Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T04:56:44.954Z Has data issue: false hasContentIssue false

LARGEST 2-GENERATED SUBSEMIGROUPS OF THE SYMMETRIC INVERSE SEMIGROUP

Published online by Cambridge University Press:  08 January 2008

J. M. André
Affiliation:
Centro de Álgebra da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649003 Lisboa, Portugal Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2829516 Caparica, Portugal ([email protected]; [email protected])
V. H. Fernandes
Affiliation:
Centro de Álgebra da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649003 Lisboa, Portugal Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2829516 Caparica, Portugal ([email protected]; [email protected])
J. D. Mitchell
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The symmetric inverse monoid $\mathcal{I}_{n}$ is the set of all partial permutations of an $n$-element set. The largest possible size of a $2$-generated subsemigroup of $\mathcal{I}_{n}$ is determined. Examples of semigroups with these sizes are given. Consequently, if $M(n)$ denotes this maximum, it is shown that $M(n)/|\mathcal{I}_{n}|\rightarrow1$ as $n\rightarrow\infty$. Furthermore, we deduce the known fact that $\mathcal{I}_{n}$ embeds as a local submonoid of an inverse $2$-generated subsemigroup of $\mathcal{I}_{n+1}$.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2007