Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:34:04.604Z Has data issue: false hasContentIssue false

Physical Activity Associated with Increased Resting-State Functional Connectivity in Multiple Sclerosis

Published online by Cambridge University Press:  11 October 2011

Ruchika Shaurya Prakash*
Affiliation:
Department of Psychology, The Ohio State University, Columbus, Ohio
Beth Patterson
Affiliation:
Department of Psychology, The Ohio State University, Columbus, Ohio
Alisha Janssen
Affiliation:
Department of Psychology, The Ohio State University, Columbus, Ohio
Amir Abduljalil
Affiliation:
Department of Radiology, The Ohio State University, Columbus, Ohio
Aaron Boster
Affiliation:
Department of Neurology, The Ohio State University, Columbus, Ohio
*
Correspondence and reprint requests to: Ruchika Shaurya Prakash, Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210. E-mail: [email protected]

Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, resulting in physical, cognitive and affective disturbances, with notable declines in the ability to learn and retain new information. In this study, we examined if higher levels of physical activity in MS individuals were associated with an increased resting-state connectivity of the hippocampus and cortex, resulting in better performance on a task of episodic memory. Forty-five individuals with a clinically definite diagnosis of MS were recruited for the study. Consistent with previous reports, hippocampus was functionally connected to the posteromedial cortex, parahippocampal gyrus, superior frontal gyrus, and the medial frontal cortex. Higher levels of physical activity in MS patients were associated with an increased coherence between the hippocampus and the posteromedial cortex (PMC). The increased connectivity between these two regions, in turn, was predictive of better relational memory, such that MS patients who showed an increased coherence between the left (not right) hippocampus and the PMC also showed better relational memory. Results of the study are interpreted in light of the challenge of disentangling effects of physical activity from effects of disease severity and its neuropathological correlates. (JINS, 2011, 17, 986–997)

Type
Symposium
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amato, M.P., Ponziani, G., Rossi, F., Liedl, C.L., Stefanile, C., Rossi, L. (2001). Quality of life in multiple sclerosis: The impact of depression, fatigue and disability. Multiple Sclerosis, 7, 340344. doi:10.1177/135245850100700511CrossRefGoogle ScholarPubMed
Anderson, B.J., Rapp, D.N., Baek, D.H., McCloskey, D.P., Coburn-Litvak, P.S., Robinson, J.K. (2000). Exercise influences spatial learning in the radial arm maze. Physiology and Behavior, 70, 425429. doi:10.1016/S0031-9384(00)00282-1CrossRefGoogle ScholarPubMed
Angevaren, M., Aufdemkampe, G., Verhaar, H.J., Aleman, A., Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment (Review). The Cochrane Database of Systematic Reviews, 3, CD005381. doi:10.1002/14651858.CD005381.pub2Google Scholar
Audoin, B., Duong, M.V., Malikova, I., Confort-Gouny, S., Ibarrola, D., Cozzone, P., Ranjeva, J.P. (2006). Functional magnetic resonance imaging and cognition at the very early stage of MS. Journal of the Neurological Sciences, 245, 8791.CrossRefGoogle ScholarPubMed
Balcer, L. (2001). Clinical outcome measures for research in multiple sclerosis. Journal of Neuro-Opthalmology, 21(4), 296301.CrossRefGoogle ScholarPubMed
Beckmann, C.F., Jenkinson, M., Smith, S.M. (2003). General multi-level linear modeling for group analysis in fMRI. Neuroimage, 20, 10521063. doi:10.1016/S1053-8119(03)00435-XCrossRefGoogle Scholar
Benedict, R.H., Ramasamy, D., Munschauer, F., Weinstock-Guttman, B., Zivadinov, R. (2010). Memory impairment in multiple sclerosis: Correlation with deep grey matter and mesial temporal atrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 80, 201206. doi:10.1136/jnnp.2008.148403CrossRefGoogle Scholar
Binder, J.R., Frost, J.A., Hammeke, T.A., Bellgowan, P.S., Rao, S.M., Cox, R.W. (1999). Conceptual processing during the conscious resting state: A functional MRI study. Journal of Cognitive Neuroscience, 11, 8095.CrossRefGoogle Scholar
Bobholz, J.A., Gleason, A., Miller, S. (2008). Understanding and managing cognitive dysfunction in multiple sclerosis. Handbook of Clinical Neurology, 89, 705717. doi:10.1016/S0072-9752(07)01263-8CrossRefGoogle ScholarPubMed
Borst, S.E., De Hoyos, D.V., Garzarella, L., Vincent, K., Pollock, B.H., Lowenthal, D.T., Pollock, M.L. (2001). Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Medicine & Science in Sports & Exercise, 33, 648653.CrossRefGoogle ScholarPubMed
Bowen, J., Gibbons, L., Gianas, A., Kraft, G.H. (2001). Self-administered expanded disability status scale with functional system scores correlates well with a physician- administered test. Multiple Sclerosis, 7, 201206. doi:10.1177/135245850100700311CrossRefGoogle ScholarPubMed
Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. doi:10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Bugg, J.M., Head, D. (2009). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32, 506514. doi:10.1016/j.neurobiolaging.2009.03.008CrossRefGoogle ScholarPubMed
Burdette, J.H., Laurienti, P.J., Espeland, M.A., Morgan, A., Telesford, Q., Vechlekar, C.D., Rejeski, W.J. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2, 110. doi:10.3389/fnagi.2010.00023Google ScholarPubMed
Cassilhas, R.C., Viana, V.A., Grassmann, V., Santos, R.T., Santos, R.F., Tufik, S., Mello, M.T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine & Science in Sports & Exercise, 39, 14011407. doi:I0.1249/mss.0b013e318060l11fCrossRefGoogle ScholarPubMed
Chaddock, L., Erickson, K.I., Prakash, R.S., Kim, J.S., Voss, M.W., Vanpatter, M., Kramer, A.F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172183. doi:10.1016/j.brainres.2010.08.049CrossRefGoogle ScholarPubMed
Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology: Medical Sciences, 61A, 11661170.Google Scholar
Colcombe, S., Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125130.CrossRefGoogle ScholarPubMed
Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 33163321.CrossRefGoogle ScholarPubMed
Creer, D.J., Romberg, C., Saksida, L.M., van Praag, H., Bussey, T.J. (2010). Running enhances spatial pattern separation in mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 23672372. doi:10.1073/pnas.0911725107CrossRefGoogle ScholarPubMed
Cutajar, R., Ferriani, R., Scandellari, C., Sabattini, L., Trocino, C., Marchello, L.P., Stecchi, S. (2000). Cognitive function and quality of life in multiple sclerosis patients. Journal of Neurovirology, 6, S186S190.Google ScholarPubMed
Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J., Barkhof, F., Scheltens, P., Stam, C.J., Rombouts, S.A. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18, 18561864. doi:10.1093/cercor/bhm207CrossRefGoogle Scholar
Damoiseaux, J.S., Greicius, M.D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure and Function, 213, 525533. doi:10.1007/s00429-009-0208-6CrossRefGoogle Scholar
Daselaar, S.M., Prince, S.E., Dennis, N.A., Hayes, S.M., Kim, H., Cabeza, R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Frontiers in Human Neuroscience, 3, 110. doi:10.3389/neuro.09.013.2009CrossRefGoogle ScholarPubMed
Daselaar, S.M., Veltman, D.J., Witter, M.P. (2004). Common pathway in the medial temporal lobe for storage and recovery of words as revealed by event-related functional MRI. Hippocampus, 14, 163169. doi:10.1002/hipo.10158CrossRefGoogle ScholarPubMed
Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16, 693700. doi:10.1016/j.conb.2006.10.012CrossRefGoogle ScholarPubMed
Dennis, N.A., Hayes, S.M., Prince, S.E., Madden, D.J., Huettel, S.A., Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 791808. doi:10.1037/0278–7393.34.4.791Google ScholarPubMed
Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A., Petersen, S.E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Science of the United States of America, 104, 1107311078. doi:10.1073/pnas.0704320104CrossRefGoogle ScholarPubMed
Ebner, N.C., Riediger, M., Lindenberger, U. (2010). FACES – A database of facial expressions in young, middle-aged, and older women, and men: Development and validation. Behavior Research Methods, 42, 351362.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Cohen, N.J. (2001). From conditioning to conscious recollection: memory systems of the brain. New York: Oxford University Press.Google Scholar
Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Hu, L., Morris, K.S., Kramer, A.F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 10, 10301039. doi:10.1002/hipo.20547CrossRefGoogle Scholar
Erickson, K.I., Raji, C.A., Lopez, O.L., Becker, J.T., Rosano, C., Newman, A.B., Kuller, L.H. (2010). Physical activity predicts gray matter volume in late adulthood: The cardiovascular health study. Neurology, 75, 14151422. doi:10.1212/WNL.0b013e3181f88359CrossRefGoogle ScholarPubMed
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 30173022.CrossRefGoogle ScholarPubMed
Etnier, J.L., Nowell, P.M., Landers, D.M., Sibley, B.A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52, 119130.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 185198. doi:10.1016/0022-3956(75)90026-6Google Scholar
Fordyce, D.E., Wehner, J.M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Research, 619, 111119. doi:10.1016/0006-8993(93)91602-OCrossRefGoogle ScholarPubMed
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 96739678. doi:10.1073/pnas.0504136102CrossRefGoogle ScholarPubMed
Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26, 1529. doi:10.1002/hbm.20113CrossRefGoogle ScholarPubMed
Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 28362845. doi:10.1016/j.neuropsychologia.2006.06.017CrossRefGoogle ScholarPubMed
Gold, S.M., Schulz, K.H., Hartmann, S., Mladek, M., Lang, U.E., Hellweg, R. (2003). Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of Neuroimmunology, 138, 99105. doi:10.1016/S0165-5728(03)00121-8CrossRefGoogle ScholarPubMed
Gosney, J.L., Scott, J.A., Snook, E.M., Motl, R.W. (2007). Physical activity and multiple sclerosis: Validity of self-report and objective measures. Family and Community Health, 30, 144150.CrossRefGoogle ScholarPubMed
Grady, C.L., Protzner, A.B., Kovacevic, N., Strother, S.C., Afshin-Pour, B., Wojtowicz, M., McIntosh, A.R. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20, 14321447. doi:10.1093/cercor/bhp207CrossRefGoogle ScholarPubMed
Greicius, M. (2008). Resting state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424430. doi:10.1079/WCO.0b013e328306f2c5CrossRefGoogle ScholarPubMed
Greicius, M.D., Krasnow, B., Reis, A.L., Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101, 46374642.CrossRefGoogle ScholarPubMed
Heyn, P., Abreu, B.C., Ottenbacher, K.J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85, 16941704.CrossRefGoogle ScholarPubMed
Jacobs, D.R., Ainsworth, B.E., Hartman, T.J., Leon, A.S. (1993). A simultaneous evaluation of 10 commonly used physical activity questionnaires. Medicine & Science in Sports & Exercise, 25, 8191.CrossRefGoogle ScholarPubMed
Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z., Buckner, R.L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 129139. doi:10.1152/jn.00077.2008CrossRefGoogle ScholarPubMed
Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527537.CrossRefGoogle ScholarPubMed
Kim, H., Daselaar, S.M., Cabeza, R. (2010). Overlapping brain activity between episodic memory encoding and retrieval; roles of the task-positive and task- negative networks. NeuroImage, 49, 10451054.CrossRefGoogle ScholarPubMed
Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 33, 14441452.CrossRefGoogle ScholarPubMed
Liu-Ambrose, T., Nagamatsu, L.S., Graf, P., Beattie, B.L., Ashe, M.C., Handy, T.C. (2010). Resistance training and executive functions. A 12-month randomized controlled trial. Archives of Internal Medicine, 170, 170178.CrossRefGoogle ScholarPubMed
Lowe, M.J., Phillips, M.D., Lurito, J.T., Mattson, D., Dzemidizic, M., Matthews, V.P. (2002). Multiple sclerosis: Low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity--Initial results. Radiology, 224, 184192.CrossRefGoogle ScholarPubMed
Mennes, M., Zuo, X.N., Kelly, C., Di Martino, A., Zang, Y.F., Biswal, B., Milham, M.P. (2010). Inter-individual differences in resting state functional connectivity predict task-induced BOLD activity. NeuroImage, 50, 16901701. doi:10.1016/j.neuroimage.2010.01.002CrossRefGoogle ScholarPubMed
Miller, G.A., Chapman, J.P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 4048.CrossRefGoogle ScholarPubMed
Nichol, K.E., Parachikova, A.I., Cotman, C.W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184, 124132. doi:10.1016/j.bbr.2007.06.027CrossRefGoogle ScholarPubMed
Otten, L.J., Rugg, M.D. (2001). When more means less: Neural activity related to unsuccessful memory encoding. Current Biology, 11, 15281530.CrossRefGoogle ScholarPubMed
Pajonk, F.-G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67, 133143.CrossRefGoogle ScholarPubMed
Patenaude, B., Smith, S., Kennedy, D. Jenkinson, M. (2011). A bayesian model of shape and appearance for subcortical brain. NeuroImage, 56, 907922.CrossRefGoogle ScholarPubMed
Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 56385643. doi:10.1073/pnas.0611721104CrossRefGoogle Scholar
Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P., Kappos, L., Lublin, F.D. (2005). Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Annals of Neurology, 58, 840846. doi:10.1002/ana.20703CrossRefGoogle Scholar
Polman, C.H., Rudick, R.A. (2010). The Multiple Sclerosis Functional Composite: A clinically meaningful measure of disability. Neurology, 74, S8S15.CrossRefGoogle ScholarPubMed
Prakash, R.S., Snook, E.M., Erickson, K.I., Colcombe, S.J., Voss, M.W., Motl, R.W., Kramer, A.F. (2007). Cardiorespiratory fitness: A predictor of cortical plasticity in multiple sclerosis. Neuroimage, 38, 12381244. doi:10.1016/j.neuroimage.2006.10.003CrossRefGoogle Scholar
Prakash, R.S., Snook, E.M., Kramer, A.F., Motl, R.W. (2010). Correlation of physical activity with perceived cognitive deficits in relapsing-remitting multiple sclerosis. International Journal of MS Care, 12, 15.CrossRefGoogle Scholar
Prakash, R.S., Snook, E.M., Lewis, J., Motl, R.W., Kramer, A.F. (2008). Cognitive impairments in relapsing-remitting multiple sclerosis: A quantitative investigation. Multiple Sclerosis, 14, 12501261. doi:10.1177/1352458508095004CrossRefGoogle Scholar
Prakash, R.S., Snook, E.M., Motl, R.W., Kramer, A.F. (2010). Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Research, 1341, 4151. doi:10.1016/j.brainres.2009.06.063CrossRefGoogle ScholarPubMed
Prakash, R.S., Voss, M.W., Erickson, K.I., Lewis, L., Chaddock, L., Malkowski, E., McAuley, E. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 14, 229. doi:10.3389/fnhum.2010.00229Google Scholar
Ranganath, C., Heller, A., Cohen, M.X., Brozinsky, C.J., Rissman, J. (2005). Functional connectivity with the hippocampus during successful memory encoding formation. Hippocampus, 15, 9971005. doi:10.1002/hipo.20141CrossRefGoogle Scholar
Roosendaal, S.D., Hulst, H.E., Vrenken, H., Feenstra, H.E., Castelijins, J.A., Pouwels, P.J., Geurts, J.J. (2010). Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function. Radiology, 255, 595604. doi:10.1148/radiol.10091433CrossRefGoogle ScholarPubMed
Shannon, B.J., Snyder, A.Z., Vincent, J.L., Buckner, R.L. (2006). Spontaneous correlations and the default network: Effects of task performance. Society for Neuroscience Abstracts/Annual Meeting Publications, 119.5.Google Scholar
Shulman, G.L., Corbetta, M., Fiez, J.A., Buckner, R.L., Miezin, F.M., Raichle, M.E., Petersen, S.E. (1997). Searching for activations that generalize over tasks. Human Brain Mapping, 5, 317322.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Sicotte, N.L., Kern, K.C., Giesser, B.S., Arshanapalli, A., Schultz, A.M., Montag, M., Bookheimer, S.Y. (2008). Regional hippocampal atrophy in multiple sclerosis. Brain, 131, 11341141. doi:10.1093/brain/awn030CrossRefGoogle ScholarPubMed
Smith, P.J., Blumenthal, J.A., Hoffman, B.M., Cooper, H., Strauman, T.A., Welsh-Bohmer, K., Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239252.CrossRefGoogle ScholarPubMed
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementations as FSL. Neuroimage, 23, 208219. doi:10.1016/j.neuroimage.2004.07.051CrossRefGoogle ScholarPubMed
Sosnoff, J.J., Goldman, M.D., Motl, R.W. (2010). Real-life walking impairment in multiple sclerosis: Preliminary comparison of four methods for processing accelerometry data. Multiple Sclerosis, 16, 868877. doi:10.1177/1352458510373111CrossRefGoogle ScholarPubMed
Thornton, A.E., Raz, N. (1997). Memory impairment in multiple sclerosis: A quantitative review. Neuropsychology, 11, 357366. doi:10.1037/0894-4105.11.3.357CrossRefGoogle ScholarPubMed
van Praag, H., Christie, B.R., Sejnowski, T.J., Gage, F.H. (1999). Running enhances neurogenesis, learning and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 1342713431.CrossRefGoogle ScholarPubMed
van Praag, H., Kempermann, G., Gage, F.H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266270. doi:10.1038/6368CrossRefGoogle ScholarPubMed
van Praag, H., Shubert, T., Zhao, C., Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 86808685. doi:10.1523/JNEUROSCI.1731-05.2005CrossRefGoogle ScholarPubMed
Vaynman, S., Ying, Z., Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 25802590. doi:10.1111/j.1460-9568.2004.03720.xCrossRefGoogle ScholarPubMed
Vincent, K.R., Braith, R.W., Bottiglieri, T., Vincent, H.K., Lowenthal, D.T. (2003). Homocysteine and lipoprotein levels following resistance training in older adults. Preventative Cardiology, 6, 197203. doi:10.1111/j.1520-037X.2003.01723.xCrossRefGoogle ScholarPubMed
Voss, M.W., Erickson, K.I., Prakash, R., Chaddock, L., Malkowski, E., Alves, H., Kramer, A.F. (2010). Functional connectivity: A source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia, 48, 13941406. doi:10.1016/j.neuropsychologia.2010.01.005CrossRefGoogle ScholarPubMed
Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., Kramer, A.F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 117. doi:10.3389/fnagi.2010.00032Google Scholar
Wagner, A.D., Shannon, B.J., Kahn, I., Buckner, R.L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445453. doi:10.1016/j.tics.2005.07.001CrossRefGoogle ScholarPubMed
Wang, L., LaViolette, P., O'Keefe, K., Putch, D., Bakkour, A., Van Dijk, K.R., Sperling, R.A. (2010). Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage, 51, 910917. doi:10.1016/j.neuroimage.2010.02.046CrossRefGoogle ScholarPubMed
Woolrich, M.W., Behrens, T.E., Beckmann, C.F., Jenkinson, M., Smith, S.M. (2004). Multi-level linear modelling for fMRI group analysis using Bayesian inference. Neuroimage, 21, 17321747. doi:10.1016/j.neuroimage.2003.12.023CrossRefGoogle Scholar
Worsley, K.J., Evans, A.C., Marrett, S., Neelin, P. (1992). A three dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12, 900918.CrossRefGoogle Scholar
Zar, J.H. (1996). Biostatistical analysis (3rd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
Zhou, Y., Liang, M., Tian, L.X., Wang, K., Hao, Y.H., Liu, Z., Jiang, T.Z. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 97, 194205. doi:10.1016/j.schres.2007.05.029CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Prakash Supplementary Material

Prakash Supplementary Material

Download Prakash Supplementary Material(PDF)
PDF 276.4 KB