Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:55:04.980Z Has data issue: false hasContentIssue false

Reported Expressive Suppression in Daily Life Is Associated with Slower Action Planning

Published online by Cambridge University Press:  22 June 2016

Madison A. Niermeyer*
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, Utah
Emilie I. Franchow
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, Utah
Yana Suchy
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, Utah
*
Correspondence and reprint requests to: Madison Niermeyer, Department of Psychology, 380 S. 1530 E. Room 502, Salt Lake City, UT, 84112. E-mail: [email protected]

Abstract

Objectives Growing evidence demonstrates that (a) executive functioning (EF) becomes deleteriously affected by engagement in the emotion regulation strategy known as expressive suppression and (b) EF shows considerable functional and neuroanatomical overlap with motor output. The current study aimed to bridge these two literatures by examining the relationships between naturally occurring expressive suppression and several different aspects of motor output, including action planning, action learning, and motor-control speed and accuracy. In addition, we investigated whether any identified relationships could be explained by EF. Methods Fifty-one healthy young adults completed selected subtests from the Delis-Kaplan Executive Function System as indices of EF, a self-report measure of expressive suppression, and a computerized motor sequencing task (Push Turn Taptap task; PTT) designed to assess action planning, action learning, and motor control speed and accuracy. Results Hierarchical regressions using each aspect of PTT performance as the dependent variable revealed that higher than usual self-reported expressive suppression on the day of testing (relative to the 2 weeks preceding testing) was associated with longer action-planning latencies. This relationship was fully explained by EF. No other PTT variables related to expressive suppression on the day of testing. Conclusions These results suggest that increased expressive suppression in daily life is associated with slower action planning, an aspect of motor output that is reliant on EF, highlighting the importance of factors that lead to intra-individual fluctuations in EF and motor performance. (JINS, 2016, 22, 671–681)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 9299. doi:10.1016/j.bandc.2008.03.003 CrossRefGoogle ScholarPubMed
Baldauf, D. (2011). Chunking movements into sequence: The visual pre-selection of subsequent goals. Neuropsychologia, 49(5), 13831387. doi:10.1016/j.neuropsychologia.2011.01.041 CrossRefGoogle ScholarPubMed
Baumeister, R.F., & Alquist, J. (2009). Is there a downside to good self-control? Self and Identity, 8(2), 115130. doi:10.1080/15298860802501474 CrossRefGoogle Scholar
Baumeister, R.F., Vohs, K.D., & Tice, D.M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16(6), 351355.CrossRefGoogle Scholar
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Manual for Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Belanger, H.G., Wilder-Willis, K., Malloy, P., Salloway, S., Hamman, R.F., & Grigsby, J. (2005). Assessing motor and cognitive regulation in AD, MCI, and controls using the Behavioral Dyscontrol Scale. Archives of Clinical Neuropsychology, 20(2), 183189.CrossRefGoogle ScholarPubMed
Berchicci, M., Lucci, G., Pesce, C., Spinelli, D., & Di Russo, F. (2012). Prefrontal hyperactivity in older people during motor planning. Neuroimage, 62(3), 17501760. doi:10.1016/j.neuroimage.2012.06.031 CrossRefGoogle ScholarPubMed
Bray, S.R., Martin Ginis, K.A., & Woodgate, J. (2011). Self-regulatory strength depletion and muscle-endurance performance: A test of the limited-strength model in older adults. Journal of Aging and Physical Activity, 19(3), 177.CrossRefGoogle ScholarPubMed
Buxbaum, L.J., Johnson-Frey, S.H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand–object interactions in apraxia. Neuropsychologia, 43(6), 917929. doi:10.1016/j.neuropsychologia.2004.09.006 CrossRefGoogle ScholarPubMed
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah: Erlbaum.Google Scholar
Cummings, J.L., & Miller, B.L. (2007). Conceptual and clinical aspects of the frontal lobes, The human frontal lobes: Functions and disorders (2nd ed., pp. 1221). New York, NY: Guilford Press.Google Scholar
Euler, M.J., Niermeyer, M.A., & Suchy, Y. (2015). Neurocognitive and neurophysiological correlates of motor planning during familiar and novel contexts. Neuropsychology, 30, 109119. doi:10.1037/neu0000219 CrossRefGoogle ScholarPubMed
Fama, R., & Sullivan, E.V. (2002). Motor sequencing in Parkinson’s disease: Relationship to executive function and motor rigidity. Cortex, 38(5), 753.CrossRefGoogle ScholarPubMed
Fischer, P., Kastenmüller, A., & Asal, K. (2012). Ego depletion increases risk-taking. Journal of Social Psychology, 152(5), 623638. doi:10.1080/00224545.2012.683894 CrossRefGoogle ScholarPubMed
Franchow, E.I., & Suchy, Y. (2015). Naturally-occurring expressive suppression in daily life depletes executive functioning. Emotion, 15(1), 7889. doi:10.1037/emo0000013 CrossRefGoogle ScholarPubMed
Fraser, S.A., Li, K.Z.H., & Penhune, V.B. (2010). Dual-task performance reveals increased involvement of executive control in fine motor sequencing in healthy aging. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 65B(5), 526535. doi:10.1093/geronb/gbq036 CrossRefGoogle Scholar
Giuliani, N.R., Drabant, E.M., Bhatnagar, R., & Gross, J.J. (2011). Emotion regulation and brain plasticity: Expressive suppression use predicts anterior insula volume. Neuroimage, 58(1), 10. doi:10.1016/j.neuroimage.2011.06.028 CrossRefGoogle ScholarPubMed
Glover, S. (2004). Separate visual representations in the planning and control of action. Behavioral and Brain Sciences, 27(1), 324. doi:10.1017/S0140525X04000020 Google ScholarPubMed
Gross, J.J. (2014). Handbook of emotion regulation (2nd ed.). New York: The Guilford Press.Google Scholar
Hartman, E., Houwen, S., Scherder, E., & Visscher, C. (2010). On the relationship between motor performance and executive functioning in children with intellectual disabilities. Journal of Intellectual Disability Research (5), 468477. doi:10.1111/j.1365-2788.2010.01284.x CrossRefGoogle ScholarPubMed
Herman, T., Mirelman, A., Giladi, N., Schweiger, A., & Hausdorff, J.M. (2010). Executive control deficits as a prodrome to falls in healthy older adults: A prospective study linking thinking, walking, and falling. Journals of Gerontology. Series A, Biomedical Sciences and Medical Sciences, 65A(10), 10861092. doi:10.1093/gerona/glq077 CrossRefGoogle Scholar
Heuninckx, S., Wenderoth, N., & Swinnen, S.P. (2008). Systems neuroplasticity in the aging brain: Recruiting additional neural resources for successful motor performance in elderly persons. The Journal of Neuroscience, 28(1), 91. doi:10.1523/JNEUROSCI.3300-07.2008 CrossRefGoogle ScholarPubMed
Hofmann, W., Schmeichel, B.J., & Baddeley, A.D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174180.CrossRefGoogle ScholarPubMed
Homack, S., Lee, D., & Riccio, C.A. (2005). Test review: Delis-Kaplan Executive Function System. Journal of Clinical and Experimental Neuropsychology, 27(5), 599609. doi:10.1080/13803390490918444 CrossRefGoogle ScholarPubMed
Inzlicht, M., & Gutsell, J.N. (2007). Running on empty: Neural signals for self-control failure. Psychological Science, 18(11), 933937. doi:10.1111/j.1467-9280.2007.02004.x CrossRefGoogle ScholarPubMed
Johns, M., Inzlicht, M., & Schmader, T. (2008). Stereotype threat and executive resource depletion: Examining the influence of emotion regulation. Journal of Experimental Psychology: General, 137(4), 691705.CrossRefGoogle ScholarPubMed
Keele, S.W. (1968). Movement control in skilled motor performance. Psychological Bulletin, 70(6), 387403. doi:10.1037/h0026739 CrossRefGoogle Scholar
Knobl, P., Kielstra, L., & Almeida, Q. (2012). The relationship between motor planning and freezing of gait in Parkinson’s disease. Journal of Neurology, Neurosurgery, & Psychiatry, 83(1), 98101.CrossRefGoogle ScholarPubMed
Koziol, L.F. (2014). The myth of executive functioning: Missing elements in conceptualization, evaluation, and assessment. New York: Springer.CrossRefGoogle Scholar
Kraybill, M.L., & Suchy, Y. (2008). Evaluating the role of motor regulation in figural fluency: Partialing variance in the Ruff Figural Fluency Test. Journal of Clinical and Experimental Neuropsychology, 30(8), 903912. doi:10.1080/13803390701874361 CrossRefGoogle ScholarPubMed
Kraybill, M.L., & Suchy, Y. (2011). Executive functioning, motor programming, and functional independence: Accounting for variance, people, and time. The Clinical Neuropsychologist, 25(2), 210223. doi:10.1080/13854046.2010.542489 CrossRefGoogle ScholarPubMed
Kraybill, M.L., Thorgusen, S.R., & Suchy, Y. (2013). The Push-Turn-Taptap task outperforms measures of executive functioning in predicting declines in functionality: Evidence-based approach to test validation. The Clinical Neuropsychologist, 27(2), 238255. doi:10.1080/13854046.2012.735702 CrossRefGoogle ScholarPubMed
Larson, J.G., & Suchy, Y. (2014). Does language guide behavior in children with autism? Journal of Autism and Developmental Disorders, 44(9), 21472161. doi:10.1007/s10803-014-2089-7 CrossRefGoogle Scholar
Larson, J.G., & Suchy, Y. (2015). The contribution of verbalization to action. Psychological Research, 79(4), 590608. doi:10.1007/s00426-014-0586-0 CrossRefGoogle Scholar
Lewthwaite, R., & Wulf, G. (2010). Grand challenge for movement science and sport psychology: Embracing the social-cognitive-affective-motor nature of motor behavior. Frontiers in Psychology, 1, 42. doi:10.3389/fpsyg.2010.00042 CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York: Oxford University Press.Google Scholar
Marchand, W.R., Lee, J.N., Suchy, Y., Garn, C., Chelune, G., Johnson, S., & Wood, N. (2013). Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Human Brain Mapping, 34(5), 11941207. doi:10.1002/hbm.21505 CrossRefGoogle ScholarPubMed
Marchand, W.R., Lee, J.N., Suchy, Y., Garn, C., Johnson, S., Wood, N., & Chelune, G. (2011). Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Neuroimage, 55(1), 194203. doi:10.1016/j.neuroimage.2010.12.030 CrossRefGoogle ScholarPubMed
McDermott, L.M., & Ebmeier, K.P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1-3), 18. doi:10.1016/j.jad.2009.04.022 CrossRefGoogle ScholarPubMed
Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., & Hausdorff, J.M. (2012). Executive function and falls in older adults: New findings from a five-year prospective study link fall risk to cognition. PLoS One, 7(6), e40297. doi:10.1371/journal.pone.0040297 CrossRefGoogle ScholarPubMed
Muraven, M., Tice, D.M., & Baumeister, R.F. (1998). Self-control as limited resource: Regulatory depletion patterns. Journal of Personality and Social Psychology, 74(3), 774789. doi:10.1037/0022-3514.74.3.774 CrossRefGoogle ScholarPubMed
Murray, G.K., Veijola, J., Moilanen, K., Miettunen, J., Glahn, D.C., Cannon, T.D., & Isohanni, M. (2006). Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. Journal of Child Psychology and Psychiatry, 47(1), 2529. doi:10.1111/j.1469-7610.2005.01450.x CrossRefGoogle Scholar
Nadkarni, N.K., Zabjek, K., Lee, B., McIlroy, W.E., & Black, S.E. (2010). Effect of working memory and spatial attention tasks on gait in healthy young and older adults. Motor Control, 14(2), 195210.CrossRefGoogle ScholarPubMed
Pangelinan, M.M., Zhang, G., VanMeter, J.W., Clark, J.E., Hatfield, B.D., & Haufler, A.J. (2011). Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage, 54(4), 30933100. doi:10.1016/j.neuroimage.2010.11.021 CrossRefGoogle ScholarPubMed
Preacher, K.J., Curran, P.J., & Bauer, D.J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(3), 437448.CrossRefGoogle Scholar
Ridler, K., Veijola, J.M., Tanskanen, P., Miettunen, J., Chitnis, X., Suckling, J., &Bullmore, E.T. (2006). Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 1565115656. doi:10.1073/pnas.0602639103 CrossRefGoogle ScholarPubMed
Rigoli, D., Piek, J.P., Kane, R., & Oosterlaan, J. (2012). An examination of the relationship between motor coordination and executive functions in adolescents. Developmental Medicine & Child Neurology, 54(11), 10251031. doi:10.1111/j.1469-8749.2012.04403.x CrossRefGoogle ScholarPubMed
Robinson, D.G., Woerner, M.G., Alvir, J.M., Bilder, R.M., Hinrichsen, G.A., & Lieberman, J.A. (2002). Predictors of medication discontinuation by patients with first-episode schizophrenia and schizoaffective disorder. Schizophrenia Research, 57(2), 209219. doi:10.1016/S0920-9964(01)00312-7 CrossRefGoogle ScholarPubMed
Schmeichel, B.J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136(2), 241255.CrossRefGoogle ScholarPubMed
Stone, J., Chalabaev, A., & Harrison, K. (2012). The impact of stereotype threat on performance in sports. In M.S. Inzlicht, T. Schmader (Ed.), Stereotype threat: Theory, process, and application (pp. 217230). New York: New York: Oxford University Press.Google Scholar
Stuss, D.T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759. doi:10.1017/S1355617711000695 CrossRefGoogle ScholarPubMed
Stuss, D.T., Picton, T.W., & Alexander, M.P. (2001). Consciousness, self-awareness, and the frontal lobes. In S.P. Salloway, P.F. Malloy, & J.D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 101109). Arlington, VA: American Psychiatric Publishing, Inc.Google Scholar
Suchy, Y. (2009). Executive functioning: Overview, assessment, and research issues for non-neuropsychologists. Annals of Behavioral Medicine, 37(2), 106. doi:10.1007/s12160-009-9097-4 CrossRefGoogle ScholarPubMed
Suchy, Y. (2011). Clinical neuropsychology of emotion. New York: Guilford Press.Google Scholar
Suchy, Y. (2016). Executive functioning: A comprehensive guide for clinical practice. New York: Oxford Press.Google Scholar
Suchy, Y., Derbidge, C., & Cope, C. (2005). Behavioral dyscontrol scale-electronic version: First examination of reliability, validity and incremental utility. The Clinical Neuropsychologist, 19(1), 426. doi:10.1080/13854040490888585 CrossRefGoogle ScholarPubMed
Suchy, Y., & Kraybill, M.L. (2007). The relationship between motor programming and executive abilities: Constructs measured by the Push–Turn–Taptap task from the Behavioral Dyscontrol Scale–Electronic Version. Journal of Clinical and Experimental Neuropsychology, 29(6), 648659. doi:10.1080/13803390600910506 CrossRefGoogle ScholarPubMed
Suchy, Y., Kraybill, M.L., & Franchow, E.I. (2011). Practice effect and beyond: Reaction to novelty as an independent predictor of cognitive decline among older adults. Journal of the International Neuropsychological Society, 17(01), 101111.CrossRefGoogle ScholarPubMed
Suchy, Y., Kraybill, M.L., & Larson, J.G. (2010). Understanding design fluency: Motor and executive contributions. Journal of the International Neuropsychological Society, 16(1), 2637. doi:10.1017/S1355617709990804 CrossRefGoogle ScholarPubMed
Uemura, K., Yamada, M., Nagai, K., & Ichihashi, N. (2011). Older adults at high risk of falling need more time for anticipatory postural adjustment in the precrossing phase of obstacle negotiation. Journals of Gerontology. Series A, Biomedical Sciences and Medical Sciences, 66A(8), 904909. doi:10.1093/gerona/glr081 CrossRefGoogle Scholar
Vohs, K.D., Baumeister, R.F., Schmeichel, B.J., Twenge, J.M., Nelson, N.M., & Tice, D.M. (2008). Making choices impairs subsequent self-control: A limited-resource account of decision making, self-regulation, and active initiative. Journal of Personality and Social Psychology, 94(5), 883898. doi:10.1037/0022-3514.94.5.883 CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). WAIS-III administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Willingham, D.B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105(3), 558584.CrossRefGoogle ScholarPubMed
Wolpert, D.M., Ghahramani, Z., & Flanagan, J.R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5(11), 487494. doi:10.1016/S1364-6613(00)01773-3 CrossRefGoogle ScholarPubMed