Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T08:45:57.598Z Has data issue: false hasContentIssue false

Relationship between Sloan-Kettering virus expression and mammalian follicular development

Published online by Cambridge University Press:  31 July 2015

Hyun Kim
Affiliation:
Department of Veterinary Physiology, Graduate School of Agricultural and Life Science, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan. Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea.
Young Moo Cho
Affiliation:
Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea.
Yeoung-Gyu Ko
Affiliation:
Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon 441–706, Republic of Korea.
Changyong Choe
Affiliation:
Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea.
Hwan-Hoo Seong*
Affiliation:
Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea.
*
All correspondence to: Hwan-Hoo Seong. Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 590–832, Republic of Korea. Tel: +82 63 620 3525. Fax: +82 63 620 3591. E-mail: [email protected]

Summary

Sloan-Kettering virus gene, a product of a cellular proto-oncogene c-Ski is a unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. The aim of the present study was to locate Ski protein in rat ovaries in order to find insights into the possible involvement of Ski in follicular development. First, expression of c-Ski mRNA in the ovaries of adult female rats was confirmed by RT-PCR. Then, ovaries obtained on the day of estrus were subjected to immunohistochemical analysis for Ski and proliferating cell nuclear antigen (PCNA) in combination with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). RT-PCR and in situ hybridization revealed that c-Ski mRNA was expressed in the ovaries of the adult rat on the day of estrous and localized mainly in the granulose cells. Ski was expressed in granulosa cells that were positive for TUNEL, but negative for PCNA, regardless of the shape and size of follicles. Expression of Ski in TUNEL-positive granulosa cells, but not in PCNA-positive granulosa cells, was also verified in rats having atretic follicles with double staining. These results indicate that Ski is profoundly expressed in the granulosa cells of atretic follicles, but not in growing follicles. Based on the present findings, Ski may play a role in the apoptosis of granulosa cells during follicular atresia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K. & Kawabata, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with smads. J. Biol. Chem. 274, 35269–77.Google Scholar
Ambrose, M.R., Bottazzi, M.E. & Goodenow, M.M. (1995). Expression of the c-Ski proto-oncogene during cell cycle arrest and myogenic differentiation. DNA Cell. Biol. 14, 701–7.Google Scholar
Barak, Y., Juven, T., Haffner, R. & Oren, M. (1993). Mdm2 expression is induced by wild type p53 activity. J. EMBO 12, 461–8.Google Scholar
Berk, M., Desai, S.Y., Heyman, H.C. & Colmenares, C. (1997). Mice lacking the Ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev. 11, 2029–39.Google Scholar
Boone, D.L., Carnegie, J.A., Rippstein, P.U. & Tsang, B.K. (1997). Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol. Reprod. 57, 420–7.Google Scholar
Buckbinder, L., Talbott, R., Valesco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B.R. & Kley, N. (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 77, 646–9.Google Scholar
Byskov, A.G. (1978). Follicular atresia. In The Vertebrate Ovary (ed. Jones, R.E.), pp. 533–62. New York: Plenum Press.Google Scholar
Byskov, A.G. (1979). Atresia. In Ovarian Follicular Development and Function (eds Midgley, F.R. & Sadler, W.A.), pp. 4158. NewYork: Plenum. Press.Google Scholar
Colmenares, C. & Stavnezer, E. (1989). The Ski oncogene induces muscle differentiation in quail embryo cells. Cell 59, 293303.Google Scholar
Dhanasekaran, N. & Moudgal, N.R. (1989). Biochemical and histological validation of a model to study follicular atresia in rats. Endocrinol. Exp. 23, 155–66.Google Scholar
El-Diery, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W. & Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–25.Google Scholar
Greenwald, G.S. & Terranova, P.F. (1988). Follicular selection and its control. In The Physiology of Reproduction (eds Knobil, E. & Neill, J.), pp. 387435. New York: Raven Press.Google Scholar
Grimes, H.L., Ambrose, M.R. & Goodenow, M.M. (1993). c-Ski transcripts with and without exon 2 are expressed in skeletal muscle and throughout chick embryogenesis. Oncogene. 8, 2863–8.Google Scholar
Hirshfield, A.N., Flickinger, G.L. & Ben-Rafael, Z. (1988). Flow cytofluorometric analysis of granulosa cell proliferation in rats. J. Reprod. Fertil. 84, 231–8.Google Scholar
Kavsak, P. Rasmussen, R.K. Causing, C.G. Bonni, S. Zhu, H. Thomsen, G.H. & Wrana, J.L. (2000). Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol. Cell 6, 1365–75.Google Scholar
Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. & Fornace, J.R. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–97.Google Scholar
Kawabata, M., Imamura, T., Inoue, H., Hanai, J., Nishihara, A., Hanyu, A., Takase, M., Ishidou, Y., Udagawa, Y., Oeda, E., Goto, D., Yagi, K., Kato, M. & Miyazono, K. (1999). Intracellular signaling of the TGF-β superfamily by Smad proteins. Ann. N. Y. Acad. Sci. 886, 7382.Google Scholar
Liu, X., Sun, Y., Weinberg, R.A. & Lodish, H.F. (2001). Ski/Sno and TGF-β signaling. Cytokine Growth Factor Rev. 12, 18.Google Scholar
Luo, K. (2003). Negative regulation of BMP signaling by the Ski oncoprotein. J. Bone Joint Surg. Am. 3, 3943.Google Scholar
Lyons, G.E., Micales, B.K., Herr, M.J., Horrigan, S.K., Namciu, S., Shardy, D. & Stavnezer, E. (1994). Protooncogene c-Ski is expressed in both proliferating and post mitotic neuronal populations. Dev. Dynam. 201, 354–65.Google Scholar
Medrano, E.E. (2003). Repression of TGF-β signaling by the oncogenic protein Ski in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 22, 3123–9.CrossRefGoogle ScholarPubMed
Miyashita, T., Kitada, S., Krajewski, S., Horne, W.A., Delia, D. & Reed, J.C. (1995). Overexpression of the Bcl-2 protein increases the half-life of p21 Bax. J. Biol. Chem. 44, 260–5.Google Scholar
Muller, M., Strand, S., Hug, H., Heinemann, E.M., Walczak, H., Hofmann, W.J., Stremmel, W., Krammer, P.H. & Galle, P. (1997). Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403–13.Google Scholar
Mutai, H., Toyoshima, Y., Sun, W., Hattori, N., Tanaka, S. & Shiota, K. (2000). PAL31, a novel nuclear protein, expressed in the developing brain. Biol. Chem. Biophys. Res. Commun. 274, 427–33.Google Scholar
Nagase, T., Mizuguchi, G., Nomura, N., Ishizaki, R., Ueno, Y. & Ishii, S. (1990). Requirement of protein co-factor for the DNA-binding function of the human Ski proto-oncogene product. Nucl. Acids Res. 18, 337–43.Google Scholar
Nagano, Y., Mavrakis, K.J., Lee, K.L., Fujii, T., Koinuma, D., Sase, H., Yuki, K., Isogaya, K., Saitoh, M., Imamura, T., Episkopou, V., Miyazono, K. & Miyazawa, K. (2007). Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J. Biol. Chem. 282, 20492–501.Google Scholar
Nagano, Y., Koinuma, D., Miyazawa, K. & Miyazono, K. (2010). Context-dependent regulation of the expression of c-Ski protein by Arkadia in human cancer cells. J. Biochem. 147, 545–54.Google Scholar
Nicol, R. & Stavnezer, E. (1998). Transcriptional repression by v-Ski and c-Ski mediated by a specific DNA binding site. J. Biol. Chem. 273, 3588–97.Google Scholar
Okamoto, K. & Beach, D. (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816–22.Google Scholar
Saitoh, M., Imamura, T., Episkopou, V., Miyazono, K. & Miyazawa, K. (2007). Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J. Biol. Chem. 282, 20492–501.Google Scholar
Shinagawa, T., Nomura, T., Colmenares, C., Ohira, M., Nakagawara, A. & Ishii, S. (2001). Increased susceptibility to tumorigenesis of Ski-deficient heterozygous mice. Oncogene 20, 8100–8.Google Scholar
Shi, Y. & Massagu, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685700.Google Scholar
Soeta, C., Suzuki, M., Suzuki, S., Naito, K., Tachi, C. & Tojo, H. (2001). Possible role for the c-Ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats. Dev. Growth Differ. 43, 155–64.Google Scholar
Sun, W., Hattori, N., Mutai, H., Toyoshima, Y., Kimura, H., Tanaka, S. & Shiota, K. (2001). PAL31, a nuclear protein required for progression to the S phase. Biochem. Biophys. Res. Commun. 280, 1048–54.Google Scholar
Sun, W., Kimura, H., Hattori, N., Tanaka, S., Matsuyama, S. & Shiota, K. (2006). Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor. Biochem. Biophys. Res. Commun. 342, 817–23.Google Scholar
Sutrave, P., Kelly, A.M. & Hughes, S.H. (1990). Ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 4, 1462–72.Google Scholar
Wu, J.W., Krawitz, A.R., Chai, J., Li, W., Zhang, F., Luo, K. & Shi, Y. (2002). Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-β signaling. Cell 111, 357–67.Google Scholar
Xiao, S., Robertson, D.M. & Findlay, J.K. (1992). Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology 131, 1009–16.Google Scholar
Yamanouchi, K., Kano, K., Soeta, C., Hasegawa, T., Ishida, N., Mukoyama, H., Tojo, H. & Tachi, C. (1997). Studies on expression of the c-Ski gene in equine (thoroughbred) tissues. J. Equine Sci. 8, 13–9.Google Scholar
Yamanouchi, K., Soeta, C., Harada, R., Naito, K. & Tojo, H. (1999). Endometrial expression of cellular protooncogene c-Ski and its regulation by estradiol-17β. FEBS Lett. 449, 273–6.Google Scholar
Yamanouchi, K., Soeta, C., Naito, K. & Tojo, H. (2000). Progesterone pretreatment inhibits the expression of c-Ski mRNA and epithelial cell proliferation induced by estrogen in the rat uterus. J. Reprod. Dev. 46, 257–63.Google Scholar
Yoshiko, Y., Oizumi, K., Hasegawa, T., Minamizaki, T., Tanne, K., Maeda, N. & Aubin, J.E. (2010). A subset of osteoblasts expressing high endogenous levels of PPAR switches fate to adipocytes in the rat calvaria cell culture model. PLoS One 5, 11782.Google Scholar
Zhao, J., Taverne, M.A., Weijden, G.C., Bevers, M.M. & Hurk, R. (2001). Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II. Biol. Reprod. 65, 967–77.Google Scholar