Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T04:16:38.410Z Has data issue: false hasContentIssue false

Evolution and phylogeny of behavioural manipulation of insect hosts by parasites

Published online by Cambridge University Press:  16 March 2011

R. Poulin
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand

Summary

The literature contains many examples of changes induced by parasites in the behaviour and/or other phenotypic traits of insects. From an evolutionary perspective, the nature of these changes is usually difficult to assess. Parasite-induced changes in host behaviour can be adaptations of either host or parasite, or they can be mere pathological consequences of infection. Of the many criteria and experimental tests necessary to distinguish between adaptations and non-selected consequences, two are particularly important: the demonstration of fitness benefits for either host or parasite associated with the behavioural change, and the elucidation of the proximate mechanism responsible for the behavioural change. Another approach can serve to identify adaptive changes in behaviour: mapping specific behavioural alterations on a phylogeny of either hosts or parasites. The usefulness of this approach is illustrated with two examples, acanthocephalan- cockroach associations and insect-fungus associations. The adaptive nature of parasite-induced behavioural changes will always be difficult to evaluate because they are the product of two distinct but interacting genotypes. However, experimental and phylogenetic approaches can provide valuable insights into the evolutionary history of insect-parasite interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, S. A., Robert, D. & Hoy, R. R. (1995). Effects of a tachinid parasitoid, Ormia ochracea, on the behaviour and reproduction of its male and female field cricket hosts (Gryllus spp). Journal of Insect Physiology 41, 269277.CrossRefGoogle Scholar
Beach, R., Kiilu, G. & Leeuwenberg, J. (1985). Modification of sandfly biting behavior by Leishmania leads to increased parasite transmission. American Journal of Tropical Medicine and Hygiene 34, 278282.CrossRefGoogle Scholar
Beckage, N. E. (1985). Endocrine interactions between endoparasitic insects and their hosts. Annual Review of Entomology 30, 371413.CrossRefGoogle Scholar
Beckage, N. E. (1993). Games parasites play: the dynamic roles of proteins and peptides in the relationship between parasite and host. In Parasites and Pathogens of Insects, Vol.1 (ed. Beckage, N. E., Thompson, S. N. & Federici, B. A.), pp. 2557. New York, Academic Press.CrossRefGoogle Scholar
Benton, M. J. & Pritchard, G. (1990). Mayfly locomotory responses to endoparasitic infection and predator presence: the effects on predator encounter rate. Freshwater Biology 23, 363371.CrossRefGoogle Scholar
Berry, W. J., Rowley, W. A. & Christensen, B. M. ( 1988). Spontaneous flight activity of Aedes trivittatus infected with Dirofilaria immitis. Journal of Parasitology 74, 970974.CrossRefGoogle Scholar
Blankespoor, C. L., Pappas, P. W. & Eisner, T. (1997). Impairment of the chemical defence of the beetle, Tenebrio molitor, by metacestodes (cysticercoids) of the tapeworm, Hymenolepis diminuta. Parasitology 115, 105110.CrossRefGoogle ScholarPubMed
Boorstein, S. M. & Ewald, P. W. (1987). Costs and benefits of behavioral fever in Melanoplus sanguinipes infected by Nosema acridophagus. Physiological Zoology 60, 586595.CrossRefGoogle Scholar
Brodeur, J. & McNeil, J. N. (1989). Seasonal microhabitat selection by an endoparasitoid through adaptive modification of host behavior. Science 244, 226228.CrossRefGoogle Scholar
Brodeur, J. & Vet, L. E. M. (1994). Usurpation of host behaviour by a parasitic wasp. Animal Behaviour 48, 187192.CrossRefGoogle Scholar
Cade, W. (1975). Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190, 13121313.CrossRefGoogle Scholar
Cade, W. H. (1984). Effects of fly parasitoids on nightly calling duration in field crickets. Canadian Journal of Zoology 62, 226228.CrossRefGoogle Scholar
Carmichael, L. M., Moore, J. & Bjostad, L. B. (1993). Parasitism and decreased response to sex pheromones in male Periplaneta americana (Dictyoptera: Blattidae). Journal of Insect Behavior 6, 2532.CrossRefGoogle Scholar
Carney, W. P. (1969). Behavioral and morphological changes in carpenter ants harboring dicrocoeliid metacercariae. American Midland Naturalist 82, 605611.CrossRefGoogle Scholar
Colbo, M. H. & Porter, G. N. (1980). Distribution and specificity of Mermithidae (Nematoda) infecting Simuliidae (Diptera) in Newfoundland. Canadian Journal of Zoology 58, 14831490.CrossRefGoogle Scholar
Crawford, A. M. & Kalmakoff, J. (1977). A host-virus interaction in a pasture habitat: Wiseana spp. (Lepidoptera: Hepialidae) and its baculoviruses. Journal of Invertebrate Pathology 29, 8187.Google Scholar
Dawkins, R. (1982). The Extended Phenotype. Oxford, Oxford University Press.Google Scholar
Eilenberg, J. (1987). Abnormal egg-laying behaviour of female carrot flies (Psila rosae) induced by the fungus Entomophthora muscae. Entomologia Experimentalis et Applicata 43, 6165.Google Scholar
Evans, H. C. (1982). Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecological Entomology 7, 4760.CrossRefGoogle Scholar
Evans, H. C. (1988). Coevolution of entomogenous fungi and their insect hosts. In Coevolution of Fungi with Plants and Animals (ed. Pirozynski, K. A. & Hawksworth, D. L.), pp. 149171. London, Academic Press.Google Scholar
Evans, H. C. (1989). Mycopathogens of insects of epigeal and aerial habitats. In Insect-Fungus Interactions (ed. Wilding, N., Collins, N. M., Hammond, P. M. & Webber, J. F.), pp. 205238. London, Academic Press.CrossRefGoogle Scholar
Evans, W. S., Hardy, M. C., Singh, R., Moodie, G. E. & Cote, J. J. (1992). Effect of the rat tapeworm, Hymenolepis diminuta, on the coprophagic activity of its intermediate host, Tribolium confusum. Canadian Journal of Zoology 70, 23112314.CrossRefGoogle Scholar
Gotelli, N. J. & Moore, J. (1992). Altered host behaviour in a cockroach-acanthocephalan association. Animal Behaviour 43, 949959.CrossRefGoogle Scholar
Graham, G. L. (1966). The behavior of beetles, Tribolium confusum, parasitized by the larval stage of a chicken tapeworm, Raillietina cesticillus. Transactions of the American Microscopical Society 85, 163.Google Scholar
Harper, A. M. (1958). Notes on behaviour of Pemphigus betae Doane (Homoptera: Aphididae) infected with Entomophthora aphidis Hoffm. Canadian Entomologist 90, 439440.CrossRefGoogle Scholar
Heath, M. C. (1987). Evolution of parasitism in the fungi. In Evolutionary Biology of the Fungi (ed. Rayner, A. D. M., Brasier, C. M. & Moore, D.), pp. 149160. Cambridge, Cambridge University Press.Google Scholar
Horton, D. R. & Moore, J. (1993). Behavioral effects of parasites and pathogens in insect hosts. In Parasites and Pathogens of Insects, Vol.1 (ed. Beckage, N. E., Thompson, S. N. & Federici, B. A.), pp. 107124. New York, Academic Press.CrossRefGoogle Scholar
Hurd, H. (1990). Physiological and behavioural interactions between parasites and invertebrate hosts. Advances in Parasitology 29, 271318.CrossRefGoogle Scholar
Hurd, H. & Fogo, s. (1991). Changes induced by Hymenolepis diminuta (Cestoda) in the behaviour of the intermediate host Tenebrio molitor (Coleoptera). Canadian Journal of Zoology 69, 22912294.CrossRefGoogle Scholar
Husain, A. & Kershaw, W. E. (1971). The effect of filariasis on the ability of a vector mosquito to fly and feed and to transmit the infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 617619.CrossRefGoogle Scholar
Jenni, L., Molyneux, D. H., Livesey, J. L. & Galun, R. (1980). Feeding behaviour of tsetse flies infected with salivarian trypanosomes., Nature 283, 383385.CrossRefGoogle Scholar
Karban, R. & English-Loeb, G. (1997). Tachinid parasitoids affect host plant choice by caterpillars to increase caterpillar survival. Ecology 78, 603611.CrossRefGoogle Scholar
Killick-Kendrick, R., Leaney, A. J., Read, P. D. & Molyneux, D. H. (1977). Leishmania in phlebotomid sand flies IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis. Proceedings of the Royal Society of London B 196, 105–115.Google Scholar
MacLeod, D. M., Tyrrell, D., Soper, R. S. & De Lyzer, A. J. (1973). Entomophthora bullata as a pathogen of Sarcophaga aldrichi. Journal of Invertebrate Pathology 22, 7579.CrossRefGoogle Scholar
Madelin, M. F. (1966). Fungal parasites of insects. Annual Review of Entomology 11, 423448.CrossRefGoogle Scholar
Maeyama, T., Terayama, M. & Matsumoto, T. (1994). The abnormal behavior of Colobopsis sp. (Hymenoptera: Formicidae) parasitized by Mermis (Nematoda) in Papua New Guinea. Sociobiology 24, 115119.Google Scholar
Maitland, D. p. (1994). A parasitic fungus infecting yellow dungflies manipulates host perching behaviour. Proceedings of the Royal Society of London B 258, 187–193.Google Scholar
Marikovsky, P. I. (1962). On some features of behavior of the ants Formica rufa L. infected with a fungous disease. Insectes Sociaux 9, 173179.CrossRefGoogle Scholar
McAllister, M. K. & Roitberg, B. D. (1987). Adaptive suicidal behavior in pea aphids. Nature 328, 797799.CrossRefGoogle Scholar
Miller, L. A. & McClanahan, R. J. (1959). Note On occurrence of the fungus Empusa muscae Cohn on adults of the onion maggot, Hylemya antiqua (Meig.) (Diptera: Anthomyiidae). Canadian Entomologist 91, 525526.CrossRefGoogle Scholar
Møller, A. p. (1993). A fungus infecting domestic flies manipulates sexual behaviour of its host. Behavioral Ecology and Sociobiology 33, 403407.Google Scholar
Molyneux, D. H. & Jefferies, D. (1986). Feeding behaviour of pathogen-infected vectors. Parasitology 92, 721736.CrossRefGoogle Scholar
Moore, J. (1993). Parasites and the behavior of biting flies. Journal of Parasitology 79, 116.CrossRefGoogle ScholarPubMed
Moore, J. & Gotelli, N. J. (1990). A phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In Parasitism and Host Behaviour (ed. Barnard, C. J. & Behnke, J. M.), pp. 193233. London, Taylor & Francis.Google Scholar
Moore, J. & Gotelli, N. J. (1996). Evolutionary patterns of altered behavior and susceptibility in parasitized hosts. Evolution 50, 807819.CrossRefGoogle ScholarPubMed
Müller, C. B. & Schmid-Hempel, P. (1993). Exploitation of cold temperature as defence against parasitoids in bumblebees. Nature 363, 6567.CrossRefGoogle Scholar
Nirula, K. K. (1957). Observations on the green muscardine fungus in populations of Oryctes rhinoceros L. Journal of Economic Entomology 50, 767770.CrossRefGoogle Scholar
Pappas, P. W., Marschall, E. A., Morrison, S. E., Durka, G. M. & Daniel, C. S. (1995). Increased coprophagic activity of the beetle, Tenebrio molitor, on feces containing eggs of the tapeworm, Hymenolepis diminuta. International Journal for Parasitology 25, 11791184.CrossRefGoogle ScholarPubMed
Poinar, G. O. (1991). Nematoda and Nematomorpha. In Ecology and Classification of North American Freshwater Invertebrates (ed. Thorp, J. H. & Covich, A. P.), pp. 249283. New York, Academic Press.Google Scholar
Poulin, R. (1992). Altered behaviour in parasitized bumblebees: parasite manipulation or adaptive suicide? Animal Behaviour 44, 174176.CrossRefGoogle Scholar
Poulin, R. (1994). The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology 109 (Suppl.) S109–S118.CrossRefGoogle ScholarPubMed
Poulin, R. (1995). ‘Adaptive’ changes in the behaviour of parasitized animals: a critical review. International Journal for Parasitology 25, 13711383.CrossRefGoogle ScholarPubMed
Robb, T. & Reid, M. L. (1996). Parasite-induced changes in the behaviour of cestode-infected beetles: adaptation or simple pathology ? Canadian Journal of Zoology 74, 12681274.CrossRefGoogle Scholar
Robert, D., Amoroso, J. & Hoy, R. R. (1992). The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science 258, 11351137.CrossRefGoogle Scholar
Roffey, J. (1968). The occurrence of the fungus Entomophthora grylli Fresenius on locusts and grasshoppers in Thailand. Journal of Invertebrate Pathology 11, 237241.CrossRefGoogle Scholar
Romig, T., Lucius, R. & Frank, W. (1980). Cerebral larvae in the second intermediate host of Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium hospes (Looss, 1907) (Trematodes, Dicrocoeliidae). Zeitschrift für Parasitenkunde 63, 277286.CrossRefGoogle Scholar
Rossignol, P. A., Ribeiro, J. M. C. & Spielman, A. (1984). Increased intradermal probing time in sporozoite-infected mosquitoes. American Journal of Tropical Medicine and Hygiene 33, 1720.CrossRefGoogle ScholarPubMed
Rowland, M. & Boersma, E. (1988). Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelli. Parasitology 97, 221227.Google ScholarPubMed
Rowland, M. W. & Lindsay, S. W. (1986). The circadian flight activity of Aedes aegypti parasitized with the filarial nematode Brugia pahangi. Physiological Entomology 11, 325334.CrossRefGoogle Scholar
Samson, R. A., Evans, H. C. & Latgé, J.-P. (1988). Atlas of Entomopathogenous Fungi. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Schiefer, B. A., Ward, R. A. & Eldridge, B. F. (1977). Plasmodium cynomolgi: effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Experimental Parasitology 41, 397404.CrossRefGoogle Scholar
Schmid-Hempel, R. & Müller, C. B. (1991). Do parasitized bumblebees forage for their colony? Animal Behaviour 41, 910912.CrossRefGoogle Scholar
Shapiro, A. M. (1976). Beau geste? American Naturalist 110, 900902.CrossRefGoogle Scholar
Simmons, L. W. (1994). Courtship role reversal in bush crickets: another role for parasites? Behavioral Ecology 5, 259266.CrossRefGoogle Scholar
Smith Trail, D. R. (1980). Behavioral interactions between parasites and hosts: host suicide and the evolution of complex life cycles. American Naturalist 116, 7791.Google Scholar
Stamp, N. E. (1981). Behavior of parasitized aposematic caterpillars: advantageous to the parasitoid of the host? American Naturalist 118, 715725.CrossRefGoogle Scholar
Townson, H. (1970). The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Annals of Tropical Medicine and Parasitology 64, 411420.CrossRefGoogle ScholarPubMed
Vance, S. A. (1996). Morphological and behavioural sex reversal in mermithid-infected mayflies. Proceedings of the Royal Society of London B 263, 907–912.Google Scholar
Webber, R. A., Rau, M. E. & Lewis, D. J. (1987). The effects of Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the behavior of Aedes aegypti larvae. Canadian Journal of Zoology 64, 13401342.CrossRefGoogle Scholar
Whitlock, v. H. (1974). Symptomology of two viruses infecting Heliothis armigera. Journal of Invertebrate Pathology 23, 7075.CrossRefGoogle Scholar
Wülker, W. (1964). Parasite-induced changes of internal and external sex characters in insects. Experimental Parasitology 15, 561597.CrossRefGoogle Scholar
Wülker, w. (1985). Changes in behaviour, flight tone and wing shape in nematode-infested Chironomus (Insecta, Diptera). Zeitschrift für Parasitenkunde 71, 409418.CrossRefGoogle Scholar
Yan, G. & Phillips, T. W. (1996). Influence of tapeworm infection on the production of aggregation pheromone and defensive compounds in Tribolium castaneum. Journal of Parasitology 82, 10371039.CrossRefGoogle ScholarPubMed
Yan, G., Stevens, L. & Schall, J. J. (1994). Behavioral changes in Tribolium beetles infected with a tapeworm: variation in effects between beetle species and among genetic strains. American Naturalist 143, 830847.CrossRefGoogle Scholar
Yen, D. F. (1962). An Entomophthora infection in the larva of the tiger moth, Creatonotus gangis (Linnaeus). Journal of Insect Pathology 4, 8894.Google Scholar
Zuk, M., Simmons, L. W. & Rotenberry, J. T. (1995). Acoustically-orienting parasitoids in calling and silent males of the field cricket Teleogryllus oceanicus. Ecological Entomology 20, 380383.CrossRefGoogle Scholar