No CrossRef data available.
Published online by Cambridge University Press: 15 April 2014
Helium embrittlement poses a great threat to materials used in both fusion and fissionreactor systems due to (n,α) transmutation reactions. Because of this, materials capable of moderating the helium content reaching grain boundaries and voids must be developed and improved to prevent catastrophic failure of reactor materials. Nanostructured ferritic alloys (NFAs) have shown great promise in preventing helium embrittlement due to the large number density of nanoscale precipitates acting as trapping sites for helium clusters and helium bubbles. In this study, we present density functional theory calculations on the interaction of helium with nanoscale precipitates found in NFAs as a preliminary study to furthering our understanding of the energetic mechanisms causing the precipitates to act as trapping sites for helium.