Published online by Cambridge University Press: 08 January 2008
We consider the quasilinear elliptic variational system
\begin{alignat*} {2} -\Delta_pu\amp=\lambda F_u(x,u,v)+\mu H_u(x,u,v) \quad\amp \amp\text{in }\varOmega, \\ -\Delta_qv\amp=\lambda F_v(x,u,v)+\mu H_v(x,u,v) \amp \amp \text{in }\varOmega, \\ u\amp=v=0 \amp \amp \text{on }\partial\varOmega, \end{alignat*}
where $\varOmega$ is a strip-like domain and $\lambda$ and $\mu$ are positive parameters. Using a recent two-local-minima theorem and the principle of symmetric criticality, existence and multiplicity are proved under suitable conditions on $F$.