Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T17:15:14.516Z Has data issue: false hasContentIssue false

Radiation Defects in Lime Mortars and Plasters Studied by EPR Spectroscopy

Published online by Cambridge University Press:  22 June 2020

Zuzanna Kabacińska*
Affiliation:
Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965Poznań, Poland
Danuta Michalska
Affiliation:
Institute of Geology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Krygowskiego 12, 61-680Poznań, Poland
Bernadeta Dobosz
Affiliation:
Medical Physics and Radiospectroscopy Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614Poznań, Poland
*
*Corresponding author. Email: [email protected].

Abstract

Electron paramagnetic resonance (EPR) spectroscopy is a well-established method of dating based on trapped charges, applied to various crystalline materials, including carbonates, bones, and teeth. It provides a detailed insight into the structure of radiation defects—paramagnetic centers generated by irradiation, without the need of a painstaking sample preparation, often challenging in other methods. Using EPR we studied the effect of γ radiation on lime mortars and plasters from ancient settlement Hippos in Israel, in order to analyze the process of defect generation. Analysis of the complex spectra revealed the presence of radiation-induced species, including CO2, NO32– and organic radical. Using an artificial UV source, we generated relatively strong signals of paramagnetic centers, analogous to those created by γ irradiation, reaching their maximum intensity after 5–6 hr of UV exposure. Our results confirm the previous reports that radiation defects can also be generated, instead of bleached, in calcite by UV radiation, which is crucial for identifying the issues related to light exposition, affecting the accuracy of age determinations in trapped-charge dating methods.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Baer, DR, Blanchard, DL. 1993. Studies of the calcite cleavage surface for comparison with calculation. Applied Surface Science 72(4):295300. doi: 10.1016/0169-4332(93)90365-I.CrossRefGoogle Scholar
Bahain, J-J, Yokoyama, Y, Masaoudi, H, Falguéres, C, Laurent, M. 1994. Thermal behaviour of ESR signals observed in various natural carbonates. Quaternary Science Reviews 13(5–7):671674. doi: 10.1016/0277-3791(94)90096-5.CrossRefGoogle Scholar
Baїetto, V, Villeneuve, G, Schvoerer, M, Bechtel, F, Herz, N, Baietto, V, Villeneuve, G, Schvoerer, M, Bechtel, F, Herz, N. 1999. Investigation of electron paramagnetic resonance peaks in some powdered Greek white marbles. Archaeometry 412(2):253265.CrossRefGoogle Scholar
Baran, NP, Vorona, IP, Ishchenko, SS, Nosenko, VV, Zatovskii, IV, Gorodilova, NA, Povarchuk, VY. 2011. NO32− and CO2− centers in synthetic hydroxyapatite: Features of the formation under γ- and UV-irradiations. Physics of the Solid State 53(9):18911894. doi: 10.1134/S106378341109006X.CrossRefGoogle Scholar
Bartoll, J, Stößer, R, Nofz, M. 2000. Generation and conversion of electronic defects in calcium carbonates by UV/Vis light. Applied Radiation and Isotopes 52(5):10991105. doi: 10.1016/S0969-8043(00)00044-0.CrossRefGoogle ScholarPubMed
Callens, F, Vanhaelewyn, G, Matthys, P, Boesman, E. 1998. EPR of carbonate derived radicals: Applications in dosimetry, dating and detection of irradiated food. Applied Magnetic Resonance 14(2–3):235254. doi: 10.1007/BF03161892.CrossRefGoogle Scholar
Callens, FJ. 1997. Comparative EPR and endor results on carbonate derived radicals in different host materials. Nukleonika 42(2):565578.Google Scholar
De Cannière, P, Debuyst, R, Dejehet, F, Apers, D. 1988. ESR study of internally α-irradiated (210Po nitrate doped) calcite single crystal. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2):267273. doi: 10.1016/1359-0189(88)90075-1.CrossRefGoogle Scholar
Eachus, RS, Symons, MCR. 1968. Unstable intermediates. Part L. The NO32- impurity centre in irradiated calcium carbonate. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 437(124):790. doi: 10.1039/j19680000790.CrossRefGoogle Scholar
Grün, R. 1991. Potential and problems of ESR dating. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2):143153. doi: 10.1016/1359-0189(91)90106-R.CrossRefGoogle Scholar
Grün, R, De Cannière, P. 1984. ESR-dating: Problems encountered in the evaluation of the naturally accumulated dose /AD/ of secondary carbonates. Journal of Radioanalytical and Nuclear Chemistry 85(4):213226. doi: 10.1007/BF02164225.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, et al. 2017. Preparation and Dating of Mortar Samples-Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858. doi: 10.1017/RDC.2017.112.CrossRefGoogle Scholar
Ikeya, M. 1993. New applications of electron spin resonance: Dating, dosimetry and microscopy. Singapore, New Jersey, London, Hong Kong: World Scientific.10.1142/1854CrossRefGoogle Scholar
Ikeya, M. 2004. ESR dating, dosimetry and microscopy for terrestrial and planetary materials. Electron Paramagnetic Resonance 19:132. doi: 10.1002/chin.200519298.CrossRefGoogle Scholar
Kabacińska, Z, Krzyminiewski, R, Dobosz, B. 2014a. EPR investigation of UV light effect on calcium carbonate powders with different grain sizes. Radiation Protection Dosimetry 159(1–4):149154. doi: 10.1093/rpd/ncu177.CrossRefGoogle ScholarPubMed
Kabacińska, Z, Krzyminiewski, R, Dobosz, B, Nawrocka, D. 2012. ESR investigation of structure and dynamics of paramagnetic centres in lime mortars from Budinjak, Croatia. Radiation Measurements 47(9):825829. doi: 10.1016/j.radmeas.2012.03.017.CrossRefGoogle Scholar
Kabacińska, Z, Krzyminiewski, R, Michalska, D, Dobosz, B. 2014b. Investigation of lime mortars and plasters from archaeological excavations in Hippos (Israel) using electron paramagnetic resonance. Geochronometria 41(2):112120. doi: 10.2478/s13386-013-0151-4.CrossRefGoogle Scholar
Kabacińska, Z, Krzyminiewski, R, Tadyszak, K, Coy, E. 2019. Generation of UV-induced radiation defects in calcite. Quaternary Geochronology 51(August 2018):2442. doi: 10.1016/j.quageo.2019.01.002.CrossRefGoogle Scholar
Kabacińska, Z, Yate, L, Wencka, M, Krzyminiewski, R, Tadyszak, K, Coy, E. 2017. Nanoscale effects of radiation (UV, X-ray, and γ) on calcite surfaces: Implications for its mechanical and physico-chemical properties. The Journal of Physical Chemistry C 121(24):1335713369. doi: 10.1021/acs.jpcc.7b03581.CrossRefGoogle Scholar
Kai, A, Miki, T. 1992. Electron spin resonance of sulfite radicals in irradiated calcite and aragonite. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 40(6):469476. doi: 10.1016/1359-0197(92)90211-W.CrossRefGoogle Scholar
Kundu, HK, Sato, H, Ganas, A, Ikeya, M. 2005. ESR studies on calcite encrustation on Fili Neotectonic Fault, Greece. Applied Magnetic Resonance 29:185194.CrossRefGoogle Scholar
Michalska, D. 2019. Influence of different pretreatments on mortar dating results. Nuclear Instruments and Methods in Physics Research B 456:236246. doi: 10.1016/j.nimb.2019.03.038.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906. doi: 10.1017/RDC.2017.128.CrossRefGoogle Scholar
Michalska, D, Pawlyta, J. 2019. Modeled and measured carbon isotopic composition and petrographically estimated binder-aggregate ratio—recipe for binding material dating? Radiocarbon 61(3):799815. doi: 10.1017/RDC.2019.29.CrossRefGoogle Scholar
Michalska Nawrocka, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement in the Golan Heights Area, Israel. Radiocarbon 49(2):625637. doi: 10.1017/S0033822200042521.CrossRefGoogle Scholar
Middendorf, B, Knöfel, D. 2015. Characterization of historic mortars from building in Germany and the Netherlands. In: Baer, N, Fitz, S, Livingstone, RA, editors. Conservation of historic brick structures. Routledge.Google Scholar
Miki, T, Kai, A, Murata, T. 1993. Radiation-induced radicals in sulfite-doped CaCO3 . Applied Radiation and Isotopes 44(1–2):315319. doi: 10.1016/0969-8043(93)90238-6.CrossRefGoogle Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(02):857866. doi: 10.1017/S0033822200056162.CrossRefGoogle Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Oduwole, AD, Sales, KD. 1994. Transient ESR signals induced by γ-irradiation in tooth enamel and in bone. Quaternary Science Reviews 13(5–7):647650. doi: 10.1016/0277-3791(94)90093-0.CrossRefGoogle Scholar
Oguz, C, Turker, F, Kockal, NU. 2014. Construction materials used in the historical Roman Era bath in Myra. The Scientific World Journal 2014:19. doi: 10.1155/2014/536105.CrossRefGoogle ScholarPubMed
Panzeri, L. 2013. Mortar and surface dating with optically stimulated luminescence (OSL): Innovative techniques for the age determination of buildings. Nuovo Cim della Soc Ital di Fis C. 36(April):205216. doi: 10.1393/ncc/i2013-11555-9.Google Scholar
Polikreti, K, Maniatis, Y, Bassiakos, Y, Kourou, N, Karageorghis, V. 2004. Provenance of archaeological limestone with EPR spectroscopy: The case of the Cypriote-type statuettes. Journal of Archaeological Science 31:10151028. doi: 10.1016/j.jas.2003.12.013.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 Years of mortar dating: learning from experience. Radiocarbon 56(2):619635. doi: 10.2458/56.17469.CrossRefGoogle Scholar
Sadło, J, Bugaj, A, Strzelczak, G, Sterniczuk, M, Jaegermann, Z. 2015. Multifrequency EPR study on radiation induced centers in calcium carbonates labeled with 13C. Nukleonika 60(3):429434. doi: 10.1515/nuka-2015-0076.CrossRefGoogle Scholar
Sato, H, Ikeya, M. 2005. Possibility of precipitated CaCO 3 with vitamin C as a new dosimetric material. Applied Radiation and Isotopes 62:337341. doi: 10.1016/j.apradiso.2004.08.025.CrossRefGoogle Scholar
Sato, H, Tani, A, Fielding, AJ, Eaton, SS, Eaton, GR, Whitehead, NE, Ikeya, M. 2004. Spatial distribution and formation of nitrate radical NO32− in Antarctic calcitic evaporates. Applied Magnetic Resonance 26(4):601616. doi: 10.1007/BF03166586.CrossRefGoogle Scholar
Sholom, S, Desrosiers, M, Chumak, V, Luckyanov, N, Simon, SL, Bouville, A. 2010. UV Effects in tooth enamel and their possible application in EPR dosimetry with front teeth. Health Physics 98(2):360368. doi: 10.1097/01.HP.0000348002.69740.bd.CrossRefGoogle ScholarPubMed
Thomson, ML, Lindqvist, J-E, Elsen, J, Groot, CJWP. 2004. Origin of porosity in mortars. In: Martens D, Vermeltfoort A, editors. 13th International Brick and Block Masonry Conference. Technische Universiteit Eindhoven. p. 1–10.Google Scholar
Urbanová, P, Guibert, P. 2017. Methodological study on single grain OSL dating of mortars: comparison of five reference archaeological sites. Geochronometria 44:7797. doi: 10.1515/geochr-2015-0050.CrossRefGoogle Scholar
Wencka, M, Hoffmann, SK, Hercman, H. 2005. EPR dating of hydroxyapatite from fossil bones. Transient effects after γ and UV irradiation. Acta Physica Polonica A 108(2):331337.CrossRefGoogle Scholar
Supplementary material: File

Kabacińska et al. supplementary material

Kabacińska et al. supplementary material 1

Download Kabacińska et al. supplementary material(File)
File 392.4 KB
Supplementary material: File

Kabacińska et al. supplementary material

Kabacińska et al. supplementary material 2

Download Kabacińska et al. supplementary material(File)
File 392.4 KB