Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:51:47.808Z Has data issue: false hasContentIssue false

Cultivar and Weeding Effects on Weeds and Rice Yields in a Degraded Upland Environment of the Coastal Savanna

Published online by Cambridge University Press:  20 January 2017

Amadou Touré*
Affiliation:
Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin
Jonne Rodenburg
Affiliation:
Africa Rice Center (AfricaRice), East and Southern Africa Rice Program (ESARP), P.O. Box 33581, Dar es Salaam, Tanzania
Kazuki Saito
Affiliation:
Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin
Sylvester Oikeh
Affiliation:
African Agricultural Technology Foundation (AATF), Nairobi, Kenya
Koichi Futakuchi
Affiliation:
Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin
Dieudonné Gumedzoe
Affiliation:
Ecole des Sciences Agronomiques, Université de Lomé, BP 1515, Lomé, Togo
Joel Huat
Affiliation:
CIRAD/Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin
*
Corresponding author's E-mail: [email protected]

Abstract

Weeds are a major constraint to rice production in labor-limited, upland rice-based systems in West Africa. The effects of weeding regimes and rice cultivars on weed growth and rice yield were investigated at two upland locations (Abomey-Calavi and Niaouli) in the degraded coastal savanna zone of Benin in 2005 and 2006 with below-average rainfall. Four weeding regimes (hoe weeding at 21 d after sowing [DAS], delayed hoe weeding at 31 DAS, hoe weeding at 21 and 42 DAS, and a no weeding control) were the main plot treatments. Cultivars comprising three interspecific upland rice cultivars (NERICA 1, NERICA 2, and NERICA 7) and the parents (Oryza sativa WAB56-104 and O. glaberrima CG14) were tested in subplots. The most dominant weed species identified were Jamaican crabgrass, Mariscus, and silver spinach. Rice yield was generally low because of drought stress; none of the experiments had a higher mean yield than 1,400 kg ha−1 across cultivars. Across cultivars, the best weeding regimes in terms of weed control and rice yields were single weeding at 31 DAS (W31) and double weeding at 21 and 42 DAS (W21+42). Under these weeding regimes, WAB56-104 out-yielded the three NERICA cultivars. CG14 showed the strongest weed suppressive ability (WSA) in Abomey-Calavi but did not have strong WSA in Niaouli because of lower biomass accumulation. WSA of WAB56-104 was similar to that of the three NERICA cultivars. Single weeding at 31 DAS, together with the use of cultivars with good adaptation to unfavorable rice growing conditions, would increase land and labor productivity of upland rice-based systems in West Africa.

Las malezas son una de las principales limitantes para la producción de arroz en los sistemas de siembra en secano, en áreas con escasez de mano de obra, en el occidente de África. En 2005 y 2006, se investigaron los efectos de regímenes de deshierbe manual y los cultivares de arroz en el crecimiento de malezas y en el rendimiento de arroz en dos sitios de secano (Abomey-Calavi y Niaouli) en la degradada zona costera de la sabana de Benin, con lluvias por debajo del promedio. Los tratamientos en la parcela principal fueron cuatro regímenes de deshierbe: deshierbe con azadón a los 21 días después de la siembra (DDS), deshierbe tardío con azadón a los 31 DDS y deshierbe con azadón a los 21 y 42 DDS, y ningún deshierbe de malezas. Se evaluaron en subparcelas, tres cultivares interespecíficos de arroz de secano (NERICA 1, NERICA 2 y NERICA 7) y los progenitores (Oryza sativa WAB56-104 y O. glaberrima CG14). Las especies de malezas más dominantes que se identificaron fueron Digitaria horizontalis, Mariscus alternifolius y Celosia trigyna. El rendimiento de arroz fue generalmente bajo debido al estrés causado por la sequía; ninguno de los experimentos tuvo un rendimiento medio mayor de 1,400 kg ha-1 en todos los cultivares. Entre todos los cultivares, los mejores regímenes en términos de control de malezas y rendimiento de arroz fueron el de un solo deshierbe a los 31 DDS (W31) y el de doble deshierbe a los 21 y 42 DDS (W21+42). Con estos regímenes, WAB-56-104 rindió más que los tres cultivares NERICA. CG14 mostró la habilidad más fuerte de supresión de malezas en Abomey- Calavi, pero no en Niaouli, debido a una acumulación menor de biomasa. La habilidad de supresión de malezas de WAB56-104 fue similar a los tres cultivares NERICA. Un solo deshierbe a los 31 DDS, junto con el uso de cultivares con buena adaptación a condiciones desfavorables de crecimiento, mejoraría la productividad de la tierra y de la mano de obra en los sistemas de producción de arroz en secano en el occidente de África.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahanchede, A. and Gasquez, J. 1997. Weeds of Rainfed Crop Fields in Northeastern Benin. CIRAD-CA BP 5035, 34032 Montpellier, France Agriculture et Développement. Special issue. Pp. 1723.Google Scholar
Akobundu, I. O. 1980. Weed science research at the International Institute of Tropical Agriculture and research needs in Africa. Weed Sci. 28:439445.CrossRefGoogle Scholar
Akobundu, O. and Ahissou, A. 1985. Effect of interrow spacing and weeding frequency on the performance of selected rice varieties on hydromorphic soils of West Africa. Crop Prot. 4:7176.Google Scholar
Ampong-Nyarko, K. and De Datta, S. K. 1991. A Handbook for Weed Control in Rice. IRRI, Los Banõs. 113 p.Google Scholar
Asch, F., Dingkuhn, M., Sow, A., and Audebert, A. 2005. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Res. 62:191202.CrossRefGoogle Scholar
Becker, M. and Johnson, D. E. 1998. Legumes as dry season fallow in upland rice-based systems of West Africa. Biol. Fertil. Soils. 27:358367.Google Scholar
Becker, M. and Johnson, D. E. 2001. Cropping intensity effects on upland rice yield and sustainability in West Africa. Nutr. Cycl. Agroecosyst. 59:107117.Google Scholar
Bremner, J. M. and Mulvaney, C. S. 1982. Nitrogen—total. Pp. 595624 in Page, A. L., Miller, R. H., and Keeney, D. R., eds. Methods of Soil Analysis. Part 2. Agronomy Series 9. Madison, WI American Society of Agronomy.Google Scholar
Dingkuhn, M., Johnson, D. E., Sow, A., and Audebert, A. Y. 1999. Relationships between upland rice canopy characteristics and weed competitiveness. Field Crops Res. 61:7995.CrossRefGoogle Scholar
Dzomeku, I. K., Dogbe, W., and Agawu, E. T. 2007. Response of NERICA rice varieties to weed interference in the Guinea savannah uplands. J. Agron. 6:262269.Google Scholar
Ekeleme, F., Kamara, A. Y., Oikeh, S. O., Omoigui, L. O., Amaza, P., Abdoulaye, T., and Chikoye, D. 2009. Response of upland rice cultivars to weed competition in the savannas of West Africa. Crop Prot. 28:9096.Google Scholar
Fofana, B. and Rauber, R. 2000. Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res. 40:271280.Google Scholar
Haefele, S. M., Johnson, D. E., Bodj, D. M., Wopereis, M. C. S., and Miezan, K. M. 2004. Field screening of diverse rice genotypes for weed competitiveness in irrigated lowland ecosystems. Field Crops Res. 88:3956.Google Scholar
Heanes, D. L. 1984. Determination of total organic carbon in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15:11911213.Google Scholar
[IITA] International Institute of Tropical Agriculture. 1989. Automated and semi-automated methods for soil and plant analysis. Manual series 7. Ibadan, Nigeria IITA. 33 p.Google Scholar
Johnson, D. E., Dingkuhn, M., Jones, M. P., and Mahamane, M. C. 1998. The influence of rice plant type on the effect of weed competition on O. glaberrima and O. sativa . Weed Res. 38:207216.Google Scholar
Johnson, D. E. and Kent, R. J. 2002. The impact of cropping on weed species composition in rice after fallow across a hydrological gradient in West Africa. Weed Res. 42:8999.Google Scholar
Johnson, D. E., Wopereis, M. C. S., Mbodj, D., Diallo, S., Powers, S., and Haefele, S. M. 2004. Timing of weed management and yield losses due to weeds in irrigated rice in the Sahel. Field Crops Res. 85:3142.CrossRefGoogle Scholar
Kent, R. J., Johnson, D. E., and Becker, M. 2001. The influences of cropping system on weed communities of rice in Côte d'Ivoire, West Africa. Agric. Ecosyst. Environ. 87:299307.Google Scholar
Lal, R. 1982. Tillage research in the tropics. Soil Tillage Res. 2:305309.CrossRefGoogle Scholar
Lanceras, J. C., Pantuwan, G., Jongdee, B., and Toojinda, T. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol. 135:384399.Google Scholar
Le Bourgeois, T. and Merlier, H. 1995. Adventrop. Les adventices d'Afrique soudano-sahélienne. Montpellier, France Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). 640 p.Google Scholar
Mavunganidze, Z., Mashingaidze, A. B., Chivinge, O. A., Riches, C., Ellis-Jones, J., and Foti, R. 2007. An evaluation of weed management options for cotton-based farming systems in Muzarabani. African Crop Science Conference Proceedings 8:11171123.Google Scholar
Mehlich, A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15:14091416.CrossRefGoogle Scholar
Rodenburg, J. and Johnson, D. E. 2009. Weed management in rice-based cropping systems in Africa. Adv. Agron. 103:149218.Google Scholar
Rodenburg, J., Meinke, H., and Johnson, D. E. 2011. Challenges for weed management in African rice systems in a changing climate. J. Agric. Sci. DOI: 10.1017/S0021859611000207.CrossRefGoogle Scholar
Rodenburg, J., Saito, K., Kakaï, R. G., Touré, A., Mariko, M., and Kiepe, P. 2009. Weed competitiveness of the lowland rice varieties of NERICA in the southern Guinea Savanna. Field Crops Res. 114:411418.CrossRefGoogle Scholar
Saito, K., Azoma, K., and Rodenburg, J. 2010. Plant characteristics associated with weed competitiveness of rice under upland and lowland conditions in West Africa. Field Crops Res. 116:308317.CrossRefGoogle Scholar
Sanyal, D., Bhowmik, P. C., Anderson, R. L., and Shrestha, A. 2008. Revisiting the perspective and progress of integrated weed management. Weed Sci. 56:161167.Google Scholar
SAS. 2004. SAS/STAT Users Guide. Release 9.1. Cary, NC SAS Institute.Google Scholar
[TSBF] Tropical Soil Biology and Fertility Institute of the International Center for Tropical Agriculture 1993. A Handbook of Methods. 221 p.Google Scholar
Windmeijer, P. N. and Andriesse, W. 1993. Inland valleys in West Africa: an agro-ecological characterization of rice growing environments. ILRI Publication 52. Wageningen, The Netherlands International Institute for Land Reclamation and Improvement. 160 p.Google Scholar
Wopereis, M. C. S., Diagne, A., Rodenburg, J., Sié, M., and Somado, E. A. 2008. Why NERICA is a successful innovation for African farmers: a response to Orr et al. from the Africa Rice Center. Outlook Agric. 37:169176.Google Scholar
Zhao, D. L., Atlin, G. N., Bastiaans, L., and Spiertz, J. H. J. 2006. Cultivar weed-competitiveness in areobic rice: heritability correlated traits, and the potential for indirect selection in weed-free environments. Crop Sci. 46:372380.Google Scholar