülbül, A, Gandin, A, Meccheri, M, Shen, C-C and Baykara, MO (2018) Calcite veining and feeding conduits in a hydrothermal system: insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey). Sedimentary Geology 364, 180203. doi: 10.1016/j.sedgeo.2017.12.012.CrossRefGoogle Scholar
Cappetti, G, D’Olimpio, P, Sabatelli, F and Tarquini, B (1995) Inhibition of antimony sulphide scale by chemical additives: laboratory and field test results. In Proceedings of the World Geothermal Congress – Section 11, Corrosion and Scaling, Florence, Italy, 18–31 May 1995, pp. 2503–7.Google Scholar
Carmignani, L, Decandia, FA, Disperati, L, Fantozzi, PL, Kligfield, R, Lazzarotto, A, Liotta, D and Meccheri, M (2001) Inner Northern Apennines. In Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins (eds Vai, GB and Martini, IP), pp. 197213. Dordrecht: Kluwer. doi: 10.1007/978-94-015-9829-3_14.Google Scholar
Carmignani, L, Decandia, FA, Disperati, L, Fantozzi, PL, Lazzarotto, A, Liotta, D and Meccheri, M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238, 295315. doi: 10.1016/0040-1951(94)90061-2.CrossRefGoogle Scholar
Chao, SH, Hargreaves, A and Taylor, WH (1940) The structure of orthoclase. Mineralogical Magazine and Journal of the Mineralogical Society 25, 498512. doi: 10.1180/minmag.1940.025.168.05.CrossRefGoogle Scholar
Cline, JS and Hofstra, AA (2000) Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. European Journal of Mineralogy 12, 195212. doi: 10.1127/ejm/12/1/0195.CrossRefGoogle Scholar
Cline, JS, Hofstra, AH, Muntean, JL, Tosdal, RM and Hickey, KA (2005) Carlin-type gold deposits in Nevada: critical geological characteristics and viable models. In Economic Geology: One Hundredth Anniversary Volume: 1905–2005 (eds Hedenquist, JW, Thompson, JFH, Goldfarb, R and Richards, JP), pp. 451–84. Littleton CO: Society of Economic Geology. doi: 10.5382/AV100.15.Google Scholar
Codeço, MS, Weis, P, Trumbull, RB, Van Hinsberg, V, Pinto, F, Lecumberri-Sanchez, P and Schleicher, AM (2021) The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W–Sn–Cu deposit, Portugal. Mineralium Deposita 56, 481508. doi: 10.1007/s00126-020-00984-8.CrossRefGoogle Scholar
Cohen, DR and Waite, TD (2004) Interaction of aqueous Au species with goethite, smectite and kaolinite. Geochemistry: Exploration, Environment, Analysis 4, 279–87. doi: 10.1144/1467-7873/04-207.Google Scholar
Cole, WF, Sörum, H and Kennard, O (1949) The crystal structures of orthoclase and sanidinized orthoclase. Acta Crystallographica 2, 280–7. doi: 10.1107/S0365110X49000734.CrossRefGoogle Scholar
Corral, I, Corbella, M, Gómez-Gras, D and Griera, A (2018) Trace-metal content of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama): implications for exploration. Boletín de la Sociedad Geológica Mexicana 70, 549–65.CrossRefGoogle Scholar
Craw, D, Chappell, D and Reay, A (2000) Environmental mercury and arsenic sources in fossil hydrothermal systems, Northland, New Zealand. Environmental Geology 39, 875–87. doi: 10.1007/s002549900068.CrossRefGoogle Scholar
Cross, BL (1996) The Agates of Northern Mexico. Edina: Burgess International Group.Google Scholar
Cygan, GL and Candela, PA (1995) Preliminary study of gold partitioning among pyrrhotite, pyrite, magnetite, and chalcopyrite in gold-saturated chloride solutions at 600 to 700 °C, 140 MPa (1400 bars). In Magmas, Fluids and Ore Deposits (ed. Thompson, JFH), pp. 129–38. Mineralogical Association of Canada Short Course Series vol. 23. Ottawa: Mineralogical Association of Canada. Google Scholar
Dessau, G (1952) Antimony deposits of Tuscany. Economic Geology 47, 397413.CrossRefGoogle Scholar
Dessau, G (1977) Die Quecksilber-und Antimonlagerstätten der Toskana. Freiberger Forschungshefte, Reihe C: Geowissenschaften, Mineralogie-Geochemie 328, 4771.Google Scholar
Dessau, G, Duchi, G and Stea, B (1972) Geologia e depositi minerari della zona Monti Romani-Monteti. Memorie della Società Geologica Italiana 11, 217–60.Google Scholar
Di Stefano, R, Bianchi, I, Ciaccio, MG, Carrara, G and Kissling, E (2011) Three-dimensional Moho topography in Italy: new constraints from receiver functions and controlled source seismology. Geochemistry, Geophysics, Geosystems 12, Q09006. doi: 10.1029/2011GC003649.Google Scholar
Dill, HG, Melcher, F and Botz, R (2008) Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia. Ore Geology Reviews 34, 242–62. doi: 10.1016/j.oregeorev.2007.10.004.CrossRefGoogle Scholar
Dini, A (2003) Ore deposits, industrial minerals and geothermal resources. Periodico di Mineralogia 72 (Special Issue), 4152.Google Scholar
Dini, A, Gianelli, G, Puxeddu, M and Ruggieri, G (2005) Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81, 131. doi: 10.1016/j.lithos.2004.09.002.CrossRefGoogle Scholar
Dini, A, Westerman, DS, Innocenti, F and Rocchi, S (2008) Magma emplacement in a transfer zone: the Miocene mafic Orano dyke swarm of Elba Island, Tuscany, Italy. In Structure and Emplacement of High-Level Magmatic Systems (eds Thomson, K and Petford, N), pp. 131–48. Geological Society of London, Special Publication no. 302. doi: 10.1144/SP302.10.Google Scholar
Dong, G, Morrison, G and Jaireth, S (1995) Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic Geology 90, 1841–56. doi: 10.2113/gsecongeo.90.6.1841.CrossRefGoogle Scholar
Dumańska-Słowik, M, Natkaniec-Nowak, L, Kotarba, MJ, Sikorska, M, Rzymełka, JA, Łoboda, A and Gaweł, A (2008) Mineralogical and geochemical characterization of the “bituminous” agates from Nowy Kościół (Lower Silesia, Poland). Neues Jahrbuch für Mineralogie, Abhandlungen 184, 255–68. doi: 10.1127/0077-7757/2008/0098.CrossRefGoogle Scholar
Dumańska-Słowik, M, Powolny, T, Sikorska-Jaworowska, M, Gaweł, A, Kogut, L and Poloński, K (2018) Characteristics and origin of agates from Płóczki Górne (Lower Silesia, Poland): a combined microscopic, micro-Raman, and cathodoluminescence study. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 192, 615. doi: 10.1016/j.saa.2017.11.005.CrossRefGoogle Scholar
Fallick, A, Jocelyn, J, Donnelly, T, Guy, M and Behan, C (1985) Origin of agates in volcanic rocks from Scotland. Nature 313, 672–4. doi: 10.1038/313672a0.CrossRefGoogle Scholar
Fallick, AE, Jocelyn, J and Hamilton, PJ (1987) Oxygen and hydrogen stable isotope systematics in Brazilian agates. In Geochemistry and Mineral Formation in the Earth Surface: Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral Formation, Granada, Spain, 16–22 March 1986 (eds Rodriguez-Clemente, R and Taedy, Y), pp. 99117. Madrid: Consejo Superior de Investigaciones Cientificas.Google Scholar
Faulds, JE, Coolbaugh, MF, Hinz, NH, Cashman, PH, Kratt, C, Dering, G, Edwards, J, Mayhew, B and McLachlan, H (2011) Assessment of favorable structural settings of geothermal systems in the Great Basin, western USA. Geothermal Resources Council Transactions 35, 777–84.Google Scholar
Ferguson, RB, Traill, RJ and Taylor, WH (1958) The crystal structures of low-temperature and high-temperature albites. Acta Crystallographica 11, 331–48. doi: 10.1107/S0365110X5800092X.CrossRefGoogle Scholar
Filella, M, Belzile, N and Lett, M-C (2007) Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth-Science Reviews 80, 195217. doi: 10.1016/j.earscirev.2006.09.003.CrossRefGoogle Scholar
French, MW, Worden, RH and Lee, DR (2003) Electron backscatter diffraction investigation of length-fast chalcedony in agate: implications for agate genesis and growth mechanisms. Geofluids 13, 3244. doi: 10.1111/gfl.12006.CrossRefGoogle Scholar
Freyssinet, PH, Butt, CRM and Morris, RC (2005) Ore-forming processes related to lateritic weathering. In Economic Geology: One Hundredth Anniversary Volume: 1905–2005 (eds Hedenquist, JW, Thompson, JFH, Goldfarb, RJ, Richards, JP), pp. 681722. Littleton CO: Society of Economic Geologists. doi: 10.5382/AV100.21.Google Scholar
Gammons, CH and Williams-Jones, AE (1997) Chemical mobility of gold in the porphyry-epithermal environment. Economic Geology 92, 4559. doi: 10.2113/gsecongeo.92.1.45.CrossRefGoogle Scholar
Gandin, A, Giamello, M, Guasparri, G, Mugnaini, S and Sabatini, G (2000) The Calcare Cavernoso of the Montagnola Senese (Siena, Italy): mineralogical-petrographic and petrogenetic features. Mineralogica et Petrographica Acta 43, 271–89.Google Scholar
Garland, J, Neilson, JE, Laubach, SE and Whidden, KJ (2012) Advances in carbonate exploration and reservoir analysis. In Advances in Carbonate Exploration and Reservoir Analysis (eds Garland, J, Neilson, JE, Laubach, SE and Whidden, KJ), pp. 115. Geological Society of London, Special Publication no. 370. doi: 10.1144/SP370.15.Google Scholar
German, CR, Klinkhammer, GP, Edmond, JM, Mitra, A and Elderfield, H (1990) Hydrothermal scavenging of rare earth elements in the ocean. Nature 345, 516–8. doi: 10.1038/345516a0.CrossRefGoogle Scholar
Gilg, HA, Morteani, G, Kostitsyn, Y, Preinfalk, C, Gatter, I and Strieder, AJ (2003) Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Mineralium Deposita 38, 1009–25. doi: 10.1007/s00126-002-0310-7.CrossRefGoogle Scholar
Giorgetti, G, Goff, B, Memmi, I and Nieto, F (1998) Metamorphic evolution of Verrucano metasediments in Northern Apennines; new petrological constraints. European Journal of Mineralogy 10, 1295–308.CrossRefGoogle Scholar
Giraud, A, Dupuy, C and Dostal, J (1986) Behaviour of trace elements during magmatic processes in the crust: application to acidic volcanic rocks of Tuscany (Italy). Chemical Geology 57, 269–88. doi: 10.1016/0009-2541(86)90054-9.CrossRefGoogle Scholar
Gliozzo, E, Cairncross, B and Vennemann, T (2019) A geochemical and micro-textural comparison of basalt-hosted chalcedony from the Jurassic Drakensberg and Neoarchean Ventersdorp Supergroup (Vaal River alluvial gravels), South Africa. International Journal of Earth Sciences 108, 1857–77. doi: 10.1007/s00531-019-01737-3.CrossRefGoogle Scholar
Götze, J, Möckel, R, Kempe, U, Kapitonov, I and Vennemann, T (2009) Characteristics and origin of agates in sedimentary rocks from the Dryhead area, Montana, USA. Mineralogical Magazine 73, 673–90. doi: 10.1180/minmag.2009.073.4.673.Google Scholar
Götze, J, Möckel, R and Pan, Y (2020) Mineralogy, geochemistry and genesis of agate—a review. Minerals 10, 1037. doi: 10.3390/min10111037.CrossRefGoogle Scholar
Götze, J, Möckel, R, Vennemann, T and Müller, A (2016) Origin and geochemistry of agates in Permian volcanic rocks of the Sub-Erzgebirge basin, Saxony (Germany). Chemical Geology 428, 7791. doi: 10.1016/j.chemgeo.2016.02.023.CrossRefGoogle Scholar
Götze, J, Nasdala, L, Kleeberg, R and Wenzel, M (1998) Occurrence and distribution of “moganite” in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. Contributions to Mineralogy and Petrology 133, 96105. doi: 10.1007/s004100050440.CrossRefGoogle Scholar
Götze, J, Schrön, W, Möckel, R and Heide, K (2012) The role of fluids in the formation of agates. Geochemistry 72, 283–6. doi: 10.1016/j.chemer.2012.07.002.CrossRefGoogle Scholar
Götze, J, Tichomirowa, M, Fuchs, H, Pilot, J and Sharp, ZD (2001) Geochemistry of agates: a trace element and stable isotope study. Chemical Geology 175, 523–41. doi: 10.1016/S0009-2541(00)00356-9.CrossRefGoogle Scholar
Graetsch, H (1994) Structural characteristics of opaline and micro-crystalline silica minerals. In Silica: Physical Behaviour, Geochemistry and Materials Application (eds Heaney, PJ, Prewitt, CT and Gibbs, GV), pp. 209–32. Reviews in Mineralogy vol. 29. Littleton CO: Mineralogical Society of America. doi: 10.1515/9781501509698-011.CrossRefGoogle Scholar
Grenne, T and Slack, JF (2005) Geochemistry of jasper beds from the Ordovician Løkken ophiolite, Norway—origin of proximal and distal siliceous exhalites. Economic Geology 100, 1511–27. doi: 10.2113/gsecongeo.100.8.1511.CrossRefGoogle Scholar
Guggenheim, S and Nelson, DO (1993) Inferred limitations to the oxidation of Fe in chlorite: a high-temperature single-crystal X-ray study. American Mineralogist 78, 1197–207.Google Scholar
Guichard, F, Church, TM, Truil, H and Jaffrezic, H (1979) Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta 43, 983–7. doi: 10.1016/0016-7037(79)90088-7.CrossRefGoogle Scholar
Haake, R, Fischer, J and Reissmann, R (1991) Über das Achat – Amethyst – Vorkommen von Schlottwitz im Osterzgebirge. Mineral Welt 2, 20–4.Google Scholar
Haake, R and Holzhey, G (1989) Achate in kugelförmigen Rhyolithen des Rotliegenden im sächsisch-thüringischem Raum. Chemie der Erde 49, 173–83.Google Scholar
Hancock, PL, Chalmers, RML, Altunel, E and Çakir, Z (1999) Travitonics: using travertines in active fault studies. Journal of Structural Geology 21, 903–16. doi: 10.1016/S0191-8141(99)00061-9.CrossRefGoogle Scholar
Harris, C (1989) Oxygen-isotope zonation of agates from Karoo volcanics of the Skeleton Coast, Namibia. American Mineralogist 74, 476–81.Google Scholar
Heaney, PJ (1993) A proposed mechanism for the growth of chalcedony. Contributions to Mineralogy and Petrology 115, 6674. doi: 10.1007/BF00712979.CrossRefGoogle Scholar
Heaney, PJ and Davis, AM (1995) Observation and origin of self-organized textures in agates. Science 269, 1562–5. doi: 10.1126/science.269.5230.1562.CrossRefGoogle ScholarPubMed
Heaney, PJ, Veblen, DR and Post, JE (1994) Structural disparities between chalcedony and macrocrystalline quartz. American Mineralogist 79, 452–60.Google Scholar
Henley, RW (1985) The geothermal framework of epithermal deposits. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 124. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists.Google Scholar
Henley, RW and Brown, KL (1985) A practical guide to the thermodynamics of geothermal fluids and hydrothermal ore deposits. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 2544. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists.Google Scholar
Ilchik, RP and Barton, MD (1997) An amagmatic origin for Carlin-type gold deposits. In Carlin-Type Gold Deposits Field Conference (eds Vikre, P, Thompson, TB, Bettles, K, Christensen, O and Parratt, R), pp. 269–88. Society of Economic Geologists Guidebook Series 28. Google Scholar
Johnson, MG (1977) Geology and Mineral Deposits of Pershing County, Nevada. Reno: Nevada Bureau of Mines and Geology, Bulletin 89, 121 pp.Google Scholar
Jugo, PJ, Candela, PA and Piccoli, PM (1999) Magmatic sulfides and Au:Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 850 °C, 100 MPa in a haplogranitic melt – pyrrhotite – intermediate solid solution-gold metal assemblage, at gas saturation. Lithos 46, 573–89. doi: 10.1016/S0024-4937(98)00083-8.CrossRefGoogle Scholar
Kamber, BS and Webb, GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta 65, 2509–25. doi: 10.1016/S0016-7037(01)00613-5.CrossRefGoogle Scholar
Karasyova, ON, Ivanova, LI, Lakshtanov, LZ, Lövgren, L and Sjöberg, S (1998) Complexation of gold(III)-chloride at the surface of hematite. Aquatic Geochemistry 4, 215–31. doi: 10.1023/A:1009622915376.CrossRefGoogle Scholar
Kawano, M, Shiraki, K and Tomita, K (1998) Crystal structure of dehydroxylated 2M1 sericite and its relationship with mixed-layer mica/smectite. Clay Science 10, 423–41.Google Scholar
Klemm, DD and Neumann, N (1984) Ore-controlling factors in the Hg-Sb province of southern Tuscany, Italy. In Syngenesis and Epigenesis in the Formation of Mineral Deposits (eds Wauschkuhn, A, Kluth, C and Zimmermann, RA), pp. 482503. Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-70074-3.CrossRefGoogle Scholar
Krauskopf, KB (1956) Dissolution and precipitation of silica at low temperatures. Geochimica et Cosmochimica Acta 10, 126. doi: 10.1016/0016-7037(56)90009-6.CrossRefGoogle Scholar
Landmesser, M (1984) Das problem der Achatgenese. Mitteilungen der Pollichia 72, 5137.Google Scholar
Lattanzi, P (1999) Epithermal precious metal deposits of Italy–an overview. Mineralium Deposita 34, 630–8. doi: 10.1007/s001260050224.CrossRefGoogle Scholar
Law, R, Carter, A, Bhan, K, Malik, A and Glascock, MD (2012) INAA of agate sources and artifacts from the Indus, Helmand, and Thailand regions. In South Asian Archaeology 2007: Proceedings of the 19th International Conference of the European Association of South Asian Archaeology, Ravenna, Italy, 2–6 July 2007 (eds Frenez, D and Tosi, M), pp. 177–84. British Archaeological Reports, International Series no. 2454.Google Scholar
Le Page, Y and Donnay, G (1976) Refinement of the crystal structure of low-quartz. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 32, 2456–9. doi: 10.1107/S0567740876007966.CrossRefGoogle Scholar
Lindsey, DA (1977) Epithermal beryllium deposits in water-laid tuff, western Utah. Economic Geology 72, 219–32. doi: 10.2113/gsecongeo.72.2.219.CrossRefGoogle Scholar
Liotta, D, Brogi, A, Ruggieri, G and Zucchi, M (2021) Fossil vs. active geothermal systems: a field and laboratory method to disclose the relationships between geothermal fluid flow and geological structures at depth. Energies 14, 933. doi: 10.3390/en14040933.CrossRefGoogle Scholar
Liotta, D, Ruggieri, G, Brogi, A, Fulignati, P, Dini, A and Nardini, I (2010) Migration of geothermal fluids in extensional terrains: the ore deposits of the Boccheggiano-Montieri area (southern Tuscany, Italy). International Journal of Earth Sciences 99, 623–44. doi: 10.1007/s00531-008-0411-3.CrossRefGoogle Scholar
Locardi, E and Nicolich, R (1982) Geodinamica del Tirreno e dell’Appennino centro-meridionale: la nuova carta della Moho. Memorie della Società Geologica Italiana 41, 121–40.Google Scholar
Lovering, TG (1962) The origin of jasperoid in limestone. Economic Geology 57, 861–89. doi: 10.2113/gsecongeo.57.6.861.CrossRefGoogle Scholar
Lovering, TG (1972) Jasperoid in the United States; Its Characteristics, Origin, and Economic Significance. Geological Survey USA Professional Paper, 170. Washington: United States Government Printing Office, 176 pp.Google Scholar
Lovering, TG and Heyl, AV (1980) Jasperoids of the Pando area, Eagle County, Colorado. Geological Survey Bulletin 1474. Washington: United States Government Printing Office, 42 pp.Google Scholar
Mann, AW (1984) Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia. Economic Geology 79, 3849. doi: 10.2113/gsecongeo.79.1.38.CrossRefGoogle Scholar
Marcoux, E, Le Berre, P and Cocherie, A (2004) The Meillers Autunian hydrothermal chalcedony: first evidence of a ∼295 Ma auriferous epithermal sinter in the French Massif Central. Ore Geology Reviews 25, 6987. doi: 10.1016/j.oregeorev.2003.10.001.CrossRefGoogle Scholar
Martini, I, Ambrosetti, E, Brogi, A, Aldinucci, M, Zwaan, F and Sandrelli, F (2021) Polyphase extensional basins: interplay between tectonics and sedimentation in the Neogene Siena-Radicofani Basin (Northern Apennines, Italy). International Journal of Earth Sciences 110, 1729–51. doi: 10.1007/s00531-021-02038-4.CrossRefGoogle Scholar
Martini, IP and Sagri, M (1993) Tectono-sedimentary characteristics of late Miocene-Quaternary extensional basins of the northern Apennines, Italy. Earth-Science Reviews 34, 197233. doi: 10.1016/0012-8252(93)90034-5.CrossRefGoogle Scholar
Matera, PF, Ventruti, G, Zucchi, M, Brogi, A, Capezzuoli, E, Liotta, D, Yu, TL, Shen, CC, Huntington, KW, Rinyu, L and Kele, S (2021) Geothermal fluid variation recorded by banded Ca-carbonate veins in a fault-related, fissure ridge-type travertine depositional system (Iano, southern Tuscany, Italy). Geofluids 2021, 8817487. doi: 10.1155/2021/8817487.CrossRefGoogle Scholar
Mazumdar, A, Banerjee, DM, Schidlowski, M and Balaram, V (1999) Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chemical Geology 156, 275–97. doi: 10.1016/S0009-2541(98)00187-9.CrossRefGoogle Scholar
McCrank, GFD, Misiura, JD and Brown, PA (1981) Plutonic Rocks in Ontario. Geological Survey of Canada, Paper 80-23, 171 pp.CrossRefGoogle Scholar
McDonough, WF and Sun, SS (1995) The composition of the Earth. Chemical Geology 120, 223–53. doi: 10.1016/0009-2541(94)00140-4.CrossRefGoogle Scholar
McLemore, VT (2002) Geology and geochemistry of the Mid-Tertiary alkaline to calcalkaline intrusions in the northern Hueco Mountains and adjacent areas, McGregor Range, southern Otero County, New Mexico. In Geology of White Sands (eds Lueth, V, Giles, KA, Lucas, SG, Kues, BS, Myers, RG and Ulmer-Scholle, D), pp. 129–37. New Mexico Geological Society 53rd Annual Fall Field Conference Guidebook 52. CrossRefGoogle Scholar
McLemore, VT (2010) Beryllium Resources in New Mexico and Adjacent Areas. New Mexico Bureau of Geology and Mineral Resources – New Mexico Institute of Mining and Technology, Open-file Report OF-533, 105 pp.Google Scholar
Meccheri, M, Moretti, A and Volterrani, S (1987) The Verrucano structure of Mt. Leoni (Southern Tuscany, Italy): lithostratigraphic preliminary notes and deformative history. Meeting ‘Paleozoic stratigraphy, tectonics, metamorphism in Italy’, Siena, 13–14 December 1985. IGCP Project 5, Newsletter 7, 71–3.Google Scholar
Merino, E, Wang, Y and Deloule, E (1995) Genesis of agates in flood basalts; twisting of chalcedony fibers and trace-element geochemistry. American Journal of Science 295, 1156–76. doi: 10.2475/ajs.295.9.1156.CrossRefGoogle Scholar
Michard, A (1989) Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta 53, 745–50. doi: 10.1016/0016-7037(89)90017-3.CrossRefGoogle Scholar
Michard, A, Albarède, G, Michard, G, Minster, JF and Charlou, JL (1983) Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (138N). Nature 303, 795–7. doi: 10.1038/303795a0.CrossRefGoogle Scholar
Minissale, A, Magro, G, Vaselli, O, Verrucchi, C and Perticone, I (1997) Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research 79, 223–51.CrossRefGoogle Scholar
Möckel, R and Götze, J (2007) Achate aus sächsischen Vulkaniten des Erzgebirgischen Beckens. Veröffentlichungen des Museums für Naturkunde Chemnitz 30, 2560.Google Scholar
Möller, P, Dulski, P and Morteani, G (2003) Partitioning of rare earth elements, yttrium, and some major elements among source rocks, liquid and vapor of Larderello-Travale Geothermal Field, Tuscany (Central Italy). Geochimica et Cosmochimica Acta 67, 171–83. doi: 10.1016/S0016-7037(02)01054-2.CrossRefGoogle Scholar
Möller, S, Grevemeyer, I, Ranero, CR, Berndt, C, Klaeschen, D, Sallares, V, Zitellini, N and de Franco, R (2013) Early-stage rifting of the northern Tyrrhenian Sea Basin: results from a combined wide-angle and multichannel seismic study. Geochemistry, Geophysics, Geosystems 14, 3032–52. doi: 10.1002/ggge.20180.CrossRefGoogle Scholar
Möller, P, Morteani, G, Dulski, P and Preinfalk, C (2009) Vapour/liquid fractionation of rare earths, Y3+, Na+, K+, NH4+, Cl, HCO3 , SO4 2− and borate in fluids from the Piancastagnaio geothermal field, Italy. Geothermics 38, 360–9. doi: 10.1016/j.geothermics.2009.07.003.CrossRefGoogle Scholar
Molli, G (2008) Northern Apennine–Corsica orogenic system: an updated overview. In Tectonic Aspects of the Alpine–Dinaride–Carpathian System (eds Siegesmund, S, Fügenschuh, B and Froitzheim, N), pp. 413–42. Geological Society of London, Special Publication no. 298. doi: 10.1144/SP298.19.Google Scholar
Montini, G, Lattanzi, P, Ruggieri, G, Maineri, C and Tanelli, G (1995) Il sistema epitermale a Sb–Au di Frassine (Grosseto). Plinius 14, 238–9.Google Scholar
Moreira, P and Fernandez, R (2015) La Josefina Au–Ag deposit (Patagonia, Argentina): a Jurassic epithermal deposit formed in a hot spring environment. Ore Geology Reviews 67, 297313. doi: 10.1016/j.oregeorev.2014.12.012.CrossRefGoogle Scholar
Moretti, A (1991) Stratigrafia e rilevamento geologico dell’area di Monte Leoni—Roselle (Grosseto). Studi Geologici Camerti Special Volume 1, 143–9.Google Scholar
Morteani, G, Ruggieri, G, Möller, P and Preinfalk, C (2011) Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Mineralium Deposita 46, 197210. doi: 10.1007/s00126-010-0316-5.CrossRefGoogle Scholar
Morteani, G, Voropaev, A and Grinenko, V (2017) Relation of stibnite mineralisation and geothermal fluids in southern Tuscany (central Italy): an isotope (C, O, H, S) and Rare Earth Element study. Neues Jahrbuch fur Mineralogie, Abhandlungen 194, 279–96. doi: 10.1127/njma/2017/0062.CrossRefGoogle Scholar
Moxon, T and Reed, SJB (2006) Agate and chalcedony from igneous and sedimentary hosts aged from 13 to 3480 Ma: a cathodoluminescence study. Mineralogical Magazine 70, 485–98. doi: 10.1180/0026461067050347.CrossRefGoogle Scholar
Müller, A, Wanvik, JE and Ihlen, PM (2012) Chapter 4. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In Quartz: Deposits, Mineralogy and Analytics (eds Götze, J and Möckel, R), pp. 71118. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Neder, RB, Burghammer, M, Grasl, T, Schulz, H, Bram, A and Fiedler, S (1999) Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay Minerals 47, 487–94. doi: 10.1346/CCMN.1999.0470411.CrossRefGoogle Scholar
Nelson, CE (1990) Comparative geochemistry of jasperoids from Carlin-type gold deposits of the western United States. Journal of Geochemical Exploration 36, 171–95. doi: 10.1016/0375-6742(90)90055-F.CrossRefGoogle Scholar
Olofsson, A and Rodushkin, I (2011) Provenancing flint artefacts with ICP–MS using REE signatures and Pb isotopes as discriminants: preliminary results of a case study from northern Sweden. Archaeometry 53, 1142–70. doi: 10.1111/j.1475-4754.2011.00605.x.CrossRefGoogle Scholar
Pandeli, E, Bertini, G and Castellucci, P (1991) The tectonic wedges complex of the Larderello area (southern Tuscany, Italy). Bollettino della Società Geologica Italiana 110, 621–9.Google Scholar
Parali, L, Garcia Guinea, J, Kibar, R, Cetin, A and Can, N (2011) Luminescence behaviour and Raman characterization of dendritic agate in the Dereyalak village (Eskișehir), Turkey. Journal of Luminescence 131, 2317–24. doi: 10.1016/j.jlumin.2011.05.057.CrossRefGoogle Scholar
Peccerillo, A (2003) Plio-Quaternary magmatism in Italy. Episodes 26, 222–6. doi: 10.18814/epiiugs/2003/v26i3/012.CrossRefGoogle Scholar
Peccerillo, A, Poli, G and Donati, C (2001) The Plio-Quaternary magmatism of southern Tuscany and Northern Latium: compositional characteristics, genesis and geodynamic significance. Ofioliti 26, 229–38.Google Scholar
Peng, J, Yi, H and Xia, W (2000) Geochemical criteria of the Upper Sinian cherts of hydrothermal origin on the southeast continental margin of the Yangtze Plate. Chinese Journal of Geochemistry 19, 217–26. doi: 10.1007/BF03166879.CrossRefGoogle Scholar
Pinarelli, L, Poli, G and Santo, AP (1989) Geochemical characterization of recent volcanism from the Tuscan magmatic province (Central Italy): the Roccastrada and San Vincenzo centers. Periodico di Mineralogia 58, 6796.Google Scholar
Pipino, G (1988) Manifestazioni aurifere epitermali in Toscana Meridionale. Bollettino della Associazione Mineraria Subalpina 25, 119–26.Google Scholar
Pitblado, BL, Cannon, MB, Neff, H, Dehler, CM and Nelson, ST (2003) LA-ICP-MS analysis of quartzite from the Upper Gunnison Basin, Colorado. Journal of Archaeological Science 40, 2196–216. doi: 10.1016/j.jas.2012.11.016.CrossRefGoogle Scholar
Powolny, T, Dumańska-Słowik, M, Sikorska-Jaworowska, M and Wójcik-Bania, M (2019) Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland)—microtextural, mineralogical, and geochemical constraints. Ore Geology Reviews 114, 103–30. doi: 10.1016/j.oregeorev.2019.103130.CrossRefGoogle Scholar
Radosavljević, SA, Stojanović, JN, Radosavljević-Mihajlović, AS and Vuković, NS (2016) (Pb–Sb)-bearing sphalerite from the Čumavići polymetallic ore deposit, Podrinje Metallogenic District, East Bosnia and Herzegovina. Ore Geology Reviews 72, 253–68. doi: 10.1016/j.oregeorev.2015.07.008.CrossRefGoogle Scholar
Ran, Y, Fu, J, Rate, AW and Gilkes, RJ (2002) Sorption of Au (I, III) complexes on Fe, Mn oxides and humic acid. Chemical Geology 185, 3349. doi: 10.1016/S0009-2541(01)00393-X.CrossRefGoogle Scholar
Reed, MH and Spycher, NF (1985) Boiling, cooling, and oxidation in epithermal system: a numerical modelling approach. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 249–72. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists.Google Scholar
Richter, S, Götze, J, Niemeyer, H and Möckel, R (2015) Mineralogical investigations of agates from Cordón de Lila, Chile. Andean Geology 42, 386–96. doi: 10.5027/andgeoV42n3-a06.Google Scholar
Rimbotti, VE (1884) Descrizione di alcune miniere e punti antimoniferi della Toscana. Firenze.Google Scholar
Romagnoli, P, Arias, A, Barelli, A, Cei, M and Casini, M (2010) An updated numerical model of the Larderello–Travale geothermal system, Italy. Geothermics 39, 292313. doi: 10.1016/j.geothermics.2010.09.010.CrossRefGoogle Scholar
Rudnick, RL and Gao, S (2003) Composition of the continental crust. In Treatise on Geochemistry, Volume 3 (ed. Rudnick, RL), pp. 164. Oxford: Elsevier.Google Scholar
Ruggieri, G, Giolito, C, Gianelli, G, Manzella, A and Boiron, MC (2004) Application of fluid inclusions to the study of Bagnore geothermal field (Tuscany, Italy). Geothermics 33, 675–92. doi: 10.1016/j.geothermics.2003.12.002.CrossRefGoogle Scholar
Saunders, JA (1990) Oxygen-isotope zonation of agates from Karoo volcanics of the Skeleton Coast, Namibia: discussion. American Mineralogist 75, 1205–6.Google Scholar
Schmitt-Riegraf, C (1996) Magmenentwicklung und spät-bis post-magmatische Alterationsprozesse permischer Vulkanite im Nordwesten der Nahe-Mulde. Münstersche Forschungen zur Geologie und Paläontologie no. 80. Münster: Verein der Geologie-Studenten in Münster, 251 pp.Google Scholar
Serri, G, Innocenti, F and Manetti, P (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene–Quaternary magmatism of central Italy. Tectonophysics 223, 117–47. doi: 10.1016/0040-1951(93)90161-C.CrossRefGoogle Scholar
Serri, G, Innocenti, F and Manetti, P (2001) Magmatism from Mesozoic to Present: petrogenesis, time-space distribution and geodynamic implications. In Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins (eds Vai, GB and Martini, IP), pp. 77103. Dordrecht: Kluwer.Google Scholar
Shannon, RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenids. Acta Crystallographica Section A: Foundations and Advances 32, 751–67. doi: 10.1107/S0567739476001551.CrossRefGoogle Scholar
Silberman, ML and Berger, BR (1985) Relationship of trace-element patterns to alteration and morphology in epithermal precious-metal deposits. In Geology and Geochemistry of Epithermal Systems (eds Berger, BR and Bethke, PM), pp. 203–32. Reviews in Economic Geology vol. 2. Littleton CO: Society of Economic Geologists. doi: 10.5382/Rev.02.09.Google Scholar
Sillitoe, RH and Brogi, A (2021) Geothermal systems in the northern Apennines, Italy: modern analogues of Carlin-style gold deposits. Economic Geology 116, 1491–591. doi: 10.5382/econgeo.4883.CrossRefGoogle Scholar
Simmons, SF and Christenson, BW (1994) Origins of calcite in a boiling geothermal system. American Journal of Science 294, 361400. doi: 10.2475/ajs.294.3.361.CrossRefGoogle Scholar
Simon, G, Kesler, SE and Essene, EJ (2000) Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu-Fe-S system at 400° to 700 °C. Economic Geology 95, 259–70. doi: 10.2113/gsecongeo.95.2.259.CrossRefGoogle Scholar
Stavrov, OD and Khitrov, VG (1962) Possible geochemical relationship observed between cesium and boron. Geochemistry (U.S.S.R.), 5767 (translated from Russian).Google Scholar
Stoffregen, R (1986) Observations on the behavior of gold during supergene oxidation at Summitville, Colorado, U.S.A., and implications for electrum stability in the weathering environment. Applied Geochemistry 1, 549–58. doi: 10.1016/0883-2927(86)90062-4.CrossRefGoogle Scholar
Tanaka, T and Kamioka, H (1994) Trace element abundance in agate. Geochemical Journal 28, 359–62. doi: 10.2343/geochemj.28.359.CrossRefGoogle Scholar
Tanelli, G (1983) Mineralizzazioni metallifere e minerogenesi della Toscana. Memorie della Società Geologica Italiana 25, 91109.Google Scholar
Tanelli, G, Lattanzi, P, Ruggieri, G and Corsini, F (1991) Metallogeny of gold in Tuscany, Italy. In Brazil Gold ‘91 (ed. Ladeira, EA), pp. 109–14. Rotterdam: Balkema.Google Scholar
Tanelli, G and Scarsella, A (1990) Tipologia e modellizzazione genetica delle mineralizzazioni aurifere epitermali della Toscana meridionale. L’industria Mineraria 11, 19.Google Scholar
Tiepolo, M, Bottazzi, P, Palenzona, M and Vannucci, R (2003) A laser probe coupled with ICP – double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. The Canadian Mineralogist 41, 259–72. doi: 10.2113/gscanmin.41.2.259.CrossRefGoogle Scholar
van Achterbergh, E, Ryan, CG, Jackson, SE and Griffin, WL (2001) Data reduction software for LA-ICP-MS: appendix. In Laser Ablation–ICP–MS in the Earth Sciences: Principles and Applications (ed. Sylvester, P), pp. 239–43. Mineralogical Association of Canada Short Course Series vol. 29. Ottawa: Mineralogical Association of Canada.Google Scholar
Vezzoni, S, Dini, A and Rocchi, S (2016) Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy). Ore Geology Reviews 77, 176–93.CrossRefGoogle Scholar
Vitolo, S and Cialdella, ML (1995) Silica separation from reinjection brines having different composition at Monta Amiata geothermal plant. In Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1996, pp. 2463–66.Google Scholar
Walker, JR and Bish, DL (1992) Application of Rietveld refinement techniques to a disordered IIb Mg-Chamosite. Clays and Clay Minerals 40, 319–22. doi: 10.1346/CCMN.1992.0400311.CrossRefGoogle Scholar
Wang, Y and Merino, E (1995) Origin of fibrosity and banding in agates from flood basalts. American Journal of Science 295, 4977. doi: 10.2475/ajs.295.1.49.CrossRefGoogle Scholar
Webster, JG and Mann, AW (1984) The influence of climate, geomorphology and primary geology on the supergene migration of gold and silver. Journal of Geochemical Exploration 22, 2142. doi: 10.1016/0375-6742(84)90004-9.CrossRefGoogle Scholar
Weissberg, BG (1969) Gold-silver ore-grade precipitates from New Zealand thermal waters. Economic Geology 64, 95108. doi: 10.2113/gsecongeo.64.1.95.CrossRefGoogle Scholar
White, JF and Corwin, JF (1961) Synthesis and origin of chalcedony. American Mineralogist 46, 112–9.Google Scholar
Williams-Jones, AE and Norman, C (1997) Controls of mineral parageneses in the system Fe-Sb-S-O. Economic Geology 92, 308–24. doi: 10.2113/gsecongeo.92.3.308.CrossRefGoogle Scholar
Wood, SA, Crerar, DA and Borscik, MP (1987) Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibine-bismuthinite-argentite-molybdenite in H2O-NaCl-CO2 solution from 200 to 350°C. Economic Geology 82, 1864–87. doi: 10.2113/gsecongeo.82.7.1864.CrossRefGoogle Scholar
Zucchi, M (2020) Faults controlling geothermal fluid flow in low permeability rock volumes: an example from the exhumed geothermal system of eastern Elba Island (northern Tyrrhenian Sea, Italy). Geothermics 85, 101765. doi: 10.1016/j.geothermics.2019.101765.CrossRefGoogle Scholar
Zucchi, M, Brogi, A, Liotta, D, Rimondi, V, Ruggieri, G, Montegrossi, G, Caggianelli, A and Dini, A (2017) Permeability and hydraulic conductivity of faulted micaschist in the eastern Elba Island exhumed geothermal system (Tyrrhenian sea, Italy): insights from Cala Stagnone. Geothermics 70, 125–45. doi: 10.1016/j.geothermics.2017.05.007.CrossRefGoogle Scholar
Supplementary material: PDF

Gliozzo et al. supplementary material

Gliozzo et al. supplementary material

Download Gliozzo et al. supplementary material(PDF)
PDF 7.1 MB