Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T19:53:41.724Z Has data issue: false hasContentIssue false

Advanced β-Solidifying Titanium Aluminides – Development Status and Perspectives

Published online by Cambridge University Press:  18 February 2013

Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Martin Schloffer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Emanuel Schwaighofer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Robert Werner
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Andrea Gaitzenauer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Boryana Rashkova
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Thomas Schmoelzer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Reinhard Pippan
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700, Leoben, Austria
Svea Mayer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700, Leoben, Austria
Get access

Abstract

After almost three decades of intensive fundamental research and development activities intermetallic titanium aluminides based on the -TiAl phase have found applications in automotive and aircraft engine industries. The advantages of this class of innovative high-temperature materials are their low density as well as their good strength and creep properties up to 750°C. A drawback, however, is their limited ductility at room temperature, which is reflected by a low plastic strain at fracture. This behavior can be attributed to a limited dislocation movement along with microstructural inhomogeneity. Advanced TiAl alloys, such as β-solidifying TNM™ alloys, are complex multi-phase materials which can be processed by ingot or powder metallurgy as well as precision casting methods. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat-treatments. The background of these heat-treatments is at least twofold, i.e. concurrent increase of ductility at room temperature and creep strength at elevated temperature. In order to achieve this goal the knowledge of the occurring solidification processes and phase transformation sequences is essential. Therefore, thermodynamic calculations were conducted to predict phase fraction diagrams of engineering TiAl alloys. After experimental verification, these phase diagrams provided the base for the development of heat treatments to adjust balanced mechanical properties. To determine the influence of deformation and kinetic aspects, sophisticated ex- and in-situ methods have been employed to investigate the evolution of the microstructure during thermo-mechanical processing and subsequent multi-step heat-treatments. For example, in-situ high-energy X-ray diffraction was conducted to study dynamic recovery and recrystallization processes during hot-deformation tests. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in TNM alloys can be given.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Structural Intermetallics 2001, edited by Hemker, K. J., Dimiduk, D. M., Clemens, H., Darolia, R., Iui, H., Larson, J. M., Sikka, V. K., Thomas, M., and Whittenberger, J. D., (TMS, Warrendale, PA, 2001).Google Scholar
Gamma Titanium Aluminides 2003, edited by Kim, Y-W., Clemens, H., and Rosenberger, A. H., (TMS, Warrendale, PA, USA, 2003).Google Scholar
Advanced Intermetallics-Based Alloys, edited by Wiezorek, J., Fu, C.-L., Takeyama, M., Morris, D., and Clemens, H., (Mater. Res. Soc. Symp. Proc. 980, Pittsburgh, PA, 2007).Google Scholar
Structural Aluminides for Elevated Temperature Applications, edited by Kim, Y-W., Morris, D., Yang, R. and Leyens, C., (TMS, Warrendale, PA, 2008).Google Scholar
Intermetallic-Based Alloys for Structural and Functional Applications, edited by Palm, M., Bewlay, B. P., Kumar, K. S., and Yoshimi, K., (Mater. Res. Soc. Symp. Proc. 1295, Pittsburgh, PA, 2011).Google Scholar
Titanium and Titanium Alloys, edited by Leyens, C. and Peters, M., (WILEY- VCH, Weinheim, Germany, 2003).CrossRefGoogle Scholar
Appel, F., Paul, J. D. H. and Oehring, M., Gamma Titanium Aluminide Alloys - Science and Technology, (WILEY- VCH, Weinheim, Germany, 2011).CrossRefGoogle Scholar
Clemens, H. and Mayer, S., Adv. Eng. Mater., DOI 10.1002/adem.201200231.Google Scholar
Weimer, M., Bewlay, B. and Schubert, T., paper presented at the “4th International Workshop on Titanium Aluminides”, Nuremberg, Germany (September 14-16, 2011).Google Scholar
Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A., and Bartels, A., Adv. Eng. Mater. 10, 707 (2008).10.1002/adem.200800164CrossRefGoogle Scholar
Appel, F., Oehring, M., Wagner, R., Intermetallics 8, 1283 (2000).10.1016/S0966-9795(00)00036-4CrossRefGoogle Scholar
Wallgram, W., Schmoelzer, T., Cha, L., Das, G., Güther, V., and Clemens, H., Int. J. Mat. Res. 100, 1021 (2009).CrossRefGoogle Scholar
Schmoelzer, T., Liss, K.-D., Staron, P., Mayer, S., and Clemens, H., Adv. Eng. Mater. 13, 685 (2011).10.1002/adem.201000296CrossRefGoogle Scholar
Tetsui, T., Shindo, K., Kobayashi, S., Takeyama, M., Scripta Materialia 47, 399 (2002).10.1016/S1359-6462(02)00158-6CrossRefGoogle Scholar
Appel, F., Paul, J. D. H., Oehring, M., Fröbl, U., and Lorenz, U., Metall. Mater. Trans. A 34, 2149 (2003).CrossRefGoogle Scholar
Saunders, N., in Gamma Titanium Aluminides 1999, edited by Kim, Y-W., Dimiduk, D. M., Loretto, M. H., (TMS, Warrendale, PA, 1999) pp. 183188.Google Scholar
Chladil, H. F., Clemens, H., Zickler, G. A., Takeyama, M., Kozeschnik, E., Bartels, A., Gerling, R., Kremmer, S., Yeoh, L., and Liss, K.-D., Int. J. Mat. Res. 98, 1131 (2007).CrossRefGoogle Scholar
Herzig, C., Przeorski, T., Friesel, M., Hirsker, F., and Divinski, S., Intermetallics 9, 461 (2001).10.1016/S0966-9795(01)00025-5CrossRefGoogle Scholar
Mishin, Y., Herzig, Chr., Acta Materialia 48, 589 (2000).CrossRefGoogle Scholar
Kainuma, R., Fujita, Y., Mitsui, H., Ohnuma, I., and Ishida, K., Intermetallics 8, 855 (2000).CrossRefGoogle Scholar
Zhang, Z., Leonard, K. J., Dimiduk, D. M., and Vasudevan, V. K., Structural Intermetallics 2001, edited by Hemker, K. H. et al. ., (TMS, Warrendale, PA, 2001), p. 515.Google Scholar
Hecht, U., Witusiewicz, V., Drevermann, A., and Zollinger, J., Intermetallics 16, 969 (2008).10.1016/j.intermet.2008.04.019CrossRefGoogle Scholar
Watson, I. J., Liss, K.-D., Clemens, H., Wallgram, W., Schmoelzer, T., Hansen, T. C., and Reid, M., Adv. Eng. Mater. 11, 932 (2009).CrossRefGoogle Scholar
Takeyama, M., Kobayashi, S., Intermetallics 13, 989 (2005).10.1016/j.intermet.2004.12.014CrossRefGoogle Scholar
Sun, F. S., Cao, C. X., Kim, S. E., Lee, Y. T., M. and Yan, G., Met. Mat. Trans. A 32, 1573 (2001).10.1007/s11661-001-0136-4CrossRefGoogle Scholar
Johnson, D. R., Inui, H., Muto, S., Omiya, Y., and Yamanaka, T., Acta Mat. 54, 1077 (2006).CrossRefGoogle Scholar
Imayev, R. M, Imayev, V. M., Oehring, M., and Appel, F., Intermetallics 15, 451 (2007).10.1016/j.intermet.2006.05.003CrossRefGoogle Scholar
Schmoelzer, T., Liss, K.-D., Zickler, G. A., Watson, I. J., Droessler, L. M., Wallgram, W., Buslaps, T., Studer, A., and Clemens, H., Intermetallics 18, 1544 (2010).CrossRefGoogle Scholar
Werner, R., Schloffer, M., Schwaighofer, E., Clemens, H., and Mayer, S., these proceedings.Google Scholar
Güther, V., Otto, A., Klose, J., Rothe, C., Clemens, H., Kachler, W., Winter, S., and Kremmer, S., Structural Aluminides for Elevated Temperature Applications, edited by Kim, Y-W., Morris, D., Yang, R., and Leyens, C., (TMS, Warrendale, PA, 2008) pp. 249256.Google Scholar
Wood, J. R., in [2], pp. 227–232.Google Scholar
Achtermann, M., Güther, V., Klose, J., and Nicolei, H.-P., paper presented at the “4th International Workshop on Titanium Aluminides”, Nuremberg, Germany (September 14-16, 2011).Google Scholar
Rizzi, N., presentation at the Symposium “Structural Aluminides for Elevated Temperature Applications”, TMS 2008 Annual Meeting, New Orleans, LA, USA (March 9-13, 2008).Google Scholar
Liss, K., Schmoelzer, T., Yan, K., Reid, M., Peel, M., Dippenaar, R., and Clemens, H., J. Appl. Phys. 106, 113526 (2009).CrossRefGoogle Scholar
Schmoelzer, T., Liss, K.-D., Kirchlechner, C., Mayer, S., Stark, A., Peel, M., Clemens, H., Intermetallics, Submitted for publication (2012).Google Scholar
Schloffer, M., Diploma thesis, Montanuniversität Leoben, Austria (2010).Google Scholar
Schloffer, M., Leitner, T., Clemens, H., Mayer, S., and Pippan, R., Intermetallics, in preparation.Google Scholar
Cha, L., Schmoelzer, T., Zhang, Z., Mayer, S., Clemens, H., Staron, P., and Dehm, G., Adv. Eng. Mater. 14, 299 (2012).10.1002/adem.201100272CrossRefGoogle Scholar
Cha, L., Clemens, H. and Dehm, G., Int. J. Mat. Res. 102, 703 (2011).CrossRefGoogle Scholar
Cao, G., Fu, L., Lin, J., Zhang, Y., and Chen, C., Intermetallics 8, 647 (2000).10.1016/S0966-9795(99)00128-4CrossRefGoogle Scholar
Appel, F. and Wagner, R., Mat. Sci. Eng. R 22, 187 (1998).CrossRefGoogle Scholar
Chatterjee, A., Clemens, H., Mecking, H., Dehm, G., and Arzt, E., Z. Metallkd. 92, 1001 (2001).Google Scholar
Gaitzenauer, A., Müller, M., Clemens, H., Hempel, R., Voigt, P., and Mayer, S., Berg- und Hüttenmännische Monatshefte (BHM), submitted for publication (2012).Google Scholar
Simas, P., Schmoelzer, T., No, M.L., Clemens, H., and Juan, J. S., in [5], pp. 139–144.Google Scholar
Wang, J. G. and Nieh, T. G., Intermetallics 8, 737 (2000).10.1016/S0966-9795(00)00009-1CrossRefGoogle Scholar
Tetsui, T., Adv. Eng. Mater. 3, 307 (2001).10.1002/1527-2648(200105)3:5<307::AID-ADEM307>3.0.CO;2-33.0.CO;2-3>CrossRef3.0.CO;2-3>Google Scholar
Noda, T., Intermetallics 6, 709 (1998).10.1016/S0966-9795(98)00060-0CrossRefGoogle Scholar
Smarsly, W., Baur, H., Glitz, G., Clemens, H., Khan, T., and Thomas, M., in [1], pp. 25–34.Google Scholar
Loria, E. A., Intermetallics 8, 1339 (2000).CrossRefGoogle Scholar
Wu, X., Intermetallics 14, 1114 (2006).10.1016/j.intermet.2005.10.019CrossRefGoogle Scholar
Lasalmonie, A., Intermetallics 14, 1123 (2006).CrossRefGoogle Scholar
Aguliar, J., Kättlitz, O., Stoyanov, T., paper presented at the 4th European Conference on Materials and Structures in Aerospace, Hamburg, Germany, (February 7-8, 2012).Google Scholar
Martens, R., VDI Nachrichten, June 17, 2011.Google Scholar
Das, G., Smarsly, W., Heutling, F., Kunze, C., Helm, D., paper presented at the “4th International Workshop on Titanium Aluminides”, Nuremberg, Germany (September 14-16, 2011).Google Scholar