Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:13:45.206Z Has data issue: false hasContentIssue false

Spontaneous recovery from acalculia

Published online by Cambridge University Press:  28 January 2005

ANNA BASSO
Affiliation:
Department of Neurological Sciences (Neurology Unit), Milan University, Milan, Italy
ALESSANDRA CAPORALI
Affiliation:
Department of Neurological Sciences (Neurology Unit), Milan University, Milan, Italy
PIETRO FAGLIONI
Affiliation:
Neurological Clinic, Modena University, Modena, Italy

Abstract

A topic much considered in research on acalculia was its relationship with aphasia. Far less attention has been given to the natural course of acalculia. In this retrospective study, we examined the relationship between aphasia and acalculia in an unselected series of 98 left-brain-damaged patients and the spontaneous recovery from acalculia in 92 acalculic patients with follow-up. There was a significant association between aphasia and acalculia although 19 participants exhibited aphasia with no acalculia and six acalculia with no aphasia. We observed significant improvement between a first examination carried out between 1 and 5 months post-onset and a second examination carried out between 3 and 11 months later (mean: 5 months). The mechanisms of spontaneous recovery are discussed. (JINS, 2005, 11, 99–107.)

Type
Research Article
Copyright
© 2005 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basso, A. (1992). Prognostic factors in aphasia. Aphasiology, 6, 337348.Google Scholar
Basso, A. & Beschin, N. (2000). Number transcoding and number word spelling in a left-brain-damaged non-aphasic patient. Neurocase, 6, 129139.Google Scholar
Basso, A., Burgio, F., Paulin, M., & Prandoni, P. (2000). Long-term follow-up of ideomotor apraxia. Neuropsychological Rehabilitation, 10, 113.Google Scholar
Basso, A. & Capitani, E. (1979). Un test standardizzato per la diagnosi di acalculia. Descrizione e valori normativi. AP Rivista di Applicazioni Psicologiche, 1, 551564.Google Scholar
Basso, A., Capitani, E., & Vignolo, L.A. (1979). Influence of rehabilitation on language skills in aphasic patients: A controlled study. Archives of Neurology, 36, 190196.Google Scholar
Basso, A. & Caporali, A. (2001). Aphasia therapy or the importance of being earnest. Aphasiology, 15, 307332.Google Scholar
Belin, P., Van Eeckhout, P., Zilbovicious, M., Remy, P., François, C., Guillaume, S., Chain, F., Rancurel, G., & Samson, Y. (1996). Recovery from nonfluent aphasia after melodic intonation therapy: A PET study. Neurology, 47, 15041511.Google Scholar
Bonate, P.Ll (2000). Analysis of pretest–posttest designs. London, England: Chapman & Hall.
Campbell, D.T. & Kenny, D.A. (1999). A primer on regression artifacts. New York: The Guilford Press.
Caporali, A., Burgio, F., & Basso, A. (2000). The natural course of acalculia in left-brain-damaged patients. Neurological Sciences, 21, 143149.Google Scholar
Cappa, S. (1998). Spontaneous recovery from aphasia. In B. Stemmer & H.A. Whitaker (Eds.), Handbook of neurolinguistics (pp. 535545). San Diego, California: Academic Press.
Cipolotti, L., Butterworth, B., & Denes, G. (1991). A specific deficit for numbers in a case of dense acalculia. Brain, 114, 26192637.Google Scholar
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 3746.Google Scholar
Corbett, A.J., McCusker, E.A., & Davidson, O.R. (1986). Acalculia following a dominant-hemisphere subcortical infarct. Archives of Neurology, 43, 964966.Google Scholar
Cummings, J.L., Benson, D.F., Walsh, M.J., & Levine, H. (1979). Left to right transfer of language dominance: A case study. Neurology, 29, 15471550.Google Scholar
Delazer, M., Girelli, L., Semenza, C., & Denes, G. (1999). Numerical skills and aphasia. Journal of the International Neuropsychological Society, 5, 213221.Google Scholar
Deloche, G., Seron, X., Baeta, E., Basso, A., Claros Salinas, D., Gaillard, F., Goldenberg, G., Stachowiak, F.J., Temple, C., Tzavaras, A., & Vendrell, J. (1993). Calculation and number processing: The EC301 assessment battery for brain-damaged adults. In F.J. Stachowiak (Ed.), Developments in the assessment and rehabilitation of brain-damaged patients (pp. 401406). Tubingen, Germany: Gunterr Narr Verlag.
Denes, G., Perazzolo, C., Piani, A., & Piccione, F. (1996). Intensive versus regular speech therapy in global aphasia: A controlled study. Aphasiology, 10, 385394.Google Scholar
De Renzi, E. & Faglioni, P. (1978). Normative data and screening power of a shortened version of the token test. Cortex, 14, 4148.Google Scholar
Diesfeldt, H.F.A. (1993). Progressive decline of semantic memory with preservation of number processing and calculation. Behavioural Neurology, 6, 239242.Google Scholar
Foundas, A.L., Raymer, A., Maher, L.M., Gonzales-Rothi, L.J., & Heilman, K.M. (1993). Recovery in ideomotor apraxia. Journal of Clinical and Experimental Neuropsychology, 15, 44.Google Scholar
Galton, F. (1885). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246263.Google Scholar
Hebb, D.O. (1949). The organization of behavior. A neuropsychological theory. New York: Wiley.
Heiss, W.D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45, 430438.Google Scholar
Henschen, S.E. (1919). Ueber Sprach- Musik- und Rechenmechanismen und ihre Lokalisationen im Grosshirn. Zeitschrift fur die gesamte Neurologie und Psychiatrie, 52, 273298.Google Scholar
Kaplan, E., Goodglass, A., & Weintraub, S. (1983). Boston naming test. Philadelphia, Pannsylvania: Lea & Febiger.
Kertesz, A., Ferro, J.M., & Shewan, C.M. (1984). Apraxia and aphasia. The functional-anatomical basis for their dissociation. Neurology, 30, 4047.Google Scholar
Lampl, Y., Eshel, Y., Gilad, R., & Sarova-Pinhas, I. (1994). Selective acalculia with sparing of the subtraction process in a patient with left parieto-tremporal haemorrhage. Neurology, 44, 17591761.Google Scholar
Laska, A.C., Hellblom, A., Murray, V., Kahan, T., & Von Arbin, M. (2001). Aphasia in acute stroke and relation to outcome. Journal of Internal Medicine, 249, 423422.Google Scholar
Lucchelli, F. & De Renzi, E. (1993). Primary dyscalculia after a medial frontal lesion of the left hemisphere. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 304307.Google Scholar
Martory, M.D., Mayer, E., Pegna, A.J., Annoni, J.M., Landis, T., & Katheb, A. (2003). Pure global acalculia following a left subangular lesion. Neurocase, 9, 319328.Google Scholar
McCandliss, B., Fiez, G., Protopapas, A., Conway, M., & McClelland, J. (2002). Success and failure in teaching the /r/-/l/ contrast to Japanese adults: Tests of a Hebbian model of plasticity and stabilization in spoken language perception. Cognitive, Affective, & Behavioural Neuroscience, 2, 89108.Google Scholar
Miceli, G. & Capasso, R. (1991). I disturbi del calcolo. Milan: Masson.
Miceli, G., Laudanna, A., Burani, C., & Capasso, R. (1994). Batteria per l'Analisi dei Deficit Afasici. Rome: CEPSAG.
Moore, H.W. & Weidner, W. (1974). Bilateral tachistoscopic word perception in aphasic and normal subjects. Perceptual and Motor Skills, 39, 10011011.Google Scholar
Moore, H.W. & Weidner, W. (1975). Dichotic word-perception of aphasic and normal subjects. Perceptual and Motor Skills, 40, 379386.Google Scholar
Naranjo, J.D. & McKean, J.W. (2001). Adjusting for regression effect in uncontrolled studies. Biometrics, 57, 178181.Google Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113.Google Scholar
Papanicolaou, A.C., Levin, H.S., & Eisenberg, H.M. (1984). Evoked potentials correlates of right hemisphere involvement in language recovery in adults. Neurosurgery, 14, 412415.Google Scholar
Papanicolaou, A.C., Moore, B.D., Levin, H.S., & Eisenberg, H.M. (1987). Evoked potentials correlates of right hemisphere involvement in language recovery following stroke. Archives of Neurology, 44, 521524.Google Scholar
Pedersen, P.M., Vinter, K., & Olsen, T.S. (2004). Aphasia after stroke: Type, severity and prognosis. Cerebrovascular Diseases, 17, 3543.Google Scholar
Poeck, K. (1983). What do we mean by “Aphasic Syndromes?” A neurologist's view. Brain and Language, 20, 7989.Google Scholar
Rasmussen, T. & Milner, B. (1977). The role of early left-brain injury in determining lateralization of cerebral speech functions. Annals of the New York Academy of Sciences, 299, 355369.Google Scholar
Raven, J.C. (1965). Guide to using the coloured progressive matrices. London, England: HK. Lewis.
Rosselli, M. & Ardila, A. (1989). Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia, 27, 607617.Google Scholar
Rossor, M.N., Warrington, E., & Cipolotti, L. (1995). The isolation of calculation skills. Journal of Neurology, 242, 7881.Google Scholar
Stone, S.P., Patel, P., Greenwood, R.J., & Halligan, P.W. (1992). Measuring visual neglect in acute stroke and predicting its recovery: The visual neglect recovery index. Journal of Neurology, Neurosurgery, and Psychiatry, 55, 431436.Google Scholar
Takayama, Y., Sugichita, M., Akiguchi, I., & Kimura, J. (1994). Isolated acalculia due to left parietal lesion. Archives of Neurology, 51, 286291.Google Scholar
Thioux, M., Pillon, A., Samson, D., de Partz, M.P., Noel, M.P., & Seron, X. (1998). The isolation of numerals at the semantic level. Neurocase, 4, 371389.Google Scholar
Thulborn, K.R., Carpenter, P.A., & Just, M.A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30, 749754.Google Scholar
Vitali, P., Tettamanti, M., Abutalebi, J., Danna, M., Ansaldo, A.I., Perani, D., Cappa, S., & Joanette, Y. (2003). Recovery from anomia: Effects of specific rehabilitation on brain reorganization: An er-gMRI study in 2 anomic patients. Brain and Language, 87, 126127.Google Scholar
Warburton, E., Price, C.J., Swinburn, K., & Wise, R.J. (1999). Mechanisms of recovery from aphasia. Evidence from positron emission tomography studies. Journal of Neurology, Neurosurgery and Psychiatry, 66, 155161.Google Scholar
Warrington, E. (1982). The fractionation of arithmetical skills: A case study. Quarterly Journal of Experimental Psychology, 34, 3151.Google Scholar