Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T15:52:39.941Z Has data issue: false hasContentIssue false

The KIDScore™ D3 scoring system contributes to the prediction of embryonic development potential: A promising tool for screening high-quality embryos

Published online by Cambridge University Press:  30 March 2022

Jing Zhou
Affiliation:
The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, China
Rou Li
Affiliation:
The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
Jun Zhou
Affiliation:
The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, China
Yu-Ling Nie
Affiliation:
Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, China
Mei-Qing Li
Affiliation:
The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, China
Hong-Qing Liao*
Affiliation:
The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, China
*
Author for correspondence: Hong-Qing Liao, The Second Affiliated Hospital, Hengyang Medical School, University of South China and Hengyang Nanhua-Xinghui Reproductive Health Hospital, No. 30, Jiefang Road, Hengyang421001, Hunan Province, China. Tel: +86 18973484329. E-mail: [email protected]

Summary

Using the KIDScoreTM D3 (KID3) scoring system, day 3 embryos observed by time-lapse imaging (TLI) were scored to explore the predictive value of the KID scoring system on the developmental potential of embryos. The kinetic parameters of 477 normal fertilized embryos from 77 patients who underwent TLI in our hospital from January 2019 to June 2020 were evaluated by KID3, and the embryos were divided into five groups according to the scores for retrospective analysis of blastocyst formation. Additionally, the high-quality blastocyst formation rate, pregnancy rate and early abortion rate were analyzed via KID3 and traditional morphological assessments, and comparisons of differences among different ages were also performed. In the KID3 estimate, the blastocyst or high-quality blastocyst formation rate in the score 5 group was markedly higher than that in the score 1–4 groups. Blastocyst or high-quality blastocyst formation rates in the A group (the results of two evaluation tools indicated they were excellent embryos) and the B group (KID3: excellent embryos, traditional evaluation: not excellent embryos) were evidently increased in comparison with the C or D group (KID3: not excellent embryos, traditional evaluation: excellent embryo or not, respectively). Furthermore, the percentages of score 5 embryos, blastocyst and high-quality blastocyst formation rates for patients ≥ 35 years old were markedly decreased compared with those for patients < 34 years old, while the trends of nondiploid cleavage, multinucleation and asymmetric division were the opposite. Collectively, the KID3 scoring system may be a promising predictive tool for screening embryos with better developmental potential.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, G. D., Abusief, M. E., Palao, L., Witmer, J., Palao, L. M. and Gvakharia, M. (2016). Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertility and Sterility, 105(2), 369375.e6. doi: 10.1016/j.fertnstert.2015.10.030 CrossRefGoogle ScholarPubMed
Adolfsson, E., Porath, S. and Andershed, A. N. (2018). External validation of a time-lapse model; a retrospective study comparing embryo evaluation using a morphokinetic model to standard morphology with live birth as endpoint. JBRA Assisted Reproduction, 22(3), 205214. doi: 10.5935/1518-0557.20180041 Google Scholar
Alikani, M., Calderon, G., Tomkin, G., Garrisi, J., Kokot, M. and Cohen, J. (2000). Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Human Reproduction, 15(12), 26342643. doi: 10.1093/humrep/15.12.2634 CrossRefGoogle ScholarPubMed
Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology (2011). The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reproduction, 26(6), 12701283. doi: 10.1093/humrep/der037 CrossRefGoogle Scholar
Armstrong, S., Bhide, P., Jordan, V., Pacey, A. and Farquhar, C. (2018a). Time-lapse systems for ART. Reproductive Biomedicine Online, 36(3), 288289. doi: 10.1016/j.rbmo.2017.12.012 CrossRefGoogle ScholarPubMed
Armstrong, S., Bhide, P., Jordan, V., Pacey, A. and Farquhar, C. (2018b). Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database of Systematic Reviews, 5, CD011320.Google ScholarPubMed
Athayde Wirka, K., Chen, A. A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., Suraj, V., Tan, L. and Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: High prevalence and association with embryo development. Fertility and Sterility, 101(6), 1637–48.e1 e1–5. doi: 10.1016/j.fertnstert.2014.02.050 CrossRefGoogle ScholarPubMed
Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C. and Troup, S. (2017). Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertility and Sterility, 107(3), 613621. doi: 10.1016/j.fertnstert.2016.11.014 CrossRefGoogle ScholarPubMed
Basile, N., Caiazzo, M. and Meseguer, M. (2015a). What does morphokinetics add to embryo selection and in-vitro fertilization outcomes? Current Opinion in Obstetrics and Gynecology, 27(3), 193200. doi: 10.1097/GCO.0000000000000166 CrossRefGoogle ScholarPubMed
Basile, N., Vime, P., Florensa, M., Aparicio Ruiz, B., García Velasco, J. A., Remohí, J. and Meseguer, M. (2015b). The use of morphokinetics as a predictor of implantation: A multicentric study to define and validate an algorithm for embryo selection. Human Reproduction, 30(2), 276283. doi: 10.1093/humrep/deu331 CrossRefGoogle ScholarPubMed
Cohen, J., Alikani, M. and Bisignano, A. (2012). Past performance of assisted reproduction technologies as a model to predict future progress: A proposed addendum to Moore’s law. Reproductive Biomedicine Online, 25(6), 585590. doi: 10.1016/j.rbmo.2012.08.006 CrossRefGoogle ScholarPubMed
Conaghan, J., Chen, A. A., Willman, S. P., Ivani, K., Chenette, P. E., Boostanfar, R., Baker, V. L., Adamson, G. D., Abusief, M. E., Gvakharia, M., Loewke, K. E. and Shen, S. (2013). Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: Results from a prospective multicenter trial. Fertility and Sterility, 100(2), 412–9.e5. doi: 10.1016/j.fertnstert.2013.04.021 CrossRefGoogle ScholarPubMed
Kaser, D. J. and Racowsky, C. (2014). Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: A systematic review. Human Reproduction Update, 20(5), 617631. doi: 10.1093/humupd/dmu023 CrossRefGoogle ScholarPubMed
Liu, Y., Chapple, V., Feenan, K., Roberts, P. and Matson, P. (2016). Time-lapse deselection model for human day 3 in vitro fertilization embryos: The combination of qualitative and quantitative measures of embryo growth. Fertility and Sterility, 105(3), 656662.e1. doi: 10.1016/j.fertnstert.2015.11.003 CrossRefGoogle ScholarPubMed
Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K. M., Ramsing, N. B. and Remohí, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Human Reproduction, 26(10), 26582671. doi: 10.1093/humrep/der256 CrossRefGoogle ScholarPubMed
Milewski, R., Kuć, P., Kuczyńska, A., Stankiewicz, B., Łukaszuk, K. and Kuczyński, W. (2015). A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. Journal of Assisted Reproduction and Genetics, 32(4), 571579. doi: 10.1007/s10815-015-0440-3 CrossRefGoogle ScholarPubMed
Munné, S., C. S., Colls, P., Garrisi, J., Zheng, X., Cekleniak, N., Lenzi, M., Hughes, P., Fischer, J., Garrisi, M., Tomkin, G. and Cohen, J. (2007). Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reproductive Biomedicine Online, 14, 628634. doi: 10.1016/s1472-6483(10)61057-7 CrossRefGoogle ScholarPubMed
Omidi, M., Khalili, M. A., Halvaei, I., Montazeri, F. and Kalantar, S. M. (2020). Quality of blastocysts created by embryo splitting: A time-lapse monitoring and chromosomal aneuploidy study. Cell Journal, 22(3), 367374. doi: 10.22074/cellj.2020.6717 Google ScholarPubMed
Paternot, G., Wetzels, A. M., Thonon, F., Vansteenbrugge, A., Willemen, D., Devroe, J., Debrock, S., D’Hooghe, T. M. and Spiessens, C. (2011). Intra- and interobserver analysis in the morphological assessment of early stage embryos during an IVF procedure: A multicentre study. Reproductive Biology and Endocrinology, 9, 127. doi: 10.1186/1477-7827-9-127 CrossRefGoogle ScholarPubMed
Paulson, R. J., Reichman, D. E., Zaninovic, N., Goodman, L. R. and Racowsky, C. (2018). Time-lapse imaging: Clearly useful to both laboratory personnel and patient outcomes versus just because we can doesn’t mean we should. Fertility and Sterility, 109(4), 584591. doi: 10.1016/j.fertnstert.2018.01.042 CrossRefGoogle Scholar
Petersen, B. M., Boel, M., Montag, M. and Gardner, D. K. (2016). Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Human Reproduction, 31(10), 22312244. doi: 10.1093/humrep/dew188 CrossRefGoogle ScholarPubMed
Tong, J., Sheng, S., Sun, Y., Li, H., Li, W. P., Zhang, C. and Chen, Z. J. (2017). Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction, 153(4), 443451. doi: 10.1530/REP-16-0641 CrossRefGoogle ScholarPubMed
Van Royen, E., Mangelschots, K., De Neubourg, D., Valkenburg, M., Van De Meerssche, M., Ryckaert, G., Eestermans, W. and Gerris, J. (1999). Characterization of a top quality embryo, a step towards single-embryo transfer. Human Reproduction, 14(9), 23452349. doi: 10.1093/humrep/14.9.2345 CrossRefGoogle ScholarPubMed
Vermilyea, M. D., Tan, L., Anthony, J. T., Conaghan, J., Ivani, K., Gvakharia, M., Boostanfar, R., Baker, V. L., Suraj, V., Chen, A. A., Mainigi, M., Coutifaris, C. and Shen, S. (2014). Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: A blinded, multi-centre study. Reproductive Biomedicine Online, 29(6), 729736. doi: 10.1016/j.rbmo.2014.09.005 CrossRefGoogle ScholarPubMed
Werner, M., Reh, A., Grifo, J. and Perle, M. A. (2012). Characteristics of chromosomal abnormalities diagnosed after spontaneous abortions in an infertile population. Journal of Assisted Reproduction and Genetics, 29(8), 817820. doi: 10.1007/s10815-012-9781-3 CrossRefGoogle Scholar
Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M. and Reijo Pera, R. A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology, 28(10), 11151121. doi: 10.1038/nbt.1686 CrossRefGoogle Scholar
Zaninovic, N., Irani, M. and Meseguer, M. (2017). Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: Is there a relation to implantation and ploidy? Fertility and Sterility, 108(5), 722729. doi: 10.1016/j.fertnstert.2017.10.002 CrossRefGoogle Scholar
Zhu, H. B., Zhang, Z. H., Fadlalla, E., Wang, R. X., Geng, D. F. and Liu, R. Z. (2014). Culturing surplus poor-quality embryos to blastocyst stage have positive predictive value of clinical pregnancy rate. Iranian Journal of Reproductive Medicine, 12(9), 609616.Google ScholarPubMed