Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:20:12.518Z Has data issue: false hasContentIssue false

Toxoplasma gondii seropositivity and cognitive functions in school-aged children

Published online by Cambridge University Press:  20 May 2015

A. MENDY*
Affiliation:
Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
E. R. VIEIRA
Affiliation:
Department of Physical Therapy, Florida International University, Miami, Florida, USA
A. N. ALBATINEH
Affiliation:
Department of Biostatistics, Florida International University, Miami, Florida, USA
J. GASANA
Affiliation:
Department of Occupational and Environmental Health, Florida International University, Miami, FL/South Florida Asthma Consortium, Ft. Lauderdale, Florida, USA
*
* Corresponding author. The University of Iowa, College of Public Health, S161 CPHB 105 River Street, Iowa City, Iowa 52242, USA. E-mail: [email protected]

Summary

Toxoplasma gondii (T. gondii) infects one-third of the world population, but its association with cognitive functions in school-aged children is unclear. We examined the relationship between Toxoplasma seropositivity and neuropsychological tests scores (including math, reading, visuospatial reasoning and verbal memory) in 1755 school-aged children 12–16 years old who participated to the Third National Health and Nutrition Examination Survey, using multiple linear regressions adjusted for covariates. Toxoplasma seroprevalence was 7·7% and seropositivity to the parasite was associated with lower reading skills (regression coefficient [β] = −5·86, 95% confidence interval [CI]: −11·11, −0·61, P = 0·029) and memory capacities (β = −0·86, 95% CI: −1·58, −0·15, P = 0·017). The interaction between T. gondii seropositivity and vitamin E significantly correlated with memory scores. In subgroup analysis, Toxoplasma-associated memory impairment was worse in children with lower serum vitamin E concentrations (β = −1·61, 95% CI: −2·44, −0·77, P < 0·001) than in those with higher values (β = −0·12, 95% CI: −1·23, 0·99, P = 0·83). In conclusion, Toxoplasma seropositivity may be associated with reading and memory impairments in school-aged children. Serum vitamin E seems to modify the relationship between the parasitic infection and memory deficiency.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, C. A. Jr, Stagno, S. and Reynolds, D. (1974). Congenital toxoplasmosis: clinical, laboratory, and therapeutic considerations, with special reference to subclinical disease. Bulletin of the New York Academy of Medicine 50, 160–81.Google Scholar
Bate, C., Kempster, S., Last, V. and Williams, A. (2006). Interferon-γ increases neuronal death in response to amyloid-β1-42. Journal of Neuroinflammation 3 7.CrossRefGoogle ScholarPubMed
Berenreiterová, M., Flegr, J., Kuběna, A. A. and Němec, P. (2011). The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS ONE 6 e28925.Google Scholar
Caiaffa, W. T., Chiari, C. A., Figueiredo, A. R., Orefice, F. and Antunes, C. M. (1993). Toxoplasmosis and mental retardation: report of a case-control study. Memórias do Instituto Oswaldo Cruz 88 253261.Google Scholar
Campbell, Y., Fantacone, M. L. and Gombart, A. F. (2012). Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism. European Journal of Nutrition 51 899907.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS).The National Health and Nutrition Examination Survey (NHANES) (2006). Hyattsville, Baltimore, MD. http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005.pdf Google Scholar
Chamberlain, S. R. and Robbins, T. W. (2013). Noradrenergic modulation of cognition: therapeutic implications. Journal of Psychopharmacology 27 694718.CrossRefGoogle ScholarPubMed
Cornish, K. M., Savage, R., Hocking, D. R. and Hollis, C. P. (2011). Association of the DAT1 genotype with inattentive behavior is mediated by reading ability in a general population sample. Brain and Cognition 77 453458.Google Scholar
Flegr, J. (2007). Effects of Toxoplasma on human behavior. Schizophrenia Bulletin 33 757760.CrossRefGoogle ScholarPubMed
Flegr, J., Guenter, W., Bieliński, M., Deptuła, A., Zalas-Więcek, P., Piskunowicz, M., Szwed, K., Buciński, A., Gospodarek, E. and Borkowska, A. (2012). Toxoplasma gondii infection affects cognitive function—Corrigendum. Folia Parasitologica 59, 253–4.CrossRefGoogle Scholar
Gajewski, P. D., Falkenstein, M., Hengstler, J. G. and Golka, K. (2013). Toxoplasma gondii impairs memory in infected seniors. Brain, Behavior, and Immunity 36, 193199.Google Scholar
Gatkowska, J., Wieczorek, M., Dziadek, B., Dzitko, K. and Dlugonska, H. (2013). Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Experimental Parasitology 133, 17.Google Scholar
Gilbert, R., Tan, H. K., Cliffe, S., Guy, E. and Stanford, M. (2006). Symptomatic Toxoplasma infection due to congenital and postnatally acquired infection. Archives of Disease in Childhood 91 495498.Google Scholar
Guenter, W., Deptuła, A., Zalas-Wiecek, P., Piskunowicz, M., Szwed, K., Gospodarek, E. and Borkowska, A. (2012). Does Toxoplasma gondii infection affect cognitive function? A case control study. Folia Parasitologica 59 9398.Google Scholar
Havliíček, J., Gašová, Z., Smith, A. P., Zvára, K. and Flegr, J. (2001). Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology 122, 515520.Google Scholar
Henriquez, S., Brett, R., Alexander, J., Pratt, J. and Roberts, C. (2009). Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation 16, 122133.Google Scholar
Jastak, S. and Wilkinson, G. S. (1984). The Wide Range Achievement Test-Revised: Administration Manual. Jastak, Delaware.Google Scholar
Jones, J. L., Kruszon-Moran, D., Wilson, M., McQuillan, G., Navin, T. and McAuley, J. B. (2001). Toxoplasma gondii infection in the United States: seroprevalence and risk factors. American Journal of Epidemiology 154 357365.Google Scholar
Kusbeci, O. Y., Miman, O., Yaman, M., Aktepe, O. C. and Yazar, S. (2011). Could Toxoplasma gondii have any role in alzheimer disease? Alzheimer Disease & Associated Disorders 25(1), 13.CrossRefGoogle ScholarPubMed
Luca, P., Laurin, N., Misener, V. L., Wigg, K. G., Anderson, B., Cate-Carter, T., Tannock, R., Humphries, T., Lovett, M. W. and Barr, C. L. (2007). Association of the dopamine receptor D1 gene, DRD1, with inattention symptoms in families selected for reading problems. Molecular Psychiatry 12, 776785.CrossRefGoogle ScholarPubMed
McCarthy, S. M. and Davis, C. D. (2003). Prooxidant diet provides protection during murine infection with Toxoplasma gondii . Journal of Parasitology 89, 886894.Google Scholar
McConkey, G. A., Martin, H. L., Bristow, G. C. and Webster, J. P. (2013). Toxoplasma gondii infection and behaviour–location, location, location? The Journal of Experimental Biology, 216(1), 113119.CrossRefGoogle ScholarPubMed
Mendy, A., Vieira, E. R., Albatineh, A. N. and Gasana, J. (2015) Immediate rather than delayed memory impairment in older adults with latent toxoplasmosis. Brain, Behavior, and Immunity 45, 3640. doi:http://dx.doi.org/10.1016/j.bbi.2014.12.006 Google Scholar
Nicolle, C. and Manceaux, L. (1908). Sur une infection à corps de Leishman (ou organismes voisins) du gondi. CR Acad Sci 147(763).Google Scholar
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology 67, 5383.CrossRefGoogle ScholarPubMed
Pappas, G., Roussos, N. and Falagas, M. E. (2009). Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. International Journal for Parasitology 39, 13851394.CrossRefGoogle ScholarPubMed
Prandovszky, E., Gaskell, E., Martin, H., Dubey, J., Webster, J. P. and McConkey, G. A. (2011). The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE 6, e23866.Google Scholar
Rajapakse, R., Mousli, M., Pfaff, A. W., Uring-Lambert, B., Marcellin, L., Bronner, C., Jeanblanc, M., Villard, O., Letscher-Bru, V., Klein, J. P. and Candolfi, E. (2005). 1, 25-dihydroxyvitamin D3 induces splenocyte apoptosis and enhances BALB/c mice sensitivity to toxoplasmosis. The Journal of Steroid Biochemistry and Molecular Biology 96, 179185.Google Scholar
Rajapakse, R., Uring-Lambert, B., Andarawewa, K. L., Rajapakse, R., Abou-Bacar, A., Marcellin, L. and Candolfi, E. (2007). 1, 25 (OH) 2D3 inhibits in vitro and in vivo intracellular growth of apicomplexan parasite Toxoplasma gondii . The Journal of Steroid Biochemistry and Molecular Biology 103, 811814.Google Scholar
Stephensen, C. B., Marquis, G. S., Jacob, R. A., Kruzich, L. A., Douglas, S. D. and Wilson, C. M. (2006). Vitamins C and E in adolescents and young adults with HIV infection. The American Journal of Clinical Nutrition 83, 870879.Google Scholar
Stock, A., Heintschel von Heinegg, E., Köhling, H. and Beste, C. (2014). Latent Toxoplasma gondii infection leads to improved action control. Brain, Behavior, and Immunity 37, 103–8.Google Scholar
Thilers, P. P., MacDonald, S. W. and Herlitz, A. (2006). The association between endogenous free testosterone and cognitive performance: a population-based study in 35 to 90 year-oldmen and women. Psychoneuroendocrinology 31, 565576.CrossRefGoogle ScholarPubMed
Vyas, A., Kim, S. K., Giacomini, N., Boothroyd, J. C. and Sapolsky, R. M. (2007). Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proceedings of the National Academy of Sciences 104, 64426447.CrossRefGoogle ScholarPubMed
Wechsler, D. (1974). Manual for the Wechsler Intelligence Scale for Children. Revised Psychological Corporation.Google Scholar
Weiss, L. M., Ma, Y. F., Takvorian, P. M., Tanowitz, H. B. and Wittner, M. (1998). Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infection and Immunity 66, 32953302.Google Scholar
Xiao, J., Kannan, G., Jones-Brando, L., Brannock, C., Krasnova, I. N., Cadet, J. L., Pletnikov, M. and Yolken, R. (2012). Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 206, 3948.CrossRefGoogle ScholarPubMed