Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:03:10.209Z Has data issue: false hasContentIssue false

Feeding the team: Analysis of a Spratt’s dog cake from Antarctica

Published online by Cambridge University Press:  03 June 2021

Sara J. Fraser-Miller
Affiliation:
Department of Chemistry, University of Otago, Dunedin, New Zealand
Jeremy S. Rooney
Affiliation:
Department of Chemistry, University of Otago, Dunedin, New Zealand
Keith C. Gordon
Affiliation:
Department of Chemistry, University of Otago, Dunedin, New Zealand
Craig R. Bunt
Affiliation:
Department of Agricultural Sciences, Lincoln University, Lincoln, New Zealand
Jill M. Haley*
Affiliation:
Canterbury Museum, Rolleston Avenue, Christchurch, New Zealand
*
Author for correspondence: Jill M. Haley, Email: [email protected]

Abstract

The use of Spratt’s dog cakes is well documented in the diaries and reminiscences of many early Antarctic expedition members. Commercially produced dog food was promoted by the likes of Spratt’s as an advanced form of animal nutrition and would have been of interest to expedition planners who were already concerned with the nutritional requirements of expedition members. An approximately 100-year-old dog cake recovered from Antarctica was compared by chemical analysis and spectroscopic methods with a series of model dog cakes and a commercial dog biscuit to determine the composition and calorific content. The presence of bone fragments within the dog cake was confirmed, whereas starch in the bulk matrix of the sample was consistent with being a mixture of wheat and oat flour, while only minimal fat or oil was present. Calorific content, while insufficient compared to a modern feed for high-performance dogs, would nonetheless have been a valuable addition to the use of dried or frozen whole meat such as seal, fish, or pemmican and contributed additional energy compared to meat alone.

Type
Research Note
Copyright
© The Author(s) 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, A. (1905). Two years in the Antarctic, being a narrative of the British National Antarctic Expedition. London: Edward Arnold.Google Scholar
Atkins, C., Buckley, K., Blades, M., & Turner, R. (2017). Raman spectroscopy of blood and blood components. Applied Spectroscopy, 71(5), 767793.10.1177/0003702816686593CrossRefGoogle ScholarPubMed
Bernacchi, L. C. (1938). Saga of the “Discovery”. London and Glasgow: Blackie & Son Limited.Google Scholar
Boskey, A., & Camacho, N. P. (2007). FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials, 28(15), 24652478.10.1016/j.biomaterials.2006.11.043CrossRefGoogle ScholarPubMed
Buzzini, P., & Suzuki, E. (2016). Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence. Journal of Raman Spectroscopy, 47(1), 1627.10.1002/jrs.4818CrossRefGoogle Scholar
Chaala, A., & Roy, C. (2003). Recycling of meat and bone meal animal Feed by vacuum pyrolysis. Environmental Science & Technology, 37(19), 45174522.10.1021/es026346mCrossRefGoogle ScholarPubMed
Cherry-Garrard, A. (1951). The worst journey in the world. London: Chatto & Windus.Google Scholar
Chez, K. W. (2017). Victorian dogs, Victorian men: Affect and animals in nineteenth-century literature and culture. Columbus: Ohio State University Press.10.2307/j.ctv10h9fx2CrossRefGoogle Scholar
de Oliveira, V., Castro, H., Edwards, H., & de Oliveira, L. (2010). Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. Journal of Raman Spectroscopy, 41(6), 642650.10.1002/jrs.2493CrossRefGoogle Scholar
Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., … Štajdohar, M. (2013). Orange: data mining toolbox in Python. The Journal of Machine Learning Research, 14(1), 23492353.Google Scholar
Derrick, M. R., Stulik, D., & Landry, J. M. (2000). Infrared spectroscopy in conservation science. Los Angeles: Getty Publications.Google Scholar
Doblado-Maldonado, A., Pike, O., Sweley, J., & Rose, D. (2012). Key issues and challenges in whole wheat flour milling and storage. Journal of Cereal Science, 56(2), 119126.10.1016/j.jcs.2012.02.015CrossRefGoogle Scholar
Edwards, H., & Chalmers, J. (2005). Raman spectroscopy in archaeology and art history (Vol. 9): Croydon: Royal Society of Chemistry.Google Scholar
Fraser-Miller, S. J., Saarinen, J., & Strachan, C. J. (2016). Vibrational spectroscopic imaging. In Analytical Techniques in the Pharmaceutical Sciences (pp. 523589). New York: Springer.10.1007/978-1-4939-4029-5_17CrossRefGoogle Scholar
Gerth, N., Redman, P., Speakman, J., Jackson, S., & Starck, J. (2010). Energy metabolism of Inuit sled dogs. Journal of Comparative Physiology B, 180(4), 577589.10.1007/s00360-009-0432-7CrossRefGoogle ScholarPubMed
Gordon, K. C., & Fraser-Miller, S. J. (2016). Raman Spectroscopy . In Analytical Techniques in the Pharmaceutical Sciences (pp. 139169). New York: Springer.10.1007/978-1-4939-4029-5_4CrossRefGoogle Scholar
Grier, K. C. (2006). Pets in America. Chapel Hill: University of North Carolina Press.Google Scholar
Grier, K. C. (2009). Provisioning man’s best friend: The early years of the American pet food industry, 1870–1942. In Belasco, W. & Horowitz, R. (Eds.), Food chains: From farmyard to shopping cart (pp. 126141). Philadelphia: University of Pennsylvania Press.10.9783/9780812204445.126CrossRefGoogle Scholar
Hare, C. H. (1902). Diary kept during Discovery’s first winter in Antarctica. Wellington: Alexander Turnbull Library, qMS-0916.Google Scholar
Hervera, M., Castrillo, C., Albanell, E., & Baucells, M. (2012). Use of near-infrared spectroscopy to predict energy content of commercial dog food. Journal of Animal Science, 90(12), 44014407.10.2527/jas.2012-5106CrossRefGoogle ScholarPubMed
Hinchcliff, K., Reinhart, G., Burr, J., Schreier, C., & Swenson, R. (1997). Metabolizable energy intake and sustained energy expenditure of Alaskan sled dogs during heavy exertion in the cold. American Journal of Veterinary Research, 58(12), 14571462.Google ScholarPubMed
Hurley, F. (1925). Argonauts of the south. London: G. P. Putnam’s Sons.Google Scholar
James, D. (1947). The sledge dogs of the Falkland Islands Dependencies Survey, 1945–46. Polar Record, 5(33–34), 4044.10.1017/S0032247400037177CrossRefGoogle Scholar
Kavkler, K., & Demšar, A. (2011). Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(2), 740746.10.1016/j.saa.2010.12.006CrossRefGoogle ScholarPubMed
Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 39123918.10.1021/jf011652pCrossRefGoogle ScholarPubMed
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica, 39(8), 549559.10.1111/j.1745-7270.2007.00320.xCrossRefGoogle ScholarPubMed
Lewis, H., Masterton, J., & Ward, P. (1957). The food value of biltong (South African dried meat) and its use on expeditions. British Journal of Nutrition, 11(1), 512.10.1079/BJN19570004CrossRefGoogle ScholarPubMed
Lohumi, S., Lee, S., Lee, H., & Cho, B. K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology, 46(1), 8598.10.1016/j.tifs.2015.08.003CrossRefGoogle Scholar
Lowe, B. J., Smith, C. A., Fraser-Miller, S. J., Paterson, R. A., Daroux, F., Ngarimu-Cameron, R., Ford, B., & Gordon, K. C. (2017). Light-ageing characteristics of Māori textiles: Colour, strength and molecular change. Journal of Cultural Heritage, 24, 6068.10.1016/j.culher.2016.11.012CrossRefGoogle Scholar
Mayhew, E. (1854). Dogs: Their management. London: George Routledge & Co.Google Scholar
Morris, M., & Mandair, G. (2011). Raman assessment of bone quality. Clinical Orthopaedics and Related Research, 469(8), 21602169.10.1007/s11999-010-1692-yCrossRefGoogle ScholarPubMed
O’Donnell, C. P., Fagan, C., & Cullen, P. J. (2014). Process analytical technology for the food industry. New York: Springer.10.1007/978-1-4939-0311-5CrossRefGoogle Scholar
Orr, N. W. M. (1965). Food requirements of dogs on Antarctic expeditions. British Antarctic Survey Bulletin, 7, 5367.Google Scholar
Orr, N. W. M. (1966). The feeding of sledge dogs on Antarctic expeditions. British Journal of Nutrition, 20(1), 112.10.1079/BJN19660003CrossRefGoogle ScholarPubMed
Ozaki, Y., Mizuno, A., Sato, H., Kawauchi, K., & Muraishi, S. (1992). Biomedical application of near-infrared Fourier transform Raman spectroscopy. Part I: the 1064-nm excited Raman spectra of blood and met hemoglobin. Applied Spectroscopy, 46(3), 533536.10.1366/0003702924125131CrossRefGoogle Scholar
Ozaki, Y., & Šašic, S. (2008). Introduction to Raman spectroscopy . In Pharmaceutical Applications of Raman Spectroscopy (pp. 128). Hoboken: John Wiley & Sons.Google Scholar
Penel, G., Leroy, G., Rey, C., & Bres, E. (1998). MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcified Tissue International, 63(6), 475481.10.1007/s002239900561CrossRefGoogle ScholarPubMed
Rauner Special Collections Library. (2016). “Spratt’s Patent Cod Liver Oil Dog Cakes.” Retrieved from the Rauner Special Collections Library website: https://raunerlibrary.blogspot.com/2016/02/spratts-patent-cod-liver-oil-dog-cakes.html Google Scholar
Reece, A. (1954). Sledge dogs of the Norwegian-British-Swedish Antarctic Expedition, 1949–52. Polar Record, 7(47), 3237.10.1017/S0032247400042777CrossRefGoogle Scholar
Riffenburgh, B. (2014). The dogs of the Australasian Antarctic Expedition 1911–1914. Polar Record, 50(253), 128137.CrossRefGoogle Scholar
Samanali, G. A. P., Paasi, I., Lowe, B. J., Smith, C. A., Fraser-Miller, S. J., & Gordon, K. C. (2020). Understanding consolidants on harakeke fibres using Raman microscopy: Implications for conservation. Journal of Cultural Heritage, 45, 4147.CrossRefGoogle Scholar
Scott, R. F. (1907). The voyage of the ‘Discovery’, Vol. II. London: Smith, Elder & Co.Google Scholar
Scott, R. F. (1936). Scott’s last expedition. London: John Murray.Google Scholar
Smith, G. D., & Clark, R. J. H. (2001). Raman microscopy in art history and conservation science. Studies in Conservation, 46(sup1), 92106.10.1179/sic.2001.46.Supplement-1.92CrossRefGoogle Scholar
Spratt’s. (c. 1880). List of articles manufactured by “Spratts Patent”. London: British Library Evan.6683. Retrieved from the British Library website: https://www.bl.uk/catalogues/evanion/FullImage.aspx?EvanID=024-000005110&ImageId=52521 Google Scholar
Stonehenge. (1872). Dogs of the British islands, being a series of articles and letters by various contributors, reprinted from the “Field” newspaper. London: Horace Cox. Available online at: https://babel.hathitrust.org/cgi/pt?id=hvd.hn4uch&view=1up&seq=7 Google Scholar
Taylor, R , . (1957). The physiology of sledge dogs. Polar Record, 8(55), 317321.10.1017/S003224740004924XCrossRefGoogle Scholar
The New Zealand Times (Wellington), 15 September 1910.Google Scholar
The Press (Christchurch), 29 October 1910.Google Scholar
The Sporting Magazine (1828, May). Volume 22. London: M. A. Pittman.Google Scholar
Thomas, D., Fordyce, R., Frew, R., & Gordon, K. (2007). A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy. Journal of Raman Spectroscopy, 38(12), 15331537.10.1002/jrs.1851CrossRefGoogle Scholar
Trafela, T., Strlič, M., Kolar, J., Lichtblau, D. A., Anders, M., Mencigar, D. P., & Pihlar, B. (2007). Nondestructive analysis and dating of historical paper based on IR spectroscopy and chemometric data evaluation. Analytical Chemistry, 79(16), 63196323.10.1021/ac070392tCrossRefGoogle ScholarPubMed
United States Patent Office. (1876). No. 180,953, 8 August 1876.Google Scholar
USDA National Nutrient Database for Standard Reference, Release 28 (Slightly revised). Version Current: May 2016. (2016). Retrieved from http://www.ars.usda.gov/nea/bhnrc/mafcl Google Scholar
Uysal, R., Boyaci, I., Genis, H., & Tamer, U. (2013). Determination of butter adulteration with margarine using Raman spectroscopy. Food Chemistry, 141(4), 43974403.10.1016/j.foodchem.2013.06.061CrossRefGoogle ScholarPubMed
Weiss, W., & Tebbe, A. (2018). Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Translational Animal Science, 3(3), 953961.CrossRefGoogle ScholarPubMed
Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., … & Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317335.10.1016/j.saa.2017.05.045CrossRefGoogle ScholarPubMed
Wilson, E. (1966). Diary of the ‘Discovery’ expedition to the Antarctic regions 1901–1904. Ed. Savours, A.. London: Blandford Press.Google Scholar
Worboys, M., Strange, J., & Pemberton, N. (2018). The Invention of the Modern Dog: Breed and Blood in Victorian Britain. Baltimore: Johns Hopkins University Press.Google Scholar
Zhang, Y., Arnold, R., Paavola, T., Vaz, F., Neiva Correia, C., Cavinato, C., … & Heaven, S. (2013). Compositional analysis of food waste entering the source segregation stream in four European regions and implications for valorisation via anaerobic digestion. In: Fourteenth international waste management and landfill symposium. CISA Publisher, Cagliari.Google Scholar
Supplementary material: PDF

Fraser-Miller et al. supplementary material

Fraser-Miller et al. supplementary material

Download Fraser-Miller et al. supplementary material(PDF)
PDF 977.6 KB