Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:00:43.888Z Has data issue: false hasContentIssue false

Reduced Error Recognition Explains Post-Error Slowing Differences among Children with Attention Deficit Hyperactivity Disorder

Published online by Cambridge University Press:  07 September 2021

Anne B. Arnett*
Affiliation:
Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, USA
Candace Rhoads
Affiliation:
College of Education, University of Washington, Seattle, WA, USA
Tara M. Rutter
Affiliation:
Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, USA Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
*
*Correspondence and reprint requests to: Anne B. Arnett, University of Washington, CHDD, Box 357920, Seattle, WA98195, USA. Tel:+616-6929. Fax: +598-7815. Email: [email protected]

Abstract

Objective:

Youth with attention deficit hyperactivity disorder (ADHD) often show reduced post-error slowing (PES) compared to typically developing controls. This finding has been interpreted as evidence that children with ADHD have error recognition and adaptive control impairments. However, several studies report mixed results regarding PES differences in ADHD, and among healthy controls, there is considerable debate about the cognitive-behavioral origin of PES.

Methods:

We tested competing hypotheses aimed at clarifying whether reduced PES in children with ADHD is due to impaired error detection, deficits in adaptive control, and/or attention orienting to novelty. Children aged 7–11 years with a diagnosis of ADHD (n = 74) and controls (n = 30) completed four laboratory-based computer tasks with variable cognitive loads and error types.

Results:

ADHD diagnosis was associated with shorter PES only on a task with high cognitive load and low error-cuing, consistent with impaired error recognition. In contrast, there was no evidence of impaired adaptive control or heightened novelty orienting among children with ADHD.

Conclusions:

The cognitive-behavioral origin of PES is multifactorial, but reduced PES among children with an ADHD diagnosis is due to impaired error recognition during cognitively demanding tasks. Behavioral interventions that scaffold error recognition may facilitate improved performance among children with ADHD.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T.M. & Rescorla, L.A. (2014). The Achenbach system of empirically based assessment (ASEBA) for ages 1.5 to 18 years. In The use of psychological testing for treatment planning and outcomes assessment (pp. 179–214). Routledge.Google Scholar
American Psychiatric Association (APA). (2013). Diagnostic and statistical manual of mental disorders: DSM-5. United States.Google Scholar
Arnett, A.B., Pennington, B.F., Friend, A., Willcutt, E.G., Byrne, B., Samuelsson, S., & Olson, R.K. (2013). The SWAN captures variance at the negative and positive ends of the ADHD symptom dimension. Journal of Attention Disorders, 17(2), 152162.CrossRefGoogle ScholarPubMed
Balogh, L. & Czobor, P. (2016). Post-error slowing in patients with ADHD: a meta-analysis. Journal of Attention Disorders, 20(12), 10041016.CrossRefGoogle ScholarPubMed
Banaschewski, T., Brandeis, D., Heinrich, H., Albrecht, B., Brunner, E., & Rothenberger, A. (2003). Association of ADHD and conduct disorder–brain electrical evidence for the existence of a distinct subtype. Journal of Child Psychology and Psychiatry, 44(3), 356376.CrossRefGoogle ScholarPubMed
Beike, S.M. & Zentall, S.S. (2012). “The snake raised its head”: Content novelty alters the reading performance of students at risk for reading disabilities and ADHD. Journal of Educational Psychology, 104(3), 529.CrossRefGoogle Scholar
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 11651188.CrossRefGoogle Scholar
Bress, J.N., Meyer, A., & Hajcak, G. (2015). Differentiating anxiety and depression in children and adolescents: Evidence from event-related brain potentials. Journal of Clinical Child & Adolescent Psychology, 44(2), 238249.CrossRefGoogle ScholarPubMed
Clarke, A.R., Barry, R.J., McCarthy, R., & Selikowitz, M. (2001). EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112(11), 20982105.CrossRefGoogle ScholarPubMed
Danielmeier, C. & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.CrossRefGoogle ScholarPubMed
Di Gregorio, F., Maier, M.E., & Steinhauser, M. (2018). Errors can elicit an error positivity in the absence of an error negativity: Evidence for independent systems of human error monitoring. Neuroimage, 172, 427436.CrossRefGoogle ScholarPubMed
Dutilh, G., van Ravenzwaaij, D., Nieuwenhuis, S., van der Maas, H.L., Forstmann, B.U., & Wagenmakers, E.-J. (2012). How to measure post-error slowing: a confound and a simple solution. Journal of Mathematical Psychology, 56(3), 208216.CrossRefGoogle Scholar
Dutilh, G., Vandekerckhove, J., Forstmann, B.U., Keuleers, E., Brysbaert, M., & Wagenmakers, E.-J. (2012). Testing theories of post-error slowing. Attention, Perception, & Psychophysics, 74(2), 454465.CrossRefGoogle ScholarPubMed
Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26(6), 17141720.CrossRefGoogle Scholar
Epstein, J.N., Hwang, M.E., Antonini, T., Langberg, J.M., Altaye, M., & Arnold, L.E. (2010). Examining predictors of reaction times in children with ADHD and normal controls. Journal of the International Neuropsychological Society: JINS, 16(1), 138.CrossRefGoogle ScholarPubMed
Fair, D.A., Bathula, D., Nikolas, M.A., & Nigg, J.T. (2012). Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proceedings of the National Academy of Sciences, 109(17), 67696774.CrossRefGoogle ScholarPubMed
Geburek, A., Rist, F., Gediga, G., Stroux, D., & Pedersen, A. (2013). Electrophysiological indices of error monitoring in juvenile and adult attention deficit hyperactivity disorder (ADHD)—a meta-analytic appraisal. International Journal of Psychophysiology, 87(3), 349362.CrossRefGoogle ScholarPubMed
Gow, R.V., Rubia, K., Taylor, E., Vallée-Tourangeau, F., Matsudaira, T., Ibrahimovic, A., & Sumich, A. (2012). Abnormal centroparietal ERP response in predominantly medication-naive adolescent boys with ADHD during both response inhibition and execution. Journal of Clinical Neurophysiology, 29(2), 181189.CrossRefGoogle ScholarPubMed
Groom, M.J., Cahill, J.D., Bates, A.T., Jackson, G.M., Calton, T.G., Liddle, P.F., & Hollis, C. (2010). Electrophysiological indices of abnormal error-processing in adolescents with attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 51(1), 6676.CrossRefGoogle Scholar
Hester, R., Foxe, J.J., Molholm, S., Shpaner, M., & Garavan, H. (2005). Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage, 27(3), 602608.CrossRefGoogle Scholar
Jonkman, L.M., Kemner, C., Verbaten, M.N., Koelega, H.S., Camfferman, G., vd Gaag, R.-J., … van Engeland, H. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41(5), 595611.CrossRefGoogle ScholarPubMed
Jonsdottir, S., Bouma, A., Sergeant, J.A., & Scherder, E.J. (2006). Relationships between neuropsychological measures of executive function and behavioral measures of ADHD symptoms and comorbid behavior. Archives of Clinical Neuropsychology, 21(5), 383394.CrossRefGoogle ScholarPubMed
Kazdin, A.E. (1997). Parent management training: Evidence, outcomes, and issues. Journal of the American Academy of Child & Adolescent Psychiatry, 36(10), 13491356.CrossRefGoogle ScholarPubMed
Keage, H.A., Clark, C.R., Hermens, D.F., Kohn, M.R., Clarke, S., Williams, L.M., … Gordon, E. (2006). Distractibility in AD/HD predominantly inattentive and combined subtypes: the P3a ERP component, heart rate and performance. Journal of Integrative Neuroscience, 5(01), 139158.CrossRefGoogle ScholarPubMed
King, J.A., Korb, F.M., von Cramon, D.Y., & Ullsperger, M. (2010). Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. Journal of Neuroscience, 30(38), 1275912769.CrossRefGoogle ScholarPubMed
Klein, T.A., Endrass, T., Kathmann, N., Neumann, J., von Cramon, D.Y., & Ullsperger, M. (2007). Neural correlates of error awareness. Neuroimage, 34(4), 17741781.CrossRefGoogle ScholarPubMed
Logan, G.D., Cowan, W.B., & Davis, K.A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276.Google Scholar
Loo, S.K., McGough, J.J., McCracken, J.T., & Smalley, S.L. (2018). Parsing heterogeneity in attention-deficit hyperactivity disorder using EEG-based subgroups. Journal of Child Psychology and Psychiatry, 59(3), 223231.CrossRefGoogle ScholarPubMed
Michelini, G., Kitsune, G.L., Cheung, C.H., Brandeis, D., Banaschewski, T., Asherson, P., … Kuntsi, J. (2016). Attention-deficit/hyperactivity disorder remission is linked to better neurophysiological error detection and attention-vigilance processes. Biological Psychiatry, 80(12), 923932.CrossRefGoogle ScholarPubMed
Mohamed, S.M., Börger, N.A., Geuze, R.H., & van der Meere, J.J. (2016). Post-error adjustments and ADHD symptoms in adults: the effect of laterality and state regulation. Brain and Cognition, 108, 1119.CrossRefGoogle ScholarPubMed
Moser, J., Moran, T., Schroder, H., Donnellan, B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: a meta-analysis and conceptual framework. Frontiers in Human Neuroscience, 7, 466.CrossRefGoogle ScholarPubMed
Mullane, J.C., Corkum, P.V., Klein, R.M., McLaughlin, E.N., & Lawrence, M.A. (2011). Alerting, orienting, and executive attention in children with ADHD. Journal of Attention Disorders, 15(4), 310320.CrossRefGoogle ScholarPubMed
Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: an orienting account. Cognition, 111(2), 275279.CrossRefGoogle Scholar
Núňez Castellar, E., Kühn, S., Fias, W., & Notebaert, W. (2010). Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 270278.CrossRefGoogle Scholar
Parmentier, F.B., Vasilev, M.R., & Andrés, P. (2019). Surprise as an explanation to auditory novelty distraction and post-error slowing. Journal of Experimental Psychology: General, 148(1), 192.CrossRefGoogle ScholarPubMed
Reale, L., Bartoli, B., Cartabia, M., Zanetti, M., Costantino, M.A., Canevini, M.P., … Bonati, M. (2017). Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. European Child & Adolescent Psychiatry, 26(12), 14431457.CrossRefGoogle ScholarPubMed
Regev, S. & Meiran, N. (2014). Post-error slowing is influenced by cognitive control demand. Acta Psychologica, 152, 1018.CrossRefGoogle ScholarPubMed
Schachar, R.J., Chen, S., Logan, G.D., Ornstein, T.J., Crosbie, J., Ickowicz, A., & Pakulak, A. (2004). Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 32(3), 285293.CrossRefGoogle ScholarPubMed
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime (version 2.0). Computer software and manual]. Pittsburgh, PA: Psychology Software Tools Inc.Google Scholar
Sergeant, J. (2000). The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder. Neuroscience & Biobehavioral Reviews, 24(1), 712.CrossRefGoogle ScholarPubMed
Seymour, K.E., Mostofsky, S.H., & Rosch, K.S. (2016). Cognitive load differentially impacts response control in girls and boys with ADHD. Journal of Abnormal Child Psychology, 44(1), 141154.CrossRefGoogle ScholarPubMed
Shiels, K. & Hawk, L.W. Jr (2010). Self-regulation in ADHD: The role of error processing. Clinical Psychology Review, 30(8), 951961.CrossRefGoogle ScholarPubMed
Swanson, J.M., Schuck, S., Porter, M.M., Carlson, C., Hartman, C.A., Sergeant, J.A., … Lakes, K. (2012). Categorical and dimensional definitions and evaluations of symptoms of ADHD: history of the SNAP and the SWAN rating scales. The International Journal of Educational and Psychological Assessment, 10(1), 51.Google ScholarPubMed
Tegelbeckers, J., Schares, L., Lederer, A., Bonath, B., Flechtner, H.-H., & Krauel, K. (2016). Task-irrelevant novel sounds improve attentional performance in children with and without ADHD. Frontiers in Psychology, 6, 1970.CrossRefGoogle ScholarPubMed
Toplak, M.E., Bucciarelli, S.M., Jain, U., & Tannock, R. (2008). Executive functions: performance-based measures and the behavior rating inventory of executive function (BRIEF) in adolescents with attention deficit/hyperactivity disorder (ADHD). Child Neuropsychology, 15(1), 5372.CrossRefGoogle Scholar
Townsend, L., Kobak, K., Kearney, C., Milham, M., Andreotti, C., Escalera, J., … Kaufman, J. (2019). Development of Three Web-Based Computerized Versions of the Kiddie Schedule for Affective Disorders and Schizophrenia Child Psychiatric Diagnostic Interview: Preliminary Validity Data. Journal of the American Academy of Child and Adolescent Psychiatry, 59(2), 309325.CrossRefGoogle ScholarPubMed
Ullsperger, M., Fischer, A.G., Nigbur, R., & Endrass, T. (2014). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Sciences, 18(5), 259267.CrossRefGoogle ScholarPubMed
Van De Voorde, S., Roeyers, H., & Wiersema, J.R. (2010). Error monitoring in children with ADHD or reading disorder: An event-related potential study. Biological Psychology, 84(2), 176185.CrossRefGoogle ScholarPubMed
van Meel, C.S., Heslenfeld, D.J., Oosterlaan, J., & Sergeant, J.A. (2007). Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Research, 151(3), 211220.CrossRefGoogle ScholarPubMed
van Mourik, R., Oosterlaan, J., Heslenfeld, D.J., Konig, C.E., & Sergeant, J.A. (2007). When distraction is not distracting: A behavioral and ERP study on distraction in ADHD. Clinical Neurophysiology, 118(8), 18551865.CrossRefGoogle ScholarPubMed
Volkow, N.D., Wang, G.-J., Kollins, S.H., Wigal, T.L., Newcorn, J.H., Telang, F., … Ma, Y. (2009). Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA, 302(10), 10841091.CrossRefGoogle ScholarPubMed
Wessel, J.R., Danielmeier, C., Morton, J.B., & Ullsperger, M. (2012). Surprise and error: common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 75287537.CrossRefGoogle ScholarPubMed
Wiersema, J., Van der Meere, J., & Roeyers, H. (2005). ERP correlates of impaired error monitoring in children with ADHD. Journal of Neural Transmission, 112(10), 14171430.CrossRefGoogle ScholarPubMed
Willcutt, E.G., Doyle, A.E., Nigg, J.T., Faraone, S.V., & Pennington, B.F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 13361346.CrossRefGoogle ScholarPubMed