Published online by Cambridge University Press: 01 February 2000
Monstera acuminata is a plant with a problem – it attains a large body size, yet has no secondary growth. For many years, observers have noted the differences in architecture between monocots and woody dicots, particularly in terms of overall size and comparisons of tree-like forms. However, very little is known about the functional morphology of smaller-bodied and ecologically significant climbing and hemiepiphytic monocots, of which M. acuminata is one. In its wider context, the diversity of plant growth forms contributes to the complex structure of many terrestrial ecosystems, where herbs, trees, shrubs, vines, lianas, root-climbers, epiphytes and hemiepiphytes may be said to comprise the ‘skeleton’ of the ecosystem (Speck & Rowe, 1999). This is seen readily, for example, in the humid tropics, which arguably possess the highest taxonomic and structural diversity that has ever been formed by plants on earth. In this issue, López-Portillo et al. (pp. 289–299) investigate the development of plant architecture in Monstera, and demonstrate a range of novel hydraulic parameters.