Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T04:10:42.453Z Has data issue: false hasContentIssue false

Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo, by treatment with the spindle-destabilising agent nocodazole

Published online by Cambridge University Press:  26 September 2008

Richard Ikegami
Affiliation:
Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
Jianshe Zhang
Affiliation:
Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
Alma K. Rivera-Bennetts
Affiliation:
Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
Thomas D. Yager*
Affiliation:
Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
*
T.D. Yager, Division of Developmental Biology and Research Institute, Hospital for sick Children, Toronto, Ontario, Canada MG5 1X8, Telephone: +1 416-813-5436. Fax: +1 416-597-9497. e-mail: [email protected].

Summary

We have studied the developmental activation of the metaphase checkpoint, and the consequences of activating this checkpoint, in the zebrafish embryo. (1) Treatment with nocodazole (a microtubule destabiliser) before mid-blastula transition (MBT) produces complete destruction of all nuclei in the deep cell layer of the embryo. In contrast, nocodazole treatment after MBT efficiently produces metaphase arrest in this cell layer. Thus, the metaphase checkpoint becomes activated at MBT. (2) Although a metaphase arrest is induced by nocodazole, it is not induced by paclitaxel (a microtubule stabiliser). Thus the metaphase checkpoint appears to sense a destabilisation, but not a stabilisation, of spindle microtubules. (3) Metaphase-arrested cells (in nocodazole) can be driven into the next interphase by adding the Ca2+-specific ionophore A23187. Thus, a Ca2+-signalling pathway lies downstream of, or parallel to, the metaphase checkpoint. (4) After mid-gastrula stage, treatment with nocodazole produces DNA fragmentation in all three cell layers. In the enveloping epithelial monolayer (EVL), this is associated with a classical apoptotic phenotype. In the deep layer, it is associated with an unusual, highly condensed nuclear state that is entered directly from metaphase arrest. Thus, after the mid-gastrula stage, the embryo responds to nocodazle by undergoing apoptosis. (5) Nocodazole-induced apoptosis in the deep cell layer can be blocked by the caspase-1,4,5 inhibitors Ac-YVAD-CHO and Ac-YVAD-CMK. This suggests that a homologue of the C. elegans ced-9—ced-4—ced-3 pathway is involved in control over apoptosis in the early zebrafish embryo.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrieu, A., Lorca, T., Labbe, J.C., Morin, N., Keyse, S., & Doree, M.. (1996). MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on in Xenopus egg extracts. J. Cell Sci. 109, 239–46.CrossRefGoogle Scholar
Alnemri, E.S.. (1997). Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteins. J. Cell. Biochem. 64, 3342.3.0.CO;2-0>CrossRefGoogle Scholar
Blagosklonny, M.V., Schulte, T., Nguyen, P., Trepel, J., & Neckers, L.M.. (1996). Taxol-induced apoptosis and phosphorylation of bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. 56, 1851–4.Google ScholarPubMed
Blagosklonny, M.V., Giannakakou, P., el-Deiry, W.S., Kingston, D.G., Higgs, P.I., Neckers, L., & Fojo, T.. (1997). Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57, 130–5.Google ScholarPubMed
Chen, R.H., & Murray, A.. (1997). Characterization of spindle assembly checkpoint in Xenopus egg extracts. Methods Enzymol. 283, 572–4.Google ScholarPubMed
Chen, R.H., Waters, J.C., Salmon, E.D., & Murray, A.W.. (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–6.CrossRefGoogle ScholarPubMed
Chinnaiyan, A.M., O'Rourke, K., Lane, B.R., & Dixit, V.M.. (1997). Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122–6.CrossRefGoogle ScholarPubMed
Chomczynski, P.. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–4.Google ScholarPubMed
Chomczynski, P., & Sacchi, N.. (1987). Single-step method for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–9.CrossRefGoogle ScholarPubMed
Clute, P.. (1996). Regulation of an M-phase cell cycle check-point in Xenopus laevis embryos. PhD thesis, Department of Zoology, University of Toronto.Google Scholar
Clute, P., & Masui, Y.. (1992). Development of microtubule-dependence of the chromosome cycle at the midblastula transition in Xenopus laevis embryos. Dev. Growth Differ. 34, 2736.CrossRefGoogle ScholarPubMed
Clute, P., & Masui, Y.. (1995). Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev. Biol. 171, 273–85.CrossRefGoogle ScholarPubMed
Cohen, G.M.. (1997). Caspases: the executioners of apoptosis. Biochem. J. 326, 116.CrossRefGoogle ScholarPubMed
Cross, S.M., Sanchez, C.A., Morgan, C.A., Schimke, M.K., Ramel, S., Idzerda, R.L., Raskind, W.H., & Reid, B.J.. (1995). A p53-dependent mouse spindle checkpoint. Science 267, 1353–6.CrossRefGoogle ScholarPubMed
De Brabander, M.., Geuens, G., Nuydens, R., Willebrords, R., & De Mey, J.. (1981). Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA 78, 5608–12.CrossRefGoogle ScholarPubMed
Di Leonardo, A.., Khan, S.H., Linke, S.P., Greco, V., Seidita, G., & Wahl, G.M.. (1997). DNA replication in the presence of spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013–9.Google ScholarPubMed
Edgar, B.A.. (1995). Diversification of cell cycle controls in developing embryos. Curr. Opin. Cell Biol. 7, 815–24.CrossRefGoogle ScholarPubMed
Edgar, B.A., & Datar, S.A.. (1996). Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev. 10, 1966–77.CrossRefGoogle ScholarPubMed
Frackowiak, S., Labidi, B., Hernandez-Verdun, D., & Bouteille, M.. (1986). Preservation of chromosome integrity during micronucleation induced by colchicine in PtK1 cells. Chromosoma 94, 468–74.CrossRefGoogle ScholarPubMed
Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., & Van de Woude, G.F.. (1996). Abnormal centrosome amplification in the absence of p53. Science 271, 1744–7.CrossRefGoogle ScholarPubMed
Garcia, P., & Cales, C.. (1996). Endoreplication in megakaryo-blastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25C. Oncogene 13, 695703.Google ScholarPubMed
Golstein, P.. (1997). Controlling cell death. Science 275, 1081–2.CrossRefGoogle ScholarPubMed
Graham, C.F., & Morgan, R.W.. (1966). Changes in the cell cycle during early amphibian development. Dev. Biol. 14, 439–60.CrossRefGoogle Scholar
Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bu-kowska, K., Bursch, W., & Schulte-Hermann, R.. (1995). In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21, 1465–8.Google ScholarPubMed
Haldar, S., Jena, N., & Croce, C.M.. (1995). Inactivation of bcl-2 by phosphorylation. Proc. Natl. Acad. Sci. USA 92, 4507–11.CrossRefGoogle ScholarPubMed
Haldar, S., Chintapalli, J., & Croce, C.M.. (1996). Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56, 1253–5.Google ScholarPubMed
Haraguchi, T., Kaneda, T., & Hiraoka, Y.. (1997). Dynamics of chromosomes and microtubules visualized by multiple wavelength fluorescence imaging in living mammalian cells: effects of mitotic inhibitors on cell cycle progression. Genes Cells 2, 369–80.CrossRefGoogle ScholarPubMed
Hardwick, K.G., & Murray, A.W.. (1995). Madlp, a phospho-protein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–20.CrossRefGoogle Scholar
Hardwick, K.G., Weiss, E., Luca, F.C., Winey, M., & Murray, A.W.. (1996). Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–6.CrossRefGoogle ScholarPubMed
He, X., Patterson, T.E., & Sazer, S.. (1997). The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 94, 7965–70.CrossRefGoogle ScholarPubMed
Hengartner, M.O., & Horvitz, H.R.. (1994). Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4, 581–6.CrossRefGoogle ScholarPubMed
Hepler, P.K.. (1994). The role of calcium in cell division. Cell Calcium 16, 322–30.CrossRefGoogle ScholarPubMed
Higgins, D.G., Thompson, J.D., & Gibson, T.K.. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383402.CrossRefGoogle ScholarPubMed
Hinegardner, R., & Rosen, D.E.. (1972). Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 166, 621–44.CrossRefGoogle Scholar
Hiramine, C.. (1997). Definition and morphological features of apoptosis. Rinsho Byori 45, 459–69.Google ScholarPubMed
Holloway, S.L., Glotzer, M., King, R.W., & Murray, A.W.. (1993). Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–402.CrossRefGoogle ScholarPubMed
Howe, J.A., & Newport, J.W.. (1996). A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. Proc. Natl. Acad. Sci. USA 93, 2060–4.CrossRefGoogle ScholarPubMed
Howe, J.A., Howell, M., Hunt, T., & Newport, J.W.. (1995). Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev. 9, 1164–76.CrossRefGoogle Scholar
Hoyt, M.A., Totis, L., & Roberts, B.T.. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–17.CrossRefGoogle ScholarPubMed
Ikegami, R., Rivera-Bennetts, A.K., Brooker, D.L., & Yager, T.D.. (1997). Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. Zygote 5, 153–75.CrossRefGoogle ScholarPubMed
Jesuthasan, S., & Strahle, U.. (1996). Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol. 7, 3142.CrossRefGoogle Scholar
Johnson, B.A., McClain, S.G., Doran, E.R., Tice, G., & Kirsch, M.A.. (1990). Rapid purification of synthetic oligonucleo-tides: a convenient alternative to high-performance liquid chromatography and polyacrylamide gel electrophoresis. Biotechniques 8, 424–9.Google Scholar
Kane, D.A., & Kimmel, C.B.. (1993). The zebrafish midblastula transition. Development 119, 447–56.CrossRefGoogle ScholarPubMed
Kane, D.A., Warga, R.M., & Kimmel, C.B.. (1992). Mitotic domains in the early embryo of the zebrafish. Nature 360, 735–7.CrossRefGoogle ScholarPubMed
Kane, D.A., Maischein, H.-M., Brand, M., van Eeden, F.J.M.., Furutani-Seiki, M., Granato, M., Haffter, P., Hammer-schmidt, M., Heisenberg, C.-P., Jiang, Y.-J., Kelsh, R.N., Mullins, M.C., Odenthal, J., Warga, R.M., & Nusslein-Volhard, C.. (1996). The zebrafish early arrest mutants. Development 123, 5766.CrossRefGoogle ScholarPubMed
Kerr, J.F., Wyllie, A.H., & Currie, A.R.. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–57.CrossRefGoogle ScholarPubMed
Kikuchi, J., Furukawa, Y., Iwase, S., Terui, Y., Nakamura, M., Kitagawa, S., Kitagawa, M., Komatsu, N., & Miura, Y.. (1997). Polyploidization and functional maturation are two distinct processes during megakaryocytic differentiation: involvement of cyclin-dependent kinase inhibitor p21 in polyploidization. Blood 89, 3980–90.CrossRefGoogle ScholarPubMed
Kimelman, D., Kirschner, M., & Scherson, T.. (1987). The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48, 399407.CrossRefGoogle ScholarPubMed
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., & Schilling, T.F.. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.CrossRefGoogle ScholarPubMed
King, R.W., Peters, J.M., Tugendreich, S., Rolfe, M., Heiter, P., & Kirschner, M.W.. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–88.CrossRefGoogle ScholarPubMed
Li, Y., & Benezra, R.. (1996). Identification of a human mitotic checkpoint gene hsMAD2. Science 274, 246–8.CrossRefGoogle ScholarPubMed
Li, R., & Murray, A.W.. (1991). Feedback control of mitosis in budding yeast. Cell 66, 519–31.CrossRefGoogle ScholarPubMed
Li, X., & Nicklas, R.B.. (1997). Tension-sensitive kinetochore phosphorylation and the chromosome distribution check-point in praying mantid spermatocytes. J. Cell Sci. 110, 537–45.CrossRefGoogle ScholarPubMed
Lorca, T., Cruzalegui, F.H., Fesquet, D., Cavadore, J.C., Mery, J., Means, A., & Doree, M.. (1993). Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366, 270–3.CrossRefGoogle ScholarPubMed
Margolin, N., Raybuck, S.A., Wilson, K.P., Chen, W., Fox, T., Gu, Y., & Livingston, D.J.. (1997). Substrate and inhibitor specificity of interleukin-β-converting enzyme and related caspases. J. Biol. Chem. 272, 7223–8.CrossRefGoogle Scholar
Masui, Y., & Markert, C.L.. (1971). Cytoplasmic control of nuclear behaviour during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–45.CrossRefGoogle ScholarPubMed
Matsumoto, K., & Ohta, T.. (1995). Phases of the cell cycle sensitive to endoreduplication induction in CHO-K1 cells. Mutat. Res. 326, 93–8.CrossRefGoogle ScholarPubMed
Maxwell, S.A., Ames, S.K., Sawai, E.T., Decker, G.L., Cook, R.G., & Butel, J.S.. (1991). Simian virus 40 large T antigen and p53 are microtubule-associated proteins in transformed cells. Cell Growth Differ. 2, 115–27.Google ScholarPubMed
Minn, A.J., Boise, L.H., & Thompson, C.B.. (1996). Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell-cycle checkpoint induced by mitotic spindle damage. Genes Dev. 10, 2621–31.CrossRefGoogle ScholarPubMed
Morin, N., Abrieu, A., Lorca, T., Martin, F., & Doree, M.. (1994). The proteolysis-dependent metaphase to anaphase transition: calcium/calmodulin-dependent protein kinase II mediates onset of anaphase in extracts prepared from unfertilized Xenopus eggs. EMBO J. 13, 4343–52.CrossRefGoogle ScholarPubMed
Mullis, K.B.. (1991). The polymerase chain reaction in an anemic mode: how to avoid cold oligodeoxyribonuclear fusion. PCR Methods Appl. 1, 14.CrossRefGoogle Scholar
Newport, J., & Kirschner, M.. (1982 a). A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–86.CrossRefGoogle Scholar
Newport, J., & Kirschner, M.. (1982 b). A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30, 687–96.CrossRefGoogle Scholar
Nicklas, R.B., Ward, S.C., & Gorbsky, G.J.. (1995). Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell Biol. 130, 929–39.CrossRefGoogle ScholarPubMed
Oltvai, Z.N., & Korsmeyer, S.J.. (1994). Checkpoints of dueling dimers foil death wishes. Cell 79, 189–92.CrossRefGoogle ScholarPubMed
Oltvai, Z.N., Milliman, C.L., & Korsmeyer, S.J.. (1996). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–19.CrossRefGoogle Scholar
Pangilinan, F., & Spencer, F.. (1996). Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol. Biol. Cell. 7, 1195–208.CrossRefGoogle ScholarPubMed
Peters, J.-M., King, R.W., Hoog, C., & Kirschner, M.W.. (1996). Identification of BIME as a subunit of the anaphase-promoting complex. Science 274, 1199–201.CrossRefGoogle ScholarPubMed
Porter, A.G., Ng, P., & Janicke, R.U.. (1997). Death substrates come alive. BioEssays 19, 501–7.CrossRefGoogle Scholar
Pulkkinen, J.O., Elomaa, L., Joensuu, H., Martikainen, P., Servomaa, K., & Grenman, R.. (1996). Paclitaxel-induced apoptotic changes followed by time-lapse video microscopy in cell lines established from head and neck cancer. Cancer Res. Clin. Oncol. 122, 214–18.CrossRefGoogle ScholarPubMed
Roberts, B.T., Farr, K.A., & Hoyt, M.A.. (1994). The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell Biol. 14, 8282–91.Google ScholarPubMed
Roberts, J.R., Allison, D.C., Donehower, R.C., & Rowinsky, E.K.. (1990). Development of polyploidization in taxol-resistant human leukemia cells in vitro. Cancer Res. 50, 710–16.Google ScholarPubMed
Rudner, A.D., & Murray, A.W.. (1996). The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–80.CrossRefGoogle ScholarPubMed
Schiff, P.B., & Horwitz, S.B.. (1980). Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA. 77, 1561–5.CrossRefGoogle ScholarPubMed
Schwartz, L.M., Smith, S.W., Jones, M.E.E., & Osborne, B.A.. (1993). Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad. Sci. USA 90, 980–4.CrossRefGoogle Scholar
Seshagiri, S., & Miller, L.K.. (1997). Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr. Biol. 7, 455–60.CrossRefGoogle ScholarPubMed
Sherwood, S.W., Sheridan, J.P., & Schimke, R.T.. (1994). Induction of apoptosis by the anti-tubulin drug colcemid: relationship of mitotic checkpoint control to the induction of apoptosis in HeLa S3 cells. Exp. Cell Res. 215, 373–9.CrossRefGoogle Scholar
Shi, L., Nishioka, W.K., Th'ng, J., Bradbury, E.M., Litchfield, D.W., & Greenberg, A.H.. (1994). Premature p34cdc2 activation required for apoptosis. Science 263, 1143–5.CrossRefGoogle ScholarPubMed
Shu, H.B., Li, Z., Palacios, M.J., Li, Q., & Joshi, H.C.. (1995). A transient association of gamma-tubulin at the midbody is required for the completion of cytokinesis during the mammalian cell division. J. Cell Sci. 108, 2955–62.CrossRefGoogle ScholarPubMed
Silver, R.B.. (1996). Calcium, BOBs, QEDs, microdomains and a cellular decision: control of mitotic cell division in sand dollar blastomeres. Cell Calcium 20, 161–79.CrossRefGoogle Scholar
Sluder, G.. (1988). Control mechanisms of mitosis: the role of spindle microtubules in the timing of mitotic events. Zool. Sci. (Tokyo) 5, 653–65.Google Scholar
Snyder, J.A., & Mullins, J.M.. (1993). Analysis of spindle microtubule organization in untreated and paclitaxel-treated PtK1 cells. Cell Biol. Int. 17, 1075–84.CrossRefGoogle Scholar
Solnica-Krezel, L., & Driever, W.. (1994). Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120, 2443–55.CrossRefGoogle ScholarPubMed
Spector, M.S., Desnoyers, S., Hoeppner, D.J., & Hengartner, M.O.. (1997). Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653–6.CrossRefGoogle Scholar
Strahle, U., & Jesuthasan, S.. (1993). Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. Development 119, 909–19.CrossRefGoogle ScholarPubMed
Straight, A.F., & Murray, A.W.. (1997). The spindle assembly checkpoint in budding yeast. Methods Enzymol. 283, 425–40.CrossRefGoogle ScholarPubMed
Taylor, S.S., & McKeon, F.. (1997). Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–35.CrossRefGoogle ScholarPubMed
Theisen, P., McCollum, C., & Andrus, A.. (1992). Fluorescent dye phosphoramidite labelling of oligonucleotides. Nucleic Acids Symp. Ser. 27, 99100.Google Scholar
Thornberry, N.A., Peterson, E.P., Zhao, J.J., Howard, A.D., Griffin, P.R., & Chapman, K.T.. (1994). Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)-methyl ketones. Biochemistry 33, 3934–40.CrossRefGoogle ScholarPubMed
Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Tinkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., & Nicholson, D.W.. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–11.CrossRefGoogle ScholarPubMed
Trinkaus, J.P.. (1993). The yolk synctytial layer of Fundulus: its origin and history and its significance for early embryogenesis. J. Exp. Zool. 132, 311–47.CrossRefGoogle Scholar
van der Loo, B., Hong, Y., Hancock, V., Martin, J.F., & Erusalimsky, J.D.. (1993). Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur. J. Clin. Invest. 23, 621–9.Google ScholarPubMed
Vasquez, R.J., Howell, B., Yvon, A.M., Wadsworth, P., & Cassimeris, L.. (1997). Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell. 8, 973–85.CrossRefGoogle ScholarPubMed
Wang, E., & Pandey, S.. (1995). Down-regulation of statin, a nonproliferation-specific nuclear protein, and up-regulation of c-myc after initiation of programmed cell death in mouse fibroblasts. J. Cell. Physiol. 163, 155–63.CrossRefGoogle ScholarPubMed
Wang, H.G., Miyashita, T., Takayama, S., Sato, T., Torigoe, T., Krajewski, S., Tanaka, S., Hovey, L., 3rd, Troppmair, J., Rapp, U.R., & Reed, J.C.. (1994). Apoptosis regulation by interaction of bcl-2 protein and Raf-1 kinase. Oncogene 9, 2751–6.Google ScholarPubMed
Wang, H.G., Rapp, U.R., & Reed, J.C.. (1996). Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–38.CrossRefGoogle ScholarPubMed
Wang, Y. & Burke, D.J.. (1995). Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 6838–44.CrossRefGoogle ScholarPubMed
Westerfield, M.. (1995). The Zebrafish Book, 3rd edn. Eugene, OR: University of Oregon Press.Google Scholar
Wu, D., Wallen, H.D., & Nunez, G.. (1997). Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275, 1126–9.CrossRefGoogle ScholarPubMed
Yager, T.D., Ikegami, R., Rivera-Bennetts, A.K., Zhao, C., & Brooker, D.. (1998). High-resolution imaging at the cellular and subcellular levels in flattened whole-mounts of early zebrafish embryos. Biochem. Cell Biol. in press.Google Scholar
Yan, E., & Korsmeyer, S.J.. (1996). Molecular thanatopsis: a discourse on the bc12 family and cell death. Blood 88, 386401.Google Scholar
Yasuda, G.K., & Schubiger, G.. (1992). Temporal regulation in the early embryo: is MBT too good to be true? Trends Genet. 8, 124–7.CrossRefGoogle ScholarPubMed
Yin, X.-M., Oltvai, Z.N., & Korsmeyer, S.J.. (1994). BH1 and BH2 domains of bc1-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321–3.CrossRefGoogle Scholar
Zachariae, W., Shin, T.H., Galova, M., Obermaier, B., & Nasmyth, K.. (1996). Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201–4.CrossRefGoogle ScholarPubMed
Zamir, E., Kam, Z., & Yarden, A.. (1997). Transcription-dependent induction of G1 phase dujring the zebra fish midblastula transition. Mol. Cell Biol. 17, 529–36.CrossRefGoogle ScholarPubMed
Zhang, Y., Wang, Z., & Ravid, K.. (1996). The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J. Biol. Chem. 217, 4266–72.CrossRefGoogle Scholar
Zhou, M.Y., Xue, D., Gomez-Sanchez, E.P., & Gomez-Sanchez, C.E.. (1994). Improved downward capillary transfer for blotting of DNA and RNA. Biotechniques 16, 58–9.Google Scholar