Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:22:08.606Z Has data issue: false hasContentIssue false

Trypanosome infections and survival in tsetse

Published online by Cambridge University Press:  16 March 2011

I. Maudlin
Affiliation:
Tsetse Research Group, Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
S. C. Welburn
Affiliation:
Tsetse Research Group, Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
P. J. M. Milligan
Affiliation:
Medical Research Council Laboratories, Fajara, P.O. Box 273, Banjul, The Gambia

Summary

The effect of trypanosome infection on vector survival was observed in a line of Glossina morsitans morsitans selected for susceptibility to trypanosome infection. The differential effects of midgut and salivary gland infections on survival were examined by exposing flies to infection with either Trypanosoma congolense which colonizes midgut and mouthparts or Trypanosoma brucei rhodesiense which colonizes midgut and salivary glands. A comparison of the survival distributions of uninfected flies with those exposed to infection showed that salivary gland infection significantly reduces tsetse survival; midgut infection had little or no effect on the survival of tsetse. The significance of these findings is discussed in relation to the vectorial capacity of wild flies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. R. & Robertson, D. H. (1957). An experiment on the infectivity to Glossina morsitans of a strain of Trypanosoma rhodesiense and of a strain of T. brucei with some observations on the longevity of infected flies. Annals of Tropical Medicine and Parasitology 51, 121135.CrossRefGoogle Scholar
Bursell, E. (1981). Energetics of haematophagous arthropods: influence of parasites. Parasitology 82, 107108.Google Scholar
Clements, A. N. & Paterson, G. D. (1981). The analysis of mortality and survival rates in wild populations of mosquitos. Journal of Applied Ecology 18, 373399.CrossRefGoogle Scholar
Collett, D. (1994). Modelling Survival Data in Medical Research. London, Chapman & Hall.CrossRefGoogle Scholar
Cornellisen, A. W. C. A., Bakkeren, G. A. M., BARRY, J. D., Michels, A. M. & Borst, P. (1985). Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Research 13, 4661–76.CrossRefGoogle Scholar
Dale, C., Welburn, S. C., Maudlin, I. & Milligan, P. J. M. (1995). The kinetics of maturation of trypanosome infections in tsetse. Parasitology 111, 187191.CrossRefGoogle ScholarPubMed
Dye, C. (1990). Epidemiological significance of vectorparasite interactions. Parasitology 101, 409—415.CrossRefGoogle ScholarPubMed
Dye, C. & Williams, B. G. (1995). Non-linearities in the dynamics of indirectly transmitted infections. In Ecology of Infectious Diseases in Natural Populations (eds. Grenfell, B. T. & Dobson, A. P.), pp. 260279. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Fairburn, H. & Culwick, A. T. (1950). The transmission of polymorphic trypanosomes. Ada Tropica 7, 19—47.Google Scholar
Garg, M. L., Rao, B. R. & Redmond, C. K. (1970). Maximum likelihood estimation of the parameters of the gompertz survival. Aplied Statistics 19, 152159.CrossRefGoogle Scholar
Golder, T. K., Otieno, L. H., Patel, N. Y. & Onyango, P. (1982). Increased sensitivity to endosulfan of Trypanosoma-infected Glossina morsitans. Annals of Tropical Medicine and Parasitology 76, 483484.CrossRefGoogle ScholarPubMed
Golder, T. K., Otieno, L. H., Patel, N. Y. & Onyango, P. (1984). Increased sensitivity to a natural pyrethrum of Trypanosoma-infected Glossina morsitans. Acta tropica 41, 7779.Google Scholar
Golder, T. K., Patel, N. Y. & Darji, N. (1987). The effect of Trypanosoma brucei infection on the localization of salivary gland cholinesterase in Glossina morsitans morsitans. Acta Tropica 44, 325331.Google Scholar
Harley, J. M. B. (1966). Studies on age and trypanosome infection rates in females of Glossina pallidipes Aust., G. palpalis fuscipes Newst. and G. brevipalpis Newst. in Uganda. Bulletin of Entomological Research 57, 2337.CrossRefGoogle Scholar
Harley, J. M. B. (1967). Further studies on age and trypanosome infection rates in Glossina pallidipes Aust., G. palpalis fuscipes Newst. and G. brevipalpis Newst. in Uganda. Bulletin of Entomological Research 57, 459477.CrossRefGoogle Scholar
Jackson, C. H. N. (1940). The analysis of a tsetse fly population. Annals of Eugenics, Cambridge 10, 332369.CrossRefGoogle Scholar
Jenni, L., Molyneux, D. H., Livesey, J. L. & Galun, R. (1980). Feeding behaviour of tsetse flies infected with salivarian trypanosomes. Nature 283, 383385.CrossRefGoogle Scholar
Lester, H. M. O. & Lloyd, L. (1928). Notes on the process of digestion in tsetse flies. Bulletin of Entomological Research 19, 39—60.CrossRefGoogle Scholar
Makumi, J. N. & Maloo, S. K. (1991). Trypanosoma vivax in Glossina palpalis gambiensis do not appear to affect feeding behaviour, longevity or reproductive performance of the vector. Medical and Veterinary Entomology 5, 3542.CrossRefGoogle Scholar
Maudlin, I., Welburn, S. C., Gashumba, J. K., Okuna, N. & Kalunda, M. (1990). The role of cattle in the epidemiology of sleeping sickness. Bulletin de la Société Française de Parasitologie 8 (Suppl. 2) 788.Google Scholar
Maudlin, I., Welburn, S. C. & Milligan, P. (1991). Salivary gland infections: a sex linked recessive character in tsetse? Acta Tropica 48, 915.CrossRefGoogle Scholar
Milligan, P. J. M., Maudlin, I. & Welburn, S. C. (1995). Trypanozoon: Infectivity to humans is linked to reduced transmissibility in tsetse II. Genetic mechanisms. Experimental Parasitology 81, 409415.CrossRefGoogle Scholar
Moloo, S. K. (1983). Feeding behaviour of Glossina morsitans morsitans infected with Trypanosoma vivax, T. congolense or T. brucei. Parasitology 86, 5156.CrossRefGoogle Scholar
Moloo, S. K. & Kutuza, S. B. (1985). Survival and reproductive performance of female Glossina morsitans morsitans when maintained on livestock infected with Salivarian trypanosomes. Annals of Tropical Medicine and Parasitology 79, 223224.CrossRefGoogle Scholar
Nitcheman, S. (1988). Camparaison des longevités des glossines (Glossina morsitans morsitans Westwood 1850) infectées par les trypanosomes (Trypanosoma (Nannomonas) congolense Broden 1904) et des glossines saines. Annales de Parasitologie Humaine et Comparée 63, 163164.CrossRefGoogle Scholar
Nitcheman, S. (1990). Comparison of susceptibility to deltamethrin of female Glossina morsitans morsitans Westwood, 1850 (Diptera: Glossinidae) uninfected and infected with Trypanosoma (Nannomonas) congolense Broden 1904 (Kinetoplastida, Trypanosomatidae). Annals of Tropical Medicine and Parasitology 84, 483491.CrossRefGoogle Scholar
Okoth, J.O. & Kapaata, R. (1986). Trypanosome infection rates in Glossina fuscipes fuscipes Newst. in the Busoga sleeping sickness focus, Uganda. Annals of Tropical Medicine and Parasitology 80, 459461.CrossRefGoogle Scholar
Patel, N. Y., Otieno, W. & Golder, T. K. (1982). Effect of Trypanosoma brucei infection on the salivary gland secretions of the tsetse Glossina morsitans morsitans (Westwood). Insect Science and its Application 3, 3538.Google Scholar
Phelps, R. J. & Vale, G. V. (1978). Studies on populations of Glossina morsitans morsitans and G. pallidipes (Diptera: Glossinidae) in Rhodesia. Journal of Applied Ecology 15, 743760.CrossRefGoogle Scholar
Rogers, D. J. & Boreham, P. F. L. (1973). Sleeping sickness survey in the Serengeti Area (Tanzania) 1971. II. The vector role of Glossina swynnertoni Austen. Acta Tropica 30, 2435.Google Scholar
Ryan, L. (1984). The effect of trypanosome infection on a natural population of Glossina longipalpis Wiedemann (Diptera: Glossinidae) in Ivory Coast. Acta Tropica 41, 355359.Google Scholar
Ryan, L., Kupper, W., Goff, S. L., Molyneux, D. H. & Clair, M. (1982). Differences in rates of acquisition of trypanosome infections between Glossina species in the field. Annales de la Société Beige de Medicine Tropicale 62, 291300.Google Scholar
Ryan, L., Kupper, W., Molyneux, D. H. & Clair, M. (1986). Relationships between geographical and dietary factors and trypanosome infection rates of tsetse flies (Diptera: Glossinidae) in the field. Entomoligia Generalis 12, 7781.CrossRefGoogle Scholar
Welburn, S. C. & Maudlin, I. (1987). A simple in vitro method for infecting tsetse with trypanosomes. Annals of Tropical Medicine and Parasitology 81, 453455.CrossRefGoogle Scholar
Welburn, S. C. & Maudlin, I. (1991). Rickettsia-like organisms, puparial temperature and susceptibility to trypanosome infection in Glossina morsitans. Parasitology 102, 201206.CrossRefGoogle Scholar
Woolhouse, M. E. J., Hargrove, J. W. & McNamara, J. J. (1993). Epidemiology of trypanosome infections of the tsetse fly Glossina pallidipes in the Zambesi Valley. Parasitology 106, 479485.CrossRefGoogle Scholar
Woolhouse, M. E. J., Bealby, K., McNamara, J. J. & Silutongwe, J. (1994). Trypanosome infections of the tsetse fly Glossina pallidipes in the Luangwa Valley, Zambia. International Journal for Parasitology 106, 479485.CrossRefGoogle Scholar
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle Scholar