Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T15:48:52.746Z Has data issue: false hasContentIssue false

Efficacy of Saflufenacil plus Dimethenamid-P for Weed Control in Corn

Published online by Cambridge University Press:  20 January 2017

Meghan Moran
Affiliation:
Plant Agriculture Department, University of Guelph, Guelph, ON N1G 2W1, Canada
Peter H. Sikkema
Affiliation:
University of Guelph, Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Clarence J. Swanton*
Affiliation:
Plant Agriculture Department, University of Guelph, Guelph, ON N1G 2W1, Canada
*
Corresponding author's E-mail: [email protected].

Abstract

A new, prepackaged mixture of saflufenacil + dimethenamid-P has been introduced for PRE control of grass and broadleaf weeds in corn. Field experiments with this new herbicide combination were conducted in 2008 and 2009 at four locations in southern Ontario, Canada. The objective of this study was to determine the dose of saflufenacil + dimethenamid-P required for overall weed control and species-specific weed control, as well as the dose required for early season weed control when followed with glyphosate at the six- to eight-leaf corn stage. Based on weed dry weight, the GR95 across locations ranged from 126 to 675 g ha−1. The 95% growth reduction (GR95) for common ragweed, common lambsquarters, pigweed, and wild mustard were 933, 325, 186, and 115 g ha−1, respectively. Highest corn yields were achieved with saflufenacil + dimethenamid-P applied alone at doses ranging from 368 to 1470 g ha−1. When followed by glyphosate, the dose range of saflufenacil + dimethenamid-P required to achieve the greatest corn yields was 46 to 1,470 g ha−1. A minimum dose of 184 g ha−1 of saflufenacil + dimethenamid-P followed by glyphosate was required for the yield to exceed that of the single treatment of glyphosate applied alone.

Una nueva formulación de saflufenacil + dimethenamid-P se ha introducido al mercado para el control de malezas gramíneas y hojas anchas en preemergencia en el maíz. Se hicieron experimentos de campo con esta nueva combinación de herbicidas en 2008 y 2009 en cuatro localidades en el sur de Ontario. El objetivo de este estudio fue determinar la dosis de saflufenacil + dimethenamid-P requerida para el control total de malezas y el control de malezas de tipos específicos, y también la dosis necesaria para un control de malezas temprano en la estación cuando a continuación se aplicó glifosato en la etapa de 6 a 8 hojas del maíz. La dosis que redujo el peso seco de las malezas en 95% a través de las localidades varió de 126 a 675 g ha−1. Para Ambrosia artemisiifolia, Chenopodium album, Amaranthus spp. y Sinapsis arvensis, la dosis que redujo el peso seco en 95% fue 933, 325, 186 y 115 g ha−1, respectivamente. Los mayores rendimientos del maíz se obtuvieron con saflufenacil + dimethenamid-P aplicado solo a dosis que variaron de 368 a 1,470 g ha−1. Cuando fue seguida por glifosato, el rango de dosis de saflufenacil + dimethenamid-P requerido para obtener el mayor rendimiento del maíz fue de 46 a 1,470 g ha−1. Una dosis mínima de 184 g ha−1 saflufenacil + dimethenamid-P seguida por glifosato fue necesaria para que el rendimiento sobrepasara el rendimiento de una aplicación de solamente glifosato.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Box, G. E. P. 1953. Non-normality and tests on variances. Biometrika 40(3–4):318335.Google Scholar
Box, G. E. P. and Watson, G. S. 1962. Robustness to non-normality of regression tests. Biometrika 49:93106.CrossRefGoogle Scholar
Geier, P. W., Stahlman, P. W., and Charvat, L. D. 2009. Dose–responses of five broadleaf weeds to saflufenacil. Weed Technol. 23:313316.Google Scholar
Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2009. Adjuvants influence saflufenacil efficacy on fall-emerging weeds. Weed Technol. 23:340345.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010. Tolerance of winter wheat (Triticum aestivum L.) to pre-emergence and post-emergence application of saflufenacil. Crop Prot. 29:148152.CrossRefGoogle Scholar
Nurse, R. E., Swanton, C. J., Tardif, F., and Sikkema, P. H. 2006. Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Prot. 25:11741179.Google Scholar
Sikkema, P. H., Shropshire, C., and Soltani, N. 2008. Tolerance of spring barley (Hordeum vulgare L.), oats (Avena sativa L.), and wheat (Triticum aestivum L.) to saflufenacil. Crop Prot. 27:14951497.CrossRefGoogle Scholar
Soltani, N., Shropshire, C., and Sikkema, P. 2009. Response of corn to preemergence and postemergence applications of saflufenacil. Weed Technol. 23:331334.Google Scholar
Tardif, F. J. 2007. Selection of herbicide resistance in weeds: the influence of herbicide-resistant crops. Pages 4350 in Gulden, R. H., and Swanton, C. J., eds. The First Decade of Herbicide-Resistant Crops in Canada: Topics in Canadian Weed Science. Volume 4. Sainte Anne de Bellevue, Québec Canadian Weed Science Society—Société Canadienne de Malherbologie.Google Scholar