Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T16:23:00.471Z Has data issue: false hasContentIssue false

Neuropsychological Test Performance in Parkinsonism Without Dopaminergic Deficiency on [123I]-FP-CIT SPECT Imaging

Published online by Cambridge University Press:  19 April 2018

Kathryn A. Wyman-Chick*
Affiliation:
HealthPartners Neuroscience Center, St Paul, Minnesota HealthPartners Institute, Bloomington, Minnesota
Phillip K. Martin
Affiliation:
University of Kansas School of Medicine Wichita, Department of Psychiatry and Behavioral Sciences, Wichita, Kansas
Michal Minár
Affiliation:
Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
Manuel Menéndez-González
Affiliation:
Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
Lauren O. Erickson
Affiliation:
HealthPartners Institute, Bloomington, Minnesota
Tania Álvarez-Avellón
Affiliation:
Psychology Department, Universidad de Oviedo, Spain
*
Correspondence and reprint requests to: Kathryn A. Wyman-Chick, 295 Phalen Blvd., Mail Stop 41203C, St Paul, MN 55130. E-mail: [email protected]

Abstract

Objectives: To examine neuropsychological test performance among individuals clinically diagnosed with Parkinson’s disease (PD) without evidence of dopaminergic deficiency on [123]I-CIT single photon emission computed tomography imaging. Methods: Data were obtained from the Parkinson’s Progression Marker Initiative. The sample included 59 participants with scans without evidence of dopaminergic deficiency (SWEDD), 412 with PD, and 114 healthy controls (HC). Tests included Judgment of Line Orientation, Letter-Number Sequencing, Symbol Digit Modalities, Hopkins Verbal Learning Test-Revised, and Letter and Category Fluency. Multivariate analysis of variance was used to compare standardized scores between the groups. Results: There was a statistically significant difference in performances between the groups, F(14,1155)=5.04; p<.001; partial η2=.058. Pairwise comparisons revealed significant differences in Category Fluency between SWEDD (M=0.22; SD=1.08) and HC (M=0.86; SD=1.15) and in Symbol Digit Modalities Test performance between SWEDD (M=45.09; SD=11.54) and HC (M=51.75; SD=9.79). No significant differences between SWEDD and PD were found. Using established criteria, approximately one in four participants in the SWEDD and PD groups met criteria for mild cognitive impairment (MCI). Conclusions: Individuals with SWEDD demonstrate significantly worse mental processing speed and semantic fluency than HC. The neuropsychological test performances and rates of MCI were similar between the SWEDD group and PD groups, which may reflect a common pathology outside of the nigrostriatal pathway. (JINS, 2018, 24, 646–651)

Type
Brief Communication
Copyright
Copyright © The International Neuropsychological Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ba, F., & Martin, W.R. (2015). Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Parkinsonism and Related Disorders, 21(2), 8794. doi: 10.1016/j.parkreldis.2014.11.007 Google Scholar
Batla, A., Erro., R., Stamelou, M., Schneider, S.A., Schwingenschuh, P., Ganos, C., && Bhatia, K.P. (2014). Patients with scans without evidence of dopaminergic deficit: A long-term follow-up study. Movement Disorders, 29(14), 18201825. doi: 10.1002/mds.26018 Google Scholar
Benton, A., Varney, N., & Hamsher, K. (1978). Visuospatial judgment. Archives of Neurology, 35, 364367.Google Scholar
Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of new memory test with six equivalent forms. The Clinical Neuropsychologist, 5, 125142.Google Scholar
Erro, R., Schneider, S.A., Quinn, N.P., & Bhatia, K.P. (2016). What do patients with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence and continuing controversies. Journal of Neurology, Neurosurgery, & Psychiatry, 87(3), 319323. doi: 10.1136/jnnp-2014-310256 Google Scholar
Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebebns, G.T., Fahn, S., Martinez-Martin, P., & LaPelle, N. (2008). Movement Disorder Society- sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 21292170. doi: 10.1002/mds.22340 Google Scholar
Hoops, S., Nazem, S., Siderowf, A.D., Duda, J.E., Xie, S.X., Stern, M.B., & Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 73, 17381745.CrossRefGoogle ScholarPubMed
Lebedev, A.V., Westman, E., Simmons, A., Lebedeva, A., Siepel, F.J., Pereira, J.B., && Aarsland, D. (2014). Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Frontiers in Systems Neuroscience, 8, 112. doi: 10.3389/fnsys.2014.00045 Google Scholar
Litvan, I., Goldman, J.G., Troster, A.I., Schmand, B., Weintraub, D., Petersen, R.C., & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Movement Disorders, 27(3), 349356. doi: 10.1002/mds.24893 Google Scholar
Lombardi, W.J., Woolston, D.J., Roberts, J.W., & Gross, R.E. (2001). Cognitive deficits in patients with essential tremor. Neurology, 57(5), 785790.Google Scholar
Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Coffey, C., & Taylor, P. (2011). The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 95(4), 629635. doi: 10.1016/j.pneurobio.2011.09.005 CrossRefGoogle Scholar
Marek, K., Jennings, D., & Seibyl, J. (2005). Long-term follow-up of patients with scans without evidence of dopaminergic deficit (SWEDD) in the ELLDOPA study [abstract]. Neurology, 64(suppl 1), A274.Google Scholar
Marek, K., Seibyl, J., Eberly, S., Oakes, D., Shoulston, I., Lang, A.E., & Jennings, D. (2014). Longitudinal follow-up of SWEDD subjects in the PRECEPT study. Neurology, 82(20), 17911797. doi: 10.1212/WNL.0000000000000424 Google Scholar
Marshall, V.L., Patterson, J., Hadley, D.M., Grosset, K.A., & Grosset, D.G. (2006). Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nuclear Medicine Communications, 27(12), 993–937. doi: 10.1097/01.mnm.0000243374.11260.5b Google Scholar
Mattay, V.S., Tessitore, A., Callicott, J.H., Bertolino, A., Goldberg, T.E., Chase, T.N., & Weinberger, D.R. (2002). Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Annals of Neurology, 51(2), 156164. doi: 10.1002/ana.10078 Google Scholar
Menendez-Gonzalez, M., Tavares, F., Zeidan, N., Salas-Pacheco, J.M., & Arias-Carrion, O. (2014). Diagnosis behind patients with hard-to-classify tremor and normal DaT-SPECT: A clinical follow up study. Frontiers in Aging Neuroscience, 6(56), 19. doi: 10.3389/fnagi.2014.00056 Google Scholar
Muslimovic, D., Post, B., Speelman, J.D., De Haan, R.J., & Schmand, B. (2009). Cognitive decline in Parkinson’s disease: A prospective longitudinal study. Journal of the International Neuropsychological Society, 15(3), 426437. doi: 10.1017/S1355617709090614 Google Scholar
Nasreddine, Z.S., Phillips, N.A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. doi: 10.1111/j.1532-5415.2005.53221.x Google Scholar
The Parkinson Study Group. (2004). Levodopa and the progression of Parkinson’s disease. New England Journal of Medicine, 351(24), 24982508. doi: 10.1056/NEJMoa033447 CrossRefGoogle Scholar
Perlmutter, J.S., & Eidelberg, D. (2012). To scan or not to scan: DaT is the question. Neurology, 78(10), 688689. doi: 10.1212/WNL.0b013e3182494c72 CrossRefGoogle ScholarPubMed
Pfeiffer, H.C., Lokkegaard, A., Zoetmulder, M., Friberg, L., & Werdelin, L. (2014). Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta Neurologica Scandinavica, 129(5), 307318. doi: 10.1111/ane.12189 Google Scholar
Poletti, M., & Bonuccelli, U. (2013). Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: A review. Therapeutic Advances in Psychopharmacology, 3(2), 101113. doi: 10.1177/2045125312470130 Google Scholar
Scott, R., Gregory, R., Wilson, J., Banks, S., Turner, A., Parkin, S., & Aziz, T. (2003). Executive cognitive deficits in primary dystonia. Movement Disorders, 18(5), 539550. doi: 10.1002/mds.10399 Google Scholar
Silveira-Moriyama, L., Schwingenschuh, P., O’Donnell, A., Schneider, S.A., Mir, P., Carrillo, F., & Lees, A.J. (2009). Olfaction in patients with suspected parkinsonism and scans without evidence of dopaminergic deficit (SWEDDs). Journal of Neurology, Neurosurgery & Psychiatry, 80, 744748.Google Scholar
Smith, A. (1982). Symbol Digit Modalities Test. Torrance, CA: Western Psychological Services.Google Scholar
Sprenger, F.S., Seppi, K., Djamshidian, A., Reiter, E., Nocker, M., Goebel, G., &&Poewe, W. (2015). Non-motor symptoms in subjects without evidence of dopaminergic deficits. Movement Disorders, 30(7), 976981. doi: 10.1002/mds.26204 Google Scholar
Stoessl, A.J. (2010). Scans without evidence of dopamine deficiency: The triumph of careful clinical assessment. Movement Disorders, 25(5), 529530. doi: 10.1002/mds.23138.Google Scholar
Straus, E., Sherman, E.M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: NY: Oxford University Press.Google Scholar
Wechsler, D. (1997). Wechsler Memory Scale – III administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Wyman-Chick, K.A., Martin, P.K., Minar, M., & Schroeder, R.W. (2017). Cognition in patients with a clinical diagnosis of Parkinson disease and scans without evidence of dopaminergic deficit (SWEDD): 2-year follow-up. Cognitive Behavioral Neurology, 29(4), 190196.CrossRefGoogle Scholar