Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T14:35:39.027Z Has data issue: false hasContentIssue false

Seed predation and defleshing in the agouti-dispersed palm Astrocaryum standleyanum

Published online by Cambridge University Press:  30 July 2010

Patrick A. Jansen*
Affiliation:
Community and Conservation Ecology, University of Groningen, PO Box 14, NL-9750 AA Haren, the Netherlands Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá Center for Ecosystem Studies, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands
Kelly Elschot
Affiliation:
Community and Conservation Ecology, University of Groningen, PO Box 14, NL-9750 AA Haren, the Netherlands
P. Johannes Verkerk
Affiliation:
Center for Ecosystem Studies, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands Laboratory of Nematology, Wageningen University, PO Box 8123, 6700 ES Wageningen, the Netherlands
S. Joseph Wright
Affiliation:
Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá
*
1Corresponding author: P. A. Jansen. Email: [email protected]

Abstract:

The agouti (Dasyprocta punctata) meticulously defleshes Astrocaryum standleyanum palm seeds before scatter hoarding. On Barro Colorado Island, Panama, we experimentally tested three hypotheses on how this behaviour could reduce seed predation to the mutual benefit of the tree and the rodent. The first and established hypothesis – that defleshing reduces seed predation by bruchid beetles by intercepting larvae – was rejected. Experiments in which manually defleshed seeds or entire fruits were incubated at different times showed that defleshing reduced bruchid infestation before fruit fall but not after fruit fall. The second hypothesis – that defleshing reduces cache pilferage by making seeds less conspicuous – was supported. An experiment in which intact fruits and manually defleshed seeds were placed in mimicked agouti caches and followed showed that seeds with flesh were pilfered at higher rates than defleshed seeds. The third hypothesis – that defleshing reduces post-dispersal infestation of cached seeds – was rejected. An experiment in which intact fruits and manually defleshed seeds were placed in mammal exclosures and later collected to assess infestation showed that burial reduced seed infestation but defleshing did not. Thus, seed defleshing reduced palm seed predation, but in a different way than previously believed. We also found that (1) bruchid beetles can be pre-dispersal rather than post-dispersal seed predators, (2) seed infestation by scolytid beetles may control bruchid larvae, and (3) scolytids rather than bruchids are the main invertebrate seed predators of this palm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

CROAT, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford. 943 pp.Google Scholar
CURRAN, L. M. & WEBB, C. O. 2000. Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecological Monographs 70:129148.CrossRefGoogle Scholar
DE STEVEN, D., WINDSOR, D. M., PUTZ, F. E. & DE LEON, B. 1987. Vegetative and reproductive phenologies of a palm assemblage in Panama. Biotropica 19:342356.CrossRefGoogle Scholar
DELGADO, C., COUTURIER, G. & DELOBEL, A. 1997. Oviposition of seed-beetle Caryoborus serripes (Sturm) (Coleoptera: Bruchidae) on palm (Astrocaryum chambira) fruits under natural conditions in Peru. Annales de la Société Entomologique de France 33:405409.CrossRefGoogle Scholar
FORGET, P. M. 1991. Scatterhoarding of Astrocaryum paramaca by Proechimys spp. in French Guiana: comparison with Myoprocta exilis. Tropical Ecology 32:155167.Google Scholar
GÁLVEZ, D. & JANSEN, P. A. 2007. Bruchid beetle infestation and the value of Attalea butyracea endocarps for Neotropical rodents. Journal of Tropical Ecology 23:381384.CrossRefGoogle Scholar
GLANZ, W. E., THORINGTON, R. W., GIACALONE-MADDEN, J. & HEANEY, L. R. 1982. Seasonal food use and demographic trends in Sciurus granatensis. Pp. 239252 in Leigh, E. G., Rand, A. S. & Windsor, D. M. (eds.). The ecology of a tropical forest. Seasonal rhythms and long-term changes. Smithsonian Institution Press, Washington DC.Google Scholar
HAMMOND, D. S., BROWN, V. K. & ZAGT, R. 1999. Spatial and temporal patterns of seed attack and germination in a large-seeded neotropical tree species. Oecologia 119:208218.CrossRefGoogle Scholar
HOCH, G. A. & ADLER, G. H. 1997. Removal of black palm (Astrocaryum standleyanum) seeds by spiny rats (Proechimys semispinosus). Journal of Tropical Ecology 13:5158.CrossRefGoogle Scholar
HULME, P. E. 1998. Post-dispersal seed predation: consequences for plant demography and evolution. Perspectives in Plant Ecology, Evolution and Systematics 1:3246.CrossRefGoogle Scholar
JANSEN, P. A., BONGERS, F. & PRINS, H. H. T. 2006. Tropical rodents change rapidly germinating seeds into long-term food supplies. Oikos 113;449458.CrossRefGoogle Scholar
JANSEN, P. A., VAN DER MEER, P. J. & BONGERS, F. 2008a. Is farther seed dispersal better? Spatial patterns of offspring mortality in three rainforest tree species with different dispersal abilities. Ecography 30:4352.CrossRefGoogle Scholar
JANSEN, P. A., BOHLMAN, S. A., GARZON-LOPEZ, C. X., OLFF, H., MULLER-LANDAU, H.-C. & WRIGHT, S. J. 2008b. Large-scale spatial variation in palm fruit abundance across a tropical moist forest estimated from high-resolution aerial photographs. Ecography 30:3342.CrossRefGoogle Scholar
JANSEN, P. A. & FORGET, P.-M. 2001. Scatterhoarding and tree regeneration. Pp. 275288 in Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M. (eds.). Nouragues: dynamics and plant–animal interactions in a Neotropical rainforest. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
JANZEN, D. H. 1971a. Seed predation by animals. Annual Review of Ecology and Systematics 2:465492.CrossRefGoogle Scholar
JANZEN, D. H. 1971b. The fate of Scheelea rostrata fruits beneath the parent tree: predispersal attack by bruchids. Principes 15:89101.Google Scholar
JANZEN, D. H. 1972. Association of a rainforest palm and seed-eating beetles in Puerto Rico. Ecology 53:258261.CrossRefGoogle Scholar
JANZEN, D. H. 1977. Why fruits rot, seeds mold, and meat spoils. American Naturalist 111:691713.CrossRefGoogle Scholar
JOHNSON, C. D. & ROMERO, J. 2004. A review of evolution of oviposition guilds in the Bruchidae (Coleoptera). Revista Brasileira de Entomologia 48:401408.CrossRefGoogle Scholar
KAYS, R. W. 1999. Food preferences of kinkajous (Potos flavus): a frugivorous carnivore. Journal of Mammalogy 80:589599.CrossRefGoogle Scholar
KILTIE, R. A. 1981. Distribution of palm fruits on a rain forest floor: why white-lipped peccaries forage near objects. Biotropica 13:141145.CrossRefGoogle Scholar
LEIGH, E. G. 1998. Tropical forest ecology. Oxford University Press. 264 pp.Google Scholar
LEIGH, E. G. & RUBINOFF, I. 2005. Understanding and conserving tropical diversity: perspectives from Barro Colorado Island. Pp. 672 in Bermingham, E., Dick, C. W. & Moritz, C. (eds.). Tropical rainforests: past, present, and future. University of Chicago Press, Chicago.Google Scholar
MOORE, D. 2001. Insects on palm flowers and fruits. Pp. 233266 in Howard, F. W., Giblin-Davis, R., Moore, D. & Abad, R. (eds.). Insects on palms. CABI Publishing, Wallingford.CrossRefGoogle Scholar
MURIE, J. O. 1977. Cues used for cache finding by agouti (Dasyprocta punctata). Journal of Mammalogy 58:9596.CrossRefGoogle Scholar
NOTMAN, E. M. & VILLEGAS, A. C. 2005. Patterns of seed predation by vertebrate versus invertebrate seed predators among different plant species, seasons and spatial distributions. Pp. 5575 in Forget, P. M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.). Seed fate: predation, dispersal, and seedling establishment. CABI, Wallingford.CrossRefGoogle Scholar
POTVIN, C., CANSARI, R., HUTTON, J., CAISAMO, I. & PACHECO, B. 2003. Preparation for propagation: understanding germination of giwa (Astrocaryum standleyanum), wagara (Sabal mauritiiformis), and eba (Socratea exorrhiza) for future cultivation. Biodiversity and Conservation 12:21612171.CrossRefGoogle Scholar
PYKE, C. R., CONDIT, R., AGUILAR, S. & LAO, S. 2001. Floristic composition across a climatic gradient in a Neotropical lowland forest. Journal of Vegetation Science 12:533566.CrossRefGoogle Scholar
RUSSO, S. E. 2005. Linking seed fate to natural dispersal patterns: factors affecting predation and scatter-hoarding of Virola calophylla seeds in Peru. Journal of Tropical Ecology 21:243253.CrossRefGoogle Scholar
SILVA, M. G. & TABARELLI, M. 2001. Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil. Acta Oecologica 22:259268.CrossRefGoogle Scholar
SILVIUS, K. M. 2002. Spatio-temporal patterns of palm endocarp use by three Amazonian forest mammals: granivory or ‘grubivory’? Journal of Tropical Ecology 18:707723.CrossRefGoogle Scholar
SILVIUS, K. M. 2005. Frugivore-mediated interactions among bruchid beetles and palm fruits at Barro Colorado Island, Panama: implications for seed fate. Pp. 4554 in Forget, P. M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.). Seed fate: predation, dispersal, and seedling establishment. CABI Publishing, Wallingford.CrossRefGoogle Scholar
SILVIUS, K. M. & FRAGOSO, J. M. V. 2002. Pulp handling by vertebrate seed dispersers increases palm seed predation by bruchid beetles in the northern Amazon. Journal of Ecology 90:10241032.CrossRefGoogle Scholar
SMYTHE, N. 1978. The natural history of the Central American agouti (Dasyprocta punctata). Smithsonian Contributions to Zoology 257:152.CrossRefGoogle Scholar
SMYTHE, N. 1989. Seed survival in the palm Astrocaryum standleyanum: evidence for dependence upon its seed dispersers. Biotropica 21:5056.CrossRefGoogle Scholar
SMYTHE, N., GLANZ, W. E. & LEIGH, E. G. 1982. Population regulation in some terrestrial frugivores. Pp. 227238 in Leigh, E. G., Rand, A. S. & Windsor, D. M. (eds.). The ecology of a tropical rain forest. Smithsonian Institution Press, Washington DC.Google Scholar
STAPANIAN, M. A. & SMITH, C. C. 1978. A model for seed scatterhoarding: coevolution of fox squirrels and black walnuts. Ecology 59:884896.CrossRefGoogle Scholar
VANDER WALL, S. B. 1990. Food hoarding in animals. University of Chicago Press, Chicago. 445 pp.Google Scholar
VANDER WALL, S. B. 1991. Mechanisms of cache recovery by yellow pine chipmunks. Animal Behaviour 41:851864.CrossRefGoogle Scholar
VANDER WALL, S. B. 1995. Dynamics of yellow pine chipmunk (Tamias amoenus) seed caches: Underground traffic in bitterbrush seeds. Ecoscience 2:261266.CrossRefGoogle Scholar
VANDER WALL, S. B., BECK, M. J., BRIGGS, J. S., ROTH, J. K., THAYER, T. C., HOLLANDER, J. L. & ARMSTRONG, J. M. 2003. Interspecific variation in the olfactory abilities of granivorous rodents. Journal of Mammalogy 84:487496.2.0.CO;2>CrossRefGoogle Scholar
WRIGHT, S. J. 1983. The dispersion of eggs by a bruchid beetle among Scheelea palm seeds and the effect of distance to the parent palm. Ecology 64:10161021.CrossRefGoogle Scholar
WRIGHT, S. J. & DUBER, H. C. 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyracea, with implications for tropical tree diversity. Biotropica 33:583595.CrossRefGoogle Scholar
WRIGHT, S. J., GOMPPER, M. E. & DELEON, B. 1994. Are large predators keystone species in Neotropical forests? The evidence from Barro Colorado Island. Oikos 71:279294.CrossRefGoogle Scholar
WRIGHT, S. J., ZEBALLOS, H., DOMINGUEZ, I., GALLARDO, M. M., MORENO, M. C. & IBANEZ, R. 2000. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conservation Biology 14:227239.CrossRefGoogle Scholar