Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:24:58.276Z Has data issue: false hasContentIssue false

Population genetics of concurrent selection with albendazole and ivermectin or diethylcarbamazine on the possible spread of albendazole resistance in Wuchereria bancrofti

Published online by Cambridge University Press:  12 July 2006

A. E. SCHWAB
Affiliation:
Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9
T. S. CHURCHER
Affiliation:
Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK
A. J. SCHWAB
Affiliation:
Research Institute of the McGill University, Health Centre General Hospital, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4
M.-G. BASÁÑEZ
Affiliation:
Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK
R. K. PRICHARD
Affiliation:
Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9

Abstract

The Global Program for the Elimination of Lymphatic Filariasis (GPELF) intends to achieve its aims through yearly mass treatments with albendazole (ABZ) combined with ivermectin (IVM) or diethylcarbamazine (DEC). The use of ABZ and IVM separately to combat parasites of veterinary importance has, on many occasions, resulted in widespread drug resistance. In order to help predict the spread of potential ABZ resistance alleles through a population of Wuchereria bancrofti, we have developed a mathematical model that incorporates population genetics into EPIFIL, a model which examines the transmission dynamics of the parasite. Our model considers the effect of the combined treatments on the frequency of a recessive allele, which confers ABZ resistance. The model predicts that after 10 yearly treatments with ALB and DEC, 85% coverage and an initial resistance allele frequency of 5%, the frequency of the resistance genotype will increase from 0·25 to 12·7%. If non-random mating is assumed, the initial genotype frequency will be 2·34% and will increase to 62·7%. ABZ and IVM combination treatment may lead to weaker selection for this genotype. Treatment coverage, initial allele frequencies and number of treatments also affect the rate of selection.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addiss, D. G., Beach, M. J., Streit, T. G., Lutwick, S., LeConte, F. H., Lafontant, J. G., Hightower, A. W. and Lammie, P. J. ( 1997). Randomised placebo-controlled comparison of ivermectin and albendazole alone and in combination for Wuchereria bancrofti microfilaraemia in Haitian children. Lancet 350, 480484.CrossRefGoogle Scholar
Alley, W. S., van Oortmarssen, G. J., Boatin, B. A., Nagelkerke, N. J., Plaisier, A. P., Remme, J. H., Lazdins, J., Borsboom, G. J. and Habbema, J. D. ( 2001). Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination. BMC Public Health 1, 12.CrossRefGoogle Scholar
Anderson, R. M. and May, R. M. ( 1982). Population dynamics of human helminth infections: control by chemotherapy. Nature, London 297, 557563.CrossRefGoogle Scholar
Anderson, R. M. and May, R. M. ( 1985). Helminth infections of humans: mathematical models, population dynamics, and control. Advances in Parasitology 24, 1101.CrossRefGoogle Scholar
Anderson, R. M., May, R. M. and Gupta, S. ( 1989). Non-linear phenomena in host-parasite interactions. Parasitology 99 (Suppl.) S59S79.CrossRefGoogle Scholar
Barnes, E. H. and Dobson, R. J. ( 1990). Population dynamics of Trichostrongylus colubriformis in sheep: computer model to simulate grazing systems and the evolution of anthelmintic resistance. International Journal for Parasitology 20, 823831.CrossRefGoogle Scholar
Basáñez, M.-G. and Ricárdez-Esquinca, J. ( 2001). Models for the population biology and control of human onchocerciasis. Trends in Parasitology 17, 430438.CrossRefGoogle Scholar
Basáñez, M.-G., Collins, R. C., Porter, C. H., Little, M. P. and Brandling-Bennett D. ( 2002). Transmission intensity and the patterns of Onchocerca volvulus infection in human communities. American Journal of Tropical Medicine and Hygiene 67, 669679.CrossRefGoogle Scholar
Beech, R. N., Prichard, R. K. and Scott, M. E. ( 1994). Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics 138, 103110.Google Scholar
Carme, B. and Laigret, J. ( 1979). Longevity of Wuchereria bancrofti var. pacifica and mosquito infection acquired from a patient with low level parasitemia. American Journal of Tropical Medicine and Hygiene 28, 5355.Google Scholar
Chan, M. S., Norman, R. A., Michael, E., Bundy, D. A., Das, P. K., Pani, S. P. and Ramaiah, K. D. ( 1999). http://www.schoolsandhealth.org/epidynamics.htm.
Chan, M. S., Srividya, A., Norman, R. A., Pani, S. P., Ramaiah, K. D., Vanamail, P., Michael, E., Das, P. K. and Bundy, D. A. ( 1998). EPIFIL: a dynamic model of infection and disease in lymphatic filariasis. American Journal of Tropical Medicine and Hygiene 59, 606614.CrossRefGoogle Scholar
Coles, G. C. ( 2002). Sustainable use of anthelmintics in grazing animals. Veterinary Record 151, 165169.CrossRefGoogle Scholar
Cornell, S. ( 2005). Modelling nematode populations: 20 years of progress. Trends in Parasitology 21, 542545.CrossRefGoogle Scholar
Cornell, S. J., Isham, V. S. and Grenfell, B. T. ( 2000). Drug-resistant parasites and aggregated infection – early-season dynamics. Journal of Mathematical Biology 41, 341360.CrossRefGoogle Scholar
Cornell, S. J., Isham, V. S., Smith, G. and Grenfell, B. T. ( 2003). Spatial parasite transmission, drug resistance, and the spread of rare genes. Proceedings of the National Academy of Sciences, USA 100, 74017405.CrossRefGoogle Scholar
Das, P. K. and Subramanian, S. ( 2002). Modelling the epidemiology, transmission and control of lymphatic filariasis. Annals of Tropical Medicine and Parasitology 96 (Suppl. 2), S153S164.CrossRefGoogle Scholar
Dean, M. ( 2002). Towards the elimination of lymphatic filariasis. Lancet 359, 1677.CrossRefGoogle Scholar
Dunyo, S. K., Nkrumah, F. K. and Simonsen, P. E. ( 2000). A randomized double-blind placebo-controlled field trial of ivermectin and albendazole alone and in combination for the treatment of lymphatic filariasis in Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 205211.CrossRefGoogle Scholar
Durrheim, D. N., Wynd, S., Liese, B. and Gyapong, J. O. ( 2004). Editorial: lymphatic filariasis endemicity – an indicator of poverty? Tropical Medicine and International Health 9, 843845.Google Scholar
Eberhard, M. L., Lammie, P. J., Dickinson, C. M. and Roberts, J. M. ( 1991). Evidence of nonsusceptibility to diethylcarbamazine in Wuchereria bancrofti. Journal of Infectious Diseases 163, 11571160.CrossRefGoogle Scholar
Eberhard, M. L., Lowrie, R. C., Jr. and Lammie, P. J. ( 1988). Persistence of microfilaremia in bancroftian filariasis after diethylcarbamazine citrate therapy. Tropical Medicine and Parasitology 39, 128130.Google Scholar
Grenfell, B. T., Das, P. K., Rajagopalan, P. K. and Bundy, D. A. ( 1990). Frequency distribution of lymphatic filariasis microfilariae in human populations: population processes and statistical estimation. Parasitology 101, 417427.CrossRefGoogle Scholar
Grenfell, B. T. and Michael, E. ( 1992). Infection and disease in lymphatic filariasis: an epidemiological approach. Parasitology 104 (Suppl.), S81S90.CrossRefGoogle Scholar
Habbema, J. D., Alley, E. S., Plaisier, A. P., van Oortmarssen, G. J. and Remme, J. H. ( 1992). Epidemiological modelling for onchocerciasis control. Parasitology Today 8, 99103.CrossRefGoogle Scholar
Hayashi, S. ( 1962). A mathematical analysis on the epidemiology of Bancroftian and Malayan filariasis in Japan. Japanese Journal of Experimantal Medicine 32, 1343.Google Scholar
Ismail, M. M., Jayakody, R. L., Weil, G. J., Nirmalan, N., Jayasinghe, K. S., Abeyewickrema, W., Rezvi Sheriff, M. H., Rajaratnam, H. N., Amarasekera, N., de Silva, D. C., Michalski, M. L. and Dissanaike, A. S. ( 1998). Efficacy of single dose combinations of albendazole, ivermectin and diethylcarbamazine for the treatment of bancroftian filariasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 9497.CrossRefGoogle Scholar
Maher, D. and Ottesen, E. A. ( 2000). The Global Lymphatic Filariasis Initiative. Tropical Doctor 30, 178179.CrossRefGoogle Scholar
Michael, E. and Bundy, D. A. ( 1997). Global mapping of lymphatic filariasis. Parasitology Today 13, 472476.CrossRefGoogle Scholar
Michael, E. and Bundy, D. A. ( 1998). Herd immunity to filarial infection is a function of vector biting rate. Proceedings of the Royal Society, B 265, 855860.CrossRefGoogle Scholar
Michael, E., Grenfell, B. T., Isham, V. S., Denham, D. A. and Bundy, D. A. ( 1998). Modelling variability in lymphatic filariasis: macrofilarial dynamics in the Brugia pahangi – cat model. Proceedings of the Royal Society, B 265, 155165.CrossRefGoogle Scholar
Michael, E., Malecela-Lazaro, M. N., Simonsen, P. E., Pedersen, E. M., Barker, G., Kumar, A. and Kazura, J. W. ( 2004). Mathematical modelling and the control of lymphatic filariasis. Lancet Infectious Diseases 4, 223234.CrossRefGoogle Scholar
Michael, E., Simonsen, P. E., Malecela, M., Jaoko, W. G., Pedersen, E. M., Mukoko, D., Rwegoshora, R. T. and Meyrowitsch, D. W. ( 2001). Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasite Immunology 23, 373388.CrossRefGoogle Scholar
Norman, R. A., Chan, M. S., Srividya, A., Pani, S. P., Ramaiah, K. D., Vanamail, P., Michael, E., Das, P. K. and Bundy, D. A. ( 2000). EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiology and Infection 124, 529541.CrossRefGoogle Scholar
Ottesen, E. A. ( 2000). The global programme to eliminate lymphatic filariasis. Tropical Medicine and International Health 5, 591594.CrossRefGoogle Scholar
Ottesen, E. A. ( 2002). Major progress toward eliminating lymphatic filariasis. New England Journal of Medicine 347, 18851886.CrossRefGoogle Scholar
Plaisier, A. P., Subramanian, S., Das, P. K., Souza, W., Lapa, T., Furtado, A. F., Van der Ploeg, C. P., Habbema, J. D. and van Oortmarssen, G. J. ( 1998). The LYMFASIM simulation program for modeling lymphatic filariasis and its control. Methods of Information in Medicine 37, 97108.Google Scholar
Prichard, R. K. ( 1990). Anthelmintic resistance in nematodes: extent, recent understanding and future directions for control and research. International Journal for Parasitology 20, 515523.CrossRefGoogle Scholar
Prichard, R. K., Hall, C. A., Kelly, J. D., Martin, I. C. and Donald, A. D. ( 1980). The problem of anthelmintic resistance in nematodes. Australian Veterinary Journal 56, 239251.CrossRefGoogle Scholar
Ramaiah, K. D., Guyatt, H., Ramu, K., Vanamail, P., Pani, S. P. and Das, P. K. ( 1999). Treatment costs and loss of work time to individuals with chronic lymphatic filariasis in rural communities in south India. Tropical Medicine and International Health 4, 1925.CrossRefGoogle Scholar
Schwab, A. E., Boakye, D., Kyelem, D. and Prichard, R. K. ( 2005). Detection of benzimidazole-resistance associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection with albendazole and ivermectin treatment. American Journal of Tropical Medicine and Hygiene 73, 234238.Google Scholar
Smith, G. ( 1990). A mathematical model for the evolutions of anthelmintic resistance in a direct life cycle nematode parasite. International Journal for Parasitology 20, 913921.CrossRefGoogle Scholar
Smith, G., Grenfell, B. T., Isham, V. and Cornell, S. ( 1999). Anthelmintic resistance revisited: under-dosing, chemoprophylactic strategies, and mating probabilities. International Journal for Parasitology 29, 7791; discussion 93–74.CrossRefGoogle Scholar
Stolk, W. A., Swaminathan, S., van Oortmarssen, G. J., Das, P. K. and Habbema, J. D. ( 2003). Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. Journal of Infectious Diseases 188, 13711381.CrossRefGoogle Scholar
Stolk, W. A., Ramaiah, K. D., Van Oortmarssen, G. J., Das, P. K., Habbema, J. D. and De Vlas, S. J. ( 2004). Meta-analysis of age-prevalence patterns in lymphatic filariasis: no decline in microfilaraemia prevalence in older age groups as predicted by models with acquired immunity. Parasitology 129, 605612.CrossRefGoogle Scholar
Subramanian, S., Stolk, W. A., Ramaiah, K. D., Plaisier, A. P., Krishnamoorthy, K., Van Oortmarssen, G. J., Dominic Amalraj, D., Habbema, J. D. and Das, P. K. ( 2004). The dynamics of Wuchereria bancrofti infection: a model-based analysis of longitudinal data from Pondicherry, India. Parasitology 128, 467482.CrossRefGoogle Scholar
Subramanian, S., Vanamail, P., Ramaiah, K. D., Pani, S. P., Das, P. K. and Rajagopalan, P. K. ( 1989). A simple deterministic model for host-parasite relationship in Wuchereria bancrofti infection and its relevance to parasite regulation in human host. Indian Journal of Medical Research 89, 411417.Google Scholar
Tisch, D. J., Michael, E., and Kazura, J. W. ( 2005). Mass chemotherapy options to control lymphatic filariasis: a systematic review. Lancet Infectious Diseases 5, 514523.CrossRefGoogle Scholar
van Wyk, J. A. ( 2001). Refugia – overlooked as perhaps the most potent factor concerning the development of anthelmintic resistance. Onderstepoort Journal of Veterinary Research 68, 5567.Google Scholar
Vanamail, P, Subramanian, S., Das, P. K., Pani, S. P., Rajagopalan, P. K., Bundy, D. A. P. and Grenfell, B. T. ( 1989). Estimation of age-specific rates of acquisition and loss of Wuchereria bancrofti infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 689693.CrossRefGoogle Scholar
Vanamail, P., Ramaiah, K. D., Pani, S. P., Das, P. K., Grenfell, B. T. and Bundy, D. A. ( 1996). Estimation of the fecund life span of Wuchereria bancrofti in an endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 119121.CrossRefGoogle Scholar
Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. and Sangster, N. ( 2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle Scholar
Zagaria, N. and Savioli, L. ( 2002). Elimination of lymphatic filariasis: a public-health challenge. Annals of Tropical Medicine and Parasitology 96 (Suppl. 2), S3S13.CrossRefGoogle Scholar