Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:45:24.486Z Has data issue: false hasContentIssue false

The invariant surface glycoprotein ISG75 gene family consists of two main groups in the Trypanozoon subgenus

Published online by Cambridge University Press:  04 September 2006

T. TRAN
Affiliation:
Institute of Tropical Medicine, Department of Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium Vrije Universiteit Brussel, Department of Biotechnology, Pleinlaan 2, B-1050 Brussels, Belgium
F. CLAES
Affiliation:
Institute of Tropical Medicine, Department of Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium
J. C. DUJARDIN
Affiliation:
Institute of Tropical Medicine, Department of Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium
P. BUSCHER
Affiliation:
Institute of Tropical Medicine, Department of Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium

Abstract

In Trypanosoma brucei brucei, an invariant surface glycoprotein of molecular weight 75 kDa (ISG75) is uniformly distributed over the surface of a trypanosome and is specific for bloodstream-form parasites. For the other taxa of the Trypanozoon subgenus no data about this surface molecule are available. Therefore, we investigated the ISG75 in the genomes of several pathogenic Trypanozoon by Southern blot, PCR and RT-PCR and sequence analysisNucleotide sequence data reported in this paper are available in the GeneBank™, EMBL and DDBJ databases under the Accession numbers DQ200175-DQ200256.. This study reveals that (i) all members of the Trypanozoon subgenus, i.e. T. b. brucei, T. b. gambiense, T. b. rhodesiense, T. evansi and T. equiperdum, harbour ISG75 as multiple gene copies with at least 4–16 copies per genome; (ii) ISG75 gDNA and cDNA sequences are distributed in 2 groups that share at least 75% and 77% identity respectively; (iii) sequences from both groups are transcribed in all species and subspecies of the Trypanozoon subgenus; (iv) the main differences between group I and group II are located in the variable region at the amino-terminus of the putative proteins; (v) however, all the sequences in both groups have some well-conserved features, such as the cysteine residues, an amino-terminal cleavable signal peptide, a single α-helix transmembrane domain and a cytoplasmic domain at the carboxy-terminus.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agabian, N. ( 1990). Transplicing of nuclear pre-mRNAs. Cell 61, 11571160.CrossRefGoogle Scholar
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., MacLeod, A., Mooney, P. J., Moule, S., Martin, D. M. A., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quail, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Tallon, L., Turner, C. M., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barrell, B. G., Donelson, J. E., Hall, N., Fraser, C. M., Melville, S. E. and El Sayed, N. M. ( 2005). The genome of the African Trypanosome Trypanosoma brucei. Science 309, 416422.CrossRefGoogle Scholar
Borst, P. ( 1986). Discontinuous transcription and antigenic variation in trypanosomes. Annual Review of Biochemistry 55, 701732.CrossRefGoogle Scholar
Bringaud, F. and Baltz, T. ( 1993). Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Molecular and Cellular Biology 13, 11461154.CrossRefGoogle Scholar
Bringaud, F. and Baltz, T. ( 1994). African trypanosome glucose transporter genes: organization and evolution of a multigene family. Molecular Biology and Evolution 11, 220230.Google Scholar
Claes, F., Agbo, E. E. C., Radwanska, M., Baltz, T., De Waal, D. T., Goddeeris, B. M. and Büscher, P. ( 2003). How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by Random Amplified Polymorphic DNA (RAPD) and Multiplex Endonuclease Genotyping Approach (MEGA). Parasitology 126, 425431.CrossRefGoogle Scholar
Freymann, D. M., Metcalf, P., Turner, M. and Wiley, D. C. ( 1984). 6 A-resolution X-ray structure of a variable surface glycoprotein from Trypanosoma brucei. Nature, London 311, 167169.CrossRefGoogle Scholar
Holland, W., Claes, F., My, L. N., Thanh, T., Tam, P. T., Verloo, D., Büscher, P., Goddeeris, B. M. and Vercruysse, J. ( 2001). A comparative evaluation of parasitological tests and a PCR for Trypanosoma evansi diagnosis in experimentally infected water buffaloes. Veterinary Parasitology 97, 2333.CrossRefGoogle Scholar
Isobe, T., Holmes, E. C. and Rudenko, G. ( 2003). The transferrin receptor genes of Trypanosoma equiperdum are less diverse in their transferrin binding site than those of the broad-host range. Journal of Molecular Evolution 56, 377386.CrossRefGoogle Scholar
Jackson, D. G., Windle, H. J. and Voorheis, H. P. ( 1993). The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. Journal of Biological Chemistry 268, 80858095.Google Scholar
Lanham, S. M. and Godfrey, D. G. ( 1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521534.CrossRefGoogle Scholar
Nolan, D. P., Jackson, D. G., Windle, H. J., Pays, A., Geuskens, M., Michel, A., Voorheis, H. P. and Pays, E. ( 1997). Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serinerich, repetitive motif. Journal of Biological Chemistry 272, 2921229221.CrossRefGoogle Scholar
Overath, P., Chaudhri, M., Steverding, D. and Ziegelbauer, K. ( 1994). Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitology Today 10, 5358.CrossRefGoogle Scholar
Salmon, D., Geuskens, M., Hanocq, F., Hanocq-Quertier, J., Nolan, D., Ruben, L. and Pays, E. ( 1994). A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell 78, 7586.CrossRefGoogle Scholar
Sambrook, J. and Russell, D. ( 2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. New York.
Seebeck, T., Wittaker, P. A., Imboden, M. A., Hardman, N. and Braun, R. ( 1983). Tubulin genes of Trypanosoma brucei: a tightly cluster family of alternating genes. Proceedings of the National Academy of Sciences, USA 80, 46344638.CrossRefGoogle Scholar
Thomashow, L. S., Milhausen, M., Rutter, W. J. and Agabian, N. ( 1983). Tubulin genes are tandemly linked and clustered in the genomes of Trypanosoma brucei. Cell 32, 3543.CrossRefGoogle Scholar
Tschudi, C., Young, A. S., Ruben, L., Patton, C. L. and Richards, F. F. ( 1985). Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mRNA with common 5′-end leader sequence. Proceedings of the National Academy of Sciences, USA 82, 39984002.CrossRefGoogle Scholar
Victoir, K., Dujardin, J. C., de Doncker, S., Barker, D. C., Arevalo, J., Hamers, R. and Le Ray, D. ( 1995). Plasticity of gp63 gene organization in Leishmania (Viannia) braziliensis and Leishmania (Viannia) peruviana. Parasitology 111, 265273.CrossRefGoogle Scholar
Ziegelbauer, K., Multhaup, G. and Overath, P. ( 1992). Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. Journal of Biological Chemistry 267, 1079710803.Google Scholar
Ziegelbauer, K. and Overath, P. ( 1992). Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. Journal of Biological Chemistry 267, 1079110796.Google Scholar
Ziegelbauer, K., Rudenko, G., Kieft, R. and Overath, P. ( 1995). Genomic organization of an invariant surface glycoprotein gene family of Trypanosoma brucei. Molecular and Biochemical Parasitology 69, 5363.CrossRefGoogle Scholar