Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T18:40:51.624Z Has data issue: false hasContentIssue false

White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline

Published online by Cambridge University Press:  16 November 2017

Jasper Olivier Nuninga
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Marc Marijn Bohlken*
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Sanne Koops
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Ania M. Fiksinski
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
René C. W. Mandl
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Elemi J. Breetvelt
Affiliation:
Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
Sasja N. Duijff
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
René S. Kahn
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, USA
Iris E. C. Sommer
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
Jacob A. S. Vorstman
Affiliation:
Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
*
Address for correspondence: Marc Marijn Bohlken, E-mail: [email protected]

Abstract

Background

Decline in cognitive functioning precedes the first psychotic episode in the course of schizophrenia and is considered a hallmark symptom of the disorder. Given the low incidence of schizophrenia, it remains a challenge to investigate whether cognitive decline coincides with disease-related changes in brain structure, such as white matter abnormalities. The 22q11.2 deletion syndrome (22q11DS) is an appealing model in this context, as 25% of patients develop psychosis. Furthermore, we recently showed that cognitive decline also precedes the onset of psychosis in individuals with 22q11DS. Here, we investigate whether the early cognitive decline in patients with 22q11DS is associated with alterations in white matter microstructure.

Methods

We compared the fractional anisotropy (FA) of white matter in 22q11DS patients with cognitive decline [n = 16; −18.34 (15.8) VIQ percentile points over 6.80 (2.39) years] to 22q11DS patients without cognitive decline [n = 18; 17.71 (20.17) VIQ percentile points over 5.27 (2.03) years] by applying an atlas-based approach to diffusion-weighted imaging data.

Results

FA was significantly increased (p < 0.05, FDR) in 22q11DS patients with a cognitive decline in the bilateral superior longitudinal fasciculus, the bilateral cingulum bundle, all subcomponents of the left internal capsule and the left superior frontal-occipital fasciculus as compared with 22q11DS patients without cognitive decline.

Conclusions

Within 22q11DS, the early cognitive decline is associated with microstructural differences in white matter. At the mean age of 17.8 years, these changes are reflected in increased FA in several tracts. We hypothesize that similar brain alterations associated with cognitive decline take place early in the trajectory of schizophrenia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Authors contributed equally to this manuscript.

References

Bakker, G, Caan, MWA, Schluter, RS, Bloemen, OJN, da Silva-Alves, F, de Koning, MB, Boot, E, Vingerhoets, WAM, Nieman, DH, de Haan, L, Booij, J and van Amelsvoort, TAMJ (2016) Distinct white-matter aberrations in 22q11.2 deletion syndrome and patients at ultra-high risk for psychosis. Psychological Medicine 46, 22992311.Google Scholar
Barnea-Goraly, N, Menon, V, Krasnow, B, Ko, A, Reiss, A and Eliez, S (2003) Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. American Journal of Psychiatry 160, 18631869.Google Scholar
Bassett, AS and Chow, EWC (1999) 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biological Psychiatry 46, 882891.Google Scholar
Bassett, AS and Chow, EWC (2008) Schizophrenia and 22q11.2 deletion syndrome. Current Psychiatry Reports 10, 148157.CrossRefGoogle ScholarPubMed
Benjamini, Y and Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57, 289300.Google Scholar
Bloemen, OJN, de Koning, MB, Schmitz, N, Nieman, DH, Becker, HE, de Haan, L, Dingemans, P, Linszen, DH and van Amelsvoort, TaMJ (2010) White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychological Medicine 40, 12971304.Google Scholar
Bohlken, MM, Brouwer, RM, Mandl, RCW, Van den Heuvel, MP, Hedman, AM, De Hert, M, Cahn, W, Kahn, RS and Hulshoff Pol, HE (2015) Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry 73, 19.Google Scholar
Carletti, F, Woolley, JB, Bhattacharyya, S, Perez-Iglesias, R, Fusar Poli, P, Valmaggia, L, Broome, MR, Bramon, E, Johns, L, Giampietro, V, Williams, SCR, Barker, GJ and McGuire, PK (2012) Alterations in white matter evident before the onset of psychosis. Schizophrenia Bulletin 38, 11701179.Google Scholar
Clemm Von Hohenberg, C, Pasternak, O, Kubicki, M, Ballinger, T, Vu, MA, Swisher, T, Green, K, Giwerc, M, Dahlben, B, Goldstein, JM, Woo, TUW, Petryshen, TL, Mesholam-Gately, RI, Woodberry, KA, Thermenos, HW, Mulert, C, McCarley, RW, Seidman, LJ and Shenton, ME (2014) White matter microstructure in individuals at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophrenia Bulletin 40, 895903.Google Scholar
Cropley, VL, Klauser, P, Lenroot, RK, Bruggemann, J, Sundram, S, Bousman, C, Pereira, A, Di Biase, MA, Weickert, TW, Weickert, CS, Pantelis, C and Zalesky, A (2017) Accelerated gray and white matter deterioration with age in schizophrenia. American Journal of Psychiatry 174, 286295.CrossRefGoogle ScholarPubMed
de Leeuw, M, Bohlken, MM, Mandl, RC, Hillegers, MH, Kahn, RS and Vink, M (2017) Changes in white matter organization in adolescent offspring of schizophrenia patients. Neuropsychopharmacology 42, 495501.Google Scholar
De Santis, S, Drakesmith, M, Bells, S, Assaf, Y and Jones, DK (2014) Why diffusion tensor MRI does well only some of the time: variance and covariance of white matter tissue microstructure attributes in the living human brain. NeuroImage 89, 3544.CrossRefGoogle ScholarPubMed
Dennis, EL and Thompson, PM (2013) Typical and atypical brain development: a review of neuroimaging studies. Dialogues in Clinical Neuroscience 15, 359384.Google Scholar
Edelmann, L (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Human Molecular Genetics 8, 11571167.CrossRefGoogle ScholarPubMed
Fiksinski, AM, Breetvelt, EJ, Duijff, SN, Bassett, AS, Kahn, RS and Vorstman, JAS (2017) Autism spectrum and psychosis risk in the 22q11.2 deletion syndrome. Findings from a prospective longitudinal study. Schizophrenia Research 188, 5962.CrossRefGoogle ScholarPubMed
Fitzsimmons, J, Kubicki, M and Shenton, ME (2013) Review of functional and anatomical brain connectivity findings in schizophrenia. Current Opinion in Psychiatry 26, 172187.CrossRefGoogle ScholarPubMed
Francis, AN, Bhojraj, TS, Prasad, KM, Montrose, D, Eack, SM, Rajarethinam, R, van Elst, LT and Keshavan, MS (2013) Alterations in the cerebral white matter of genetic high risk offspring of patients with schizophrenia spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 40, 187192.CrossRefGoogle ScholarPubMed
Gilmore, JH, Kang, C, Evans, DD, Wolfe, HM, Smith, JK, Lieberman, JA, Lin, W, Hamer, RM, Styner, M and Gerig, G (2010) Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. American Journal of Psychiatry 167, 10831091.Google Scholar
Hoptman, MJ, Nierenberg, J, Bertisch, HC, Catalano, D, Ardekani, BA, Branch, CA and DeLisi, LE (2008) A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophrenia Research 106, 115124.Google Scholar
Insel, TR (2010) Rethinking schizophrenia. Nature 468, 187193.Google Scholar
Jalbrzikowski, M, Villalon-Reina, JE, Karlsgodt, KH, Senturk, D, Chow, C, Thompson, PM and Bearden, CE (2014) Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome. Frontiers in Behavioral Neuroscience 8, 393.Google Scholar
Kahn, RS and Keefe, RSE (2013) Schizophrenia is a cognitive illness. JAMA Psychiatry 70, 1107.Google Scholar
Karayiorgou, M, Simon, TJ and Gogos, JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nature Reviews Neuroscience 11, 402416.Google Scholar
Karlsgodt, KH, Niendam, TA, Bearden, CE and Cannon, TD (2009) White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biological Psychiatry 66, 562569.Google Scholar
Kates, WR, Olszewski, AK, Gnirke, MH, Kikinis, Z, Nelson, J, Antshel, KM, Fremont, W, Radoeva, PD, Middleton, FA, Shenton, ME and Coman, IL (2015) White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophrenia Research 161, 7684.Google Scholar
Kaufman, J, Birmaher, B, Brent, D, Rao, U, Flynn, C, Moreci, P, Williamson, D and Ryan, ND (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry 36, 980988.Google Scholar
Kikinis, Z, Asami, T, Bouix, S, Finn, CT, Ballinger, T, Tworog-Dube, E, Kucherlapati, R, Kikinis, R, Shenton, ME and Kubicki, M (2012) Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: a pilot study. Schizophrenia Research 141, 3539.CrossRefGoogle ScholarPubMed
Kirkpatrick, B, Messias, E, Harvey, PD, Fernandez-Egea, E and Bowie, CR (2008) Is schizophrenia a syndrome of accelerated aging? Schizophrenia Bulletin 34, 10241032.Google Scholar
Kochunov, P, Glahn, DC, Rowland, LM, Olvera, RL, Winkler, A, Yang, YH, Sampath, H, Carpenter, WT, Duggirala, R, Curran, J, Blangero, J and Hong, LE (2013) Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biological Psychiatry 73, 482491.CrossRefGoogle ScholarPubMed
Krogsrud, SK, Fjell, AM, Tamnes, CK, Grydeland, H, Mork, L, Due-Tønnessen, P, Bjørnerud, A, Sampaio-Baptista, C, Andersson, J, Johansen-Berg, H and Walhovd, KB (2016) Changes in white matter microstructure in the developing brain – a longitudinal diffusion tensor imaging study of children from 4 to 11years of age. NeuroImage 124, 473486.CrossRefGoogle Scholar
Lebel, C, Gee, M, Camicioli, R, Wieler, M, Martin, W and Beaulieu, C (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60, 340352.Google Scholar
Ling, J, Merideth, F, Caprihan, A, Pena, A, Teshiba, T and Mayer, AR (2012) Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Human Brain Mapping 33, 5062.CrossRefGoogle ScholarPubMed
Mandl, RCW, Pasternak, O, Cahn, W, Kubicki, M, Kahn, RS, Shenton, ME and Hulshoff Pol, HE (2015) Comparing free water imaging and magnetization transfer measurements in schizophrenia. Schizophrenia Research 161, 126132.CrossRefGoogle ScholarPubMed
Marshall, CR, Howrigan, DP, Merico, D, Thiruvahindrapuram, B, Wu, W, Greer, DS, Antaki, D, Shetty, A, Holmans, PA, Pinto, D, Gujral, M, Brandler, WM, Malhotra, D, Wang, Z, Fajarado, KVF, Maile, MS, Ripke, S, Agartz, I, Albus, M, Alexander, M, Amin, F, Atkins, J, Bacanu, SA, Belliveau, RA, Bergen, SE, Bertalan, M, Bevilacqua, E, Bigdeli, TB, Black, DW, Bruggeman, R, Buccola, NG, Buckner, RL, Bulik-Sullivan, B, Byerley, W, Cahn, W, Cai, G, Cairns, MJ, Campion, D, Cantor, RM, Carr, VJ, Carrera, N, Catts SV Chambert, KD, Cheng, W, Cloninger, CR, Cohen, D, Cormican, P, Craddock, N, Crespo-Facorro, B, Crowley, JJ, Curtis, D, Davidson, M, Davis, KL, Degenhardt, F, Del Favero, J, DeLisi, LE, Dikeos, D, Dinan, T, Djurovic, S, Donohoe, G, Drapeau, E, Duan, J, Dudbridge, F, Eichhammer, P, Eriksson, J, Escott-Price, V, Essioux, L, Fanous, AH, Farh, K.-H, Farrell, MS, Frank, J, Franke, L, Freedman, R, Freimer, NB, Friedman, JI, Forstner, AJ, Fromer, M, Genovese, G, Georgieva, L, Gershon, ES, Giegling, I, Giusti-Rodríguez, P, Godard, S, Goldstein, JI, Gratten, J, de Haan, L, Hamshere, ML, Hansen, M, Hansen, T, Haroutunian, V, Hartmann, AM, Henskens, FA, Herms, S, Hirschhorn, JN, Hoffmann, P, Hofman, A, Huang, H, Ikeda, M, Joa, I, Kähler, AK, Kahn, RS, Kalaydjieva, L, Karjalainen, J, Kavanagh, D, Keller, MC, Kelly, BJ, Kennedy, JL, Kim, Y, Knowles, JA, Konte, B, Laurent, C, Lee, P, Lee, SH, Legge, SE, Lerer, B, Levy, DL, Liang, K.-Y, Lieberman, J, Lönnqvist, J, Loughland, CM, Magnusson, PKE, Maher, BS, Maier, W, Mallet, J, Mattheisen, M, Mattingsdal, M, McCarley, RW, McDonald, C, McIntosh, AM, Meier, S, Meijer, CJ, Melle, I, Mesholam-Gately, RI, Metspalu, A, Michie, PT, Milani, L, Milanova, V, Mokrab, Y, Morris, DW, Müller-Myhsok, B, Murphy, KC, Murray, RM, Myin-Germeys, I, Nenadic, I, Nertney, DA, Nestadt, G, Nicodemus, KK, Nisenbaum, L, Nordin, A, O'Callaghan, E, O'Dushlaine, C, Oh, S.-Y, Olincy, A, Olsen, L, O'Neill, FA, Van Os, J, Pantelis, C, Papadimitriou, GN, Parkhomenko, E, Pato, MT, Paunio, T, Perkins, DO, Pers, TH, Pietiläinen, O, Pimm, J, Pocklington, AJ, Powell, J, Price, A, Pulver, AE, Purcell, SM, Quested, D, Rasmussen, HB, Reichenberg, A, Reimers, MA, Richards, AL, Roffman, JL, Roussos, P, Ruderfer, DM, Salomaa, V, Sanders, AR, Savitz, A, Schall, U, Schulze, TG, Schwab, SG, Scolnick, EM, Scott, RJ, Seidman, LJ, Shi, J, Silverman, JM, Smoller, JW, Söderman, E, Spencer, CCA, Stahl, EA, Strengman, E, Strohmaier, J, Stroup, TS, Suvisaari, J, Svrakic, DM, Szatkiewicz, JP, Thirumalai, S, Tooney, PA, Veijola, J, Visscher, PM, Waddington, J, Walsh, D, Webb, BT, Weiser, M, Wildenauer, DB, Williams, NM, Williams, S, Witt, SH, Wolen, AR, Wormley, BK, Wray, NR, Wu, JQ, Zai, CC, Adolfsson, R, Andreassen, OA, Blackwood, DHR, Bramon, E, Buxbaum, JD, Cichon, S, Collier, DA, Corvin, A, Daly, MJ, Darvasi, A, Domenici, E, Esko, T, Gejman PV Gill, M, Gurling, H, Hultman, CM, Iwata, N, Jablensky AV Jönsson, EG, Kendler, KS, Kirov, G, Knight, J, Levinson, DF, Li, QS, McCarroll, SA, McQuillin, A, Moran, JL, Mowry, BJ, Nöthen, MM, Ophoff, RA, Owen, MJ, Palotie, A, Pato, CN, Petryshen, TL, Posthuma, D, Rietschel, M, Riley, BP, Rujescu, D, Sklar, P, St Clair, D, Walters, JTR, Werge, T, Sullivan, PF, O'Donovan, MC, Scherer, SW, Neale, BM and Sebat, J et al. (2016) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics 49, 2735.CrossRefGoogle Scholar
McDonald-McGinn, DM, Sullivan, KE, Marino, B, Philip, N, Swillen, A, Vorstman, JAS, Zackai, EH, Emanuel, BS, Vermeesch, JR, Morrow, BE, Scambler, PJ and Bassett, AS (2015) 22q11.2 deletion syndrome. Nature Reviews Disease Primers 19, 15071.CrossRefGoogle Scholar
Mori, S, Oishi, K, Jiang, H, Jiang, L, Li, X, Akhter, K, Hua, K, Faria, A V, Mahmood, A, Woods, R, Toga, AW, Pike, GB, Neto, PR, Evans, A, Zhang, J, Huang, H, Miller, MI, van Zijl, P and Mazziotta, J (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40, 570582.CrossRefGoogle Scholar
Mori, T, Ohnishi, T, Hashimoto, R, Nemoto, K, Moriguchi, Y, Noguchi, H, Nakabayashi, T, Hori, H, Harada, S, Saitoh, O, Matsuda, H and Kunugi, H (2007) Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Research – Neuroimaging 154, 133145.Google Scholar
Nazeri, A, Chakravarty, MM, Felsky, D, Lobaugh, NJ, Rajji, TK, Mulsant, BH and Voineskos, AN (2013) Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 38, 19541962.Google Scholar
O'Carroll, R (2000) Cognitive impairment in schizophrenia. Advances in Psychiatric Treatment 6, 161168.Google Scholar
O'Hanlon, E, Leemans, A, Kelleher, I, Clarke, MC, Roddy, S, Coughlan, H, Harley, M, Amico, F, Hoscheit, MJ, Tiedt, L, Tabish, J, McGettigan, A, Frodl, T and Cannon, M (2015) White matter differences among adolescents reporting psychotic experiences. JAMA Psychiatry 72, 668.CrossRefGoogle ScholarPubMed
Olszewski, AK, Kikinis, Z, Gonzalez, CS, Coman, IL, Makris, N, Gong, X, Rathi, Y, Zhu, A, Antshel, KM, Fremont, W, Kubicki, MR, Bouix, S, Shenton, ME and Kates, WR (2017) The social brain network in 22q11.2 deletion syndrome: a diffusion tensor imaging study. Behavioral and Brain Functions 13, 4.CrossRefGoogle ScholarPubMed
Padula, MC, Scariati, E, Schaer, M, Sandini, C, Ottet, MC, Schneider, M, Van De Ville, D and Eliez, S (2017) Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome. NeuroImage: Clinical 16, 142150.Google Scholar
Perlstein, MD, Chohan, MR, Coman, IL, Antshel, KM, Fremont, WP, Gnirke, MH, Kikinis, Z, Middleton, FA, Radoeva, PD, Shenton, ME and Kates, WR (2014) White matter abnormalities in 22q11.2 deletion syndrome: preliminary associations with the nogo-66 receptor gene and symptoms of psychosis. Schizophrenia Research 152, 117123.Google Scholar
Peters, BD, de Haan, L, Dekker, N, Blaas, J, Becker, HE, Dingemans, PM, Akkerman, EM, Majoie, CB, van Amelsvoort, T, den Heeten, GJ and Linszen, DH (2008) White matter fibertracking in first-episode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology 58, 1928.Google Scholar
Peters, BD, Dingemans, PM, Dekker, N, Blaas, J, Akkerman, E, van Amelsvoort, TA, Majoie, CB, den Heeten, GJ, Linszen, DH and de Haan, L (2010) White matter connectivity and psychosis in ultra-high-risk subjects: a diffusion tensor fiber tracking study. Psychiatry Research: Neuroimaging 181, 4450.Google Scholar
Peters, BD, Schmitz, N, Dingemans, PM, van Amelsvoort, TA, Linszen, DH, de Haan, L, Majoie, CB and den Heeten, GJ (2009) Preliminary evidence for reduced frontal white matter integrity in subjects at ultra-high-risk for psychosis. Schizophrenia Research 111, 192193.Google Scholar
Radoeva, PD, Coman, IL, Antshel, KM, Fremont, W, McCarthy, CS, Kotkar, A, Wang, D, Shprintzen, RJ and Kates, WR (2012) Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Behavioral and Brain Functions 8, 38.Google Scholar
Regier, DA, Narrow, WE, Rae, DS, Manderscheid, RW, Locke, BZ and Goodwin, FK (1993) The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Archives of General Psychiatry 50, 8594.Google Scholar
Reichenberg, A, Caspi, A, Harrington, H, Houts, R, Keefe, RSE, Murray, RM, Poulton, R and Moffitt, TE (2010) Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. American Journal of Psychiatry 167, 160169.Google Scholar
Roalf, DR, Eric Schmitt, J, Vandekar, SN, Satterthwaite, TD, Shinohara, RT, Ruparel, K, Elliott, MA, Prabhakaran, K, McDonald-McGinn, DM, Zackai, EH, Gur, RC, Emanuel, BS and Gur, RE (2017) White matter microstructural deficits in 22q11.2 deletion syndrome. Psychiatry Research: Neuroimaging 268, 3544.Google Scholar
Roalf, DR, Gur, RE, Verma, R, Parker, WA, Quarmley, M, Ruparel, K and Gur, RC (2015) White matter microstructure in schizophrenia: associations to neurocognition and clinical symptomatology. Schizophrenia Research 161, 4249.Google Scholar
Samartzis, L, Dima, D, Fusar-Poli, P and Kyriakopoulos, M (2014) White matter alterations in early stages of schizophrenia: a systematic review of diffusion tensor imaging studies. Journal of Neuroimaging 24, 101110.Google Scholar
Satterthwaite, TD, Wolf, DH, Calkins, ME, Vandekar, SN, Erus, G, Ruparel, K, Roalf, DR, Linn, KA, Elliott, MA, Moore, TM, Hakonarson, H, Shinohara, RT, Davatzikos, C, Gur, RC and Gur, RE (2016) Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA Psychiatry 73, 515.CrossRefGoogle ScholarPubMed
Scariati, E, Padula, MC, Schaer, M and Eliez, S (2016) Long-range dysconnectivity in frontal and midline structures is associated to psychosis in 22q11.2 deletion syndrome. Journal of Neural Transmission 123, 823839.Google Scholar
Schmithorst, VJ and Yuan, W (2010) White matter development during adolescence as shown by diffusion MRI. Brain and Cognition 72, 1625.Google Scholar
Schneider, M, Debbané, M, Bassett, AS, Chow, EWC, Fung, WLA, van den Bree, MBM, Owen, M, Murphy, KC, Niarchou, M, Kates, WR, Antshel, KM, Fremont, W, McDonald-McGinn, DM, Gur, RE, Zackai, EH, Vorstman, J, Duijff, SN, Klaassen, PWJ, Swillen, A, Gothelf, D, Green, T, Weizman, A, Van Amelsvoort, T, Evers, L, Boot, E, Shashi, V, Hooper, SR, Bearden, CE, Jalbrzikowski, M, Armando, M, Vicari, S, Murphy, DG, Ousley, O, Campbell, LE, Simon, TJ and Eliez, S (2014) Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. American Journal of Psychiatry 171, 627639.Google Scholar
Simon, TJ, Ding, L, Bish, JP, McDonald-McGinn, DM, Zackai, EH and Gee, J (2005) Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study. NeuroImage 25, 169180.Google Scholar
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TEJ, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I, Flitney, DE, Niazy, RK, Saunders, J, Vickers, J, Zhang, Y, De Stefano, N, Brady, JM and Matthews, PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, 208219.Google Scholar
Sommer, IE, Bearden, CE, van Dellen, E, Breetvelt, EJ, Duijff, SN, Maijer, K, van Amelsvoort, T, de Haan, L, Gur, RE, Arango, C, Díaz-Caneja, CM, Vinkers, CH and Vorstman, JA (2016) Early interventions in risk groups for schizophrenia: what are we waiting for? NPJ Schizophrenia 2, 16003.Google Scholar
Squarcione, C, Torti, MC, Di, F and Biondi, FM (2013) 22Q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis. Neuropsychiatric Disease and Treatment 9, 18731884.Google Scholar
Sundram, F, Campbell, LE, Azuma, R, Daly, E, Bloemen, OJN, Barker, GJ, Chitnis, X, Jones, DK, van Amelsvoort, T, Murphy, KC and Murphy, DGM (2010) White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents. Journal of Neurodevelopmental Disorders 2, 7792.Google Scholar
Tylee, DS, Kikinis, Z, Quinn, TP, Antshel, KM, Fremont, W, Tahir, MA, Zhu, A, Gong, X, Glatt, SJ, Coman, IL, Shenton, ME, Kates, WR and Makris, N (2017) Machine-learning classification of 22q11.2 deletion syndrome: a diffusion tensor imaging study. NeuroImage: Clinical 15, 832842.Google Scholar
Usner, D and Fitzgerald, G (1999) Analytic implications of changing neuropsychological test versions during a longitudinal study because of aging in a pediatric cohort. Controlled Clinical Trials 20, 476478.Google Scholar
van der Werf, M, Hanssen, M, Köhler, S, Verkaaik, M, Verhey, FR, van Winkel, R, van Os, J and Allardyce, J (2014) Systematic review and collaborative recalculation of 133 693 incident cases of schizophrenia. Psychological Medicine 44, 916.Google Scholar
Vorstman, JA, Breetvelt, EJ, Duijff, SN, Eliez, S, Schneider, M, Jalbrzikowski, M, Armando, M, Vicari, S, Shashi, V, Hooper, SR, Chow, EW, Fung, WL, Butcher, NJ, Young, DA, McDonald-McGinn, DM, Vogels, A, van Amelsvoort, T, Gothelf, D, Weinberger, R, Weizman, A, Klaassen, PW, Koops, S, Kates, WR, Antshel, KM, Simon, TJ, Ousley, OY, Swillen, A, Gur, RE, Bearden, CE, Kahn, RS and Bassett, AS (2015) Cognitive decline preceding the onset of psychosis in patients With 22q11.2 deletion syndrome. JAMA Psychiatry 72, 377385.CrossRefGoogle ScholarPubMed
Vorstman, JAS, Jalali, GR, Rappaport, EF, Hacker, AM, Scott, C and Emanuel, BS (2006) MLPA: a rapid, reliable, and sensitive method for detection and analysis of abnormalities of 22q. Human Mutation 27, 814821.Google Scholar
Supplementary material: File

Nuninga et al supplementary material

Nuninga et al supplementary material 1

Download Nuninga et al supplementary material(File)
File 567.2 KB